1
|
Zhu Y, Chen X, Zheng H, Ma Q, Chen K, Li H. Anti-Inflammatory Effects of Helminth-Derived Products: Potential Applications and Challenges in Diabetes Mellitus Management. J Inflamm Res 2024; 17:11789-11812. [PMID: 39749005 PMCID: PMC11694023 DOI: 10.2147/jir.s493374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 12/15/2024] [Indexed: 01/04/2025] Open
Abstract
The global rise in diabetes mellitus (DM), particularly type 2 diabetes (T2D), has become a major public health challenge. According to the "hygiene hypothesis", helminth infections may offer therapeutic benefits for DM. These infections are known to modulate immune responses, reduce inflammation, and improve insulin sensitivity. However, they also carry risks, such as malnutrition, anemia, and intestinal obstruction. Importantly, helminth excretory/secretory products, which include small molecules and proteins, have shown therapeutic potential in treating various inflammatory diseases with minimal side effects. This review explores the anti-inflammatory properties of helminth derivatives and their potential to alleviate chronic inflammation in both type 1 diabetes and T2D, highlighting their promise as future drug candidates. Additionally, it discusses the possible applications of these derivatives in DM management and the challenges involved in translating these findings into clinical practice.
Collapse
Affiliation(s)
- Yunhuan Zhu
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, People’s Republic of China
| | - Xintong Chen
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, People’s Republic of China
| | - Hezheng Zheng
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, People’s Republic of China
| | - Qiman Ma
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, People’s Republic of China
| | - Keda Chen
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, People’s Republic of China
| | - Hongyu Li
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, People’s Republic of China
- Ocean College, Beibu Gulf University, Qinzhou, Guangxi, People’s Republic of China
| |
Collapse
|
2
|
Doolan R, Putananickal N, Tritten L, Bouchery T. How to train your myeloid cells: a way forward for helminth vaccines? Front Immunol 2023; 14:1163364. [PMID: 37325618 PMCID: PMC10266106 DOI: 10.3389/fimmu.2023.1163364] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/25/2023] [Indexed: 06/17/2023] Open
Abstract
Soil-transmitted helminths affect approximately 1.5 billion people worldwide. However, as no vaccine is currently available for humans, the current strategy for elimination as a public health problem relies on preventive chemotherapy. Despite more than 20 years of intense research effort, the development of human helminth vaccines (HHVs) has not yet come to fruition. Current vaccine development focuses on peptide antigens that trigger strong humoral immunity, with the goal of generating neutralizing antibodies against key parasite molecules. Notably, this approach aims to reduce the pathology of infection, not worm burden, with only partial protection observed in laboratory models. In addition to the typical translational hurdles that vaccines struggle to overcome, HHVs face several challenges (1): helminth infections have been associated with poor vaccine responses in endemic countries, probably due to the strong immunomodulation caused by these parasites, and (2) the target population displays pre-existing type 2 immune responses to helminth products, increasing the likelihood of adverse events such as allergy or anaphylaxis. We argue that such traditional vaccines are unlikely to be successful on their own and that, based on laboratory models, mucosal and cellular-based vaccines could be a way to move forward in the fight against helminth infection. Here, we review the evidence for the role of innate immune cells, specifically the myeloid compartment, in controlling helminth infections. We explore how the parasite may reprogram myeloid cells to avoid killing, notably using excretory/secretory (ES) proteins and extracellular vesicles (EVs). Finally, learning from the field of tuberculosis, we will discuss how anti-helminth innate memory could be harnessed in a mucosal-trained immunity-based vaccine.
Collapse
Affiliation(s)
- Rory Doolan
- Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Namitha Putananickal
- Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Lucienne Tritten
- Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
- Institute of Parasitology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Tiffany Bouchery
- Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| |
Collapse
|
3
|
Chakraborty P, Aravindhan V, Mukherjee S. Helminth-derived biomacromolecules as therapeutic agents for treating inflammatory and infectious diseases: What lessons do we get from recent findings? Int J Biol Macromol 2023; 241:124649. [PMID: 37119907 DOI: 10.1016/j.ijbiomac.2023.124649] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/20/2023] [Accepted: 04/24/2023] [Indexed: 05/01/2023]
Abstract
Despite the tremendous progress in healthcare sectors, a number of life-threatening infectious, inflammatory, and autoimmune diseases are continuously challenging mankind throughout the globe. In this context, recent successes in utilizing helminth parasite-derived bioactive macromolecules viz. glycoproteins, enzymes, polysaccharides, lipids/lipoproteins, nucleic acids/nucleotides, and small organic molecules for treating various disorders primarily resulted from inflammation. Among the several parasites that infect humans, helminths (cestodes, nematodes, and trematodes) are known as efficient immune manipulators owing to their explicit ability to modulate and modify the innate and adaptive immune responses of humans. These molecules selectively bind to immune receptors on innate and adaptive immune cells and trigger multiple signaling pathways to elicit anti-inflammatory cytokines, expansion of alternatively activated macrophages, T-helper 2, and immunoregulatory T regulatory cell types to induce an anti-inflammatory milieu. Reduction of pro-inflammatory responses and repair of tissue damage by these anti-inflammatory mediators have been exploited for treating a number of autoimmune, allergic, and metabolic diseases. Herein, the potential and promises of different helminths/helminth-derived products as therapeutic agents in ameliorating immunopathology of different human diseases and their mechanistic insights of function at cell and molecular level alongside the molecular signaling cross-talks have been reviewed by incorporating up-to-date findings achieved in the field.
Collapse
Affiliation(s)
- Pritha Chakraborty
- Integrative Biochemistry & Immunology Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol 713340, India
| | | | - Suprabhat Mukherjee
- Integrative Biochemistry & Immunology Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol 713340, India.
| |
Collapse
|
4
|
Inotodiol, an antiasthmatic agent with efficacy and safety, preferentially impairs membrane-proximal signaling for mast cell activation. Int Immunopharmacol 2023; 117:109854. [PMID: 36812673 DOI: 10.1016/j.intimp.2023.109854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 01/23/2023] [Accepted: 02/04/2023] [Indexed: 02/22/2023]
Abstract
While inhaled corticosteroids (ICSs) are the mainstay of asthma treatment, due to compliance, drug safety, and resistance issues, new medications to replace ICSs are in high demand. Inotodiol, a fungal triterpenoid, showed a unique immunosuppressive property with a preference for mast cells. It exerted a mast cell-stabilizing activity equally potent to dexamethasone in mouse anaphylaxis models when orally administered in a lipid-based formulation, upgrading bioavailability. However, it was four to over ten times less effective in suppressing other immune cell subsets, depending on the subsets, than dexamethasone showing invariably potent inhibition. Accordingly, inotodiol affected the membrane-proximal signaling for activating mast cell functions more profoundly than other subsets. Inotodiol also effectively prevented asthma exacerbation. Importantly, considering the no-observed-adverse-effect level of inotodiol was over 15 times higher than dexamethasone, its therapeutic index would be at least eight times better,implying that inotodiol is a viable option for replacing CSs in treating asthma.
Collapse
|
5
|
Tsubokawa D. Immunomodulators secreted from parasitic helminths act on pattern recognition receptors. FRONTIERS IN PARASITOLOGY 2023; 1:1091596. [PMID: 39816467 PMCID: PMC11731691 DOI: 10.3389/fpara.2022.1091596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/30/2022] [Indexed: 01/18/2025]
Abstract
Excretory-secretory (ES) products from parasitic helminths contain immunomodulatory molecules, which can regulate host immune responses. These immunomodulatory molecules are crucial for successful parasitism, and play roles in tissue migration, maturation, and reproduction. Some target pattern recognition receptors (PRRs), including toll-like receptor, C-type lectin receptor, receptor for advanced glycation end products, and nucleotide-binding oligomerization domain-like receptor. PRRs trigger activation of signaling cascades, inducing innate inflammatory responses and adaptive immunity in hosts. This article reviews ES immunomodulators identified in parasitic helminths that act on PRRs, and their PRR-facilitated immune-regulatory mechanisms. In addition, we describe the therapeutic potential of ES immunomodulators for allergic and inflammatory diseases.
Collapse
Affiliation(s)
- Daigo Tsubokawa
- Department of Parasitology and Tropical Medicine, Kitasato University School of Medicine, Sagamihara, Japan
| |
Collapse
|
6
|
Sobiepanek A, Kuryk Ł, Garofalo M, Kumar S, Baran J, Musolf P, Siebenhaar F, Fluhr JW, Kobiela T, Plasenzotti R, Kuchler K, Staniszewska M. The Multifaceted Roles of Mast Cells in Immune Homeostasis, Infections and Cancers. Int J Mol Sci 2022; 23:2249. [PMID: 35216365 PMCID: PMC8875910 DOI: 10.3390/ijms23042249] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/05/2022] [Accepted: 02/07/2022] [Indexed: 02/07/2023] Open
Abstract
Mast cells (MCs) play important roles in normal immune responses and pathological states. The location of MCs on the boundaries between tissues and the external environment, including gut mucosal surfaces, lungs, skin, and around blood vessels, suggests a multitude of immunological functions. Thus, MCs are pivotal for host defense against different antigens, including allergens and microbial pathogens. MCs can produce and respond to physiological mediators and chemokines to modulate inflammation. As long-lived, tissue-resident cells, MCs indeed mediate acute inflammatory responses such as those evident in allergic reactions. Furthermore, MCs participate in innate and adaptive immune responses to bacteria, viruses, fungi, and parasites. The control of MC activation or stabilization is a powerful tool in regulating tissue homeostasis and pathogen clearance. Moreover, MCs contribute to maintaining the homeostatic equilibrium between host and resident microbiota, and they engage in crosstalk between the resident and recruited hematopoietic cells. In this review, we provide a comprehensive overview of the functions of MCs in health and disease. Further, we discuss how mouse models of MC deficiency have become useful tools for establishing MCs as a potential cellular target for treating inflammatory disorders.
Collapse
Affiliation(s)
- Anna Sobiepanek
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland; (A.S.); (J.B.); (P.M.); (T.K.)
| | - Łukasz Kuryk
- National Institute of Public Health NIH—National Institute of Research, 00-791 Warsaw, Poland;
- Clinical Science, Targovax Oy, Lars Sonckin kaari 14, 02600 Espoo, Finland;
| | - Mariangela Garofalo
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo 5, 35131 Padova, Italy;
| | - Sandeep Kumar
- Clinical Science, Targovax Oy, Lars Sonckin kaari 14, 02600 Espoo, Finland;
| | - Joanna Baran
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland; (A.S.); (J.B.); (P.M.); (T.K.)
| | - Paulina Musolf
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland; (A.S.); (J.B.); (P.M.); (T.K.)
| | - Frank Siebenhaar
- Institute of Allergology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (F.S.); (J.W.F.)
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, 12203 Berlin, Germany
| | - Joachim Wilhelm Fluhr
- Institute of Allergology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (F.S.); (J.W.F.)
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, 12203 Berlin, Germany
| | - Tomasz Kobiela
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland; (A.S.); (J.B.); (P.M.); (T.K.)
| | - Roberto Plasenzotti
- Department of Biomedical Research, Medical University of Vienna, Währingergürtel 18-20, 1090 Vienna, Austria;
| | - Karl Kuchler
- Max Perutz Labs Vienna, Center for Medical Biochemistry, Medical University of Vienna, Campus Vienna Biocenter, Dr. Bohr-Gasse 9/2, 1030 Vienna, Austria;
| | - Monika Staniszewska
- Centre for Advanced Materials and Technologies, Warsaw University of Technology, Poleczki 19, 02-822 Warsaw, Poland
| |
Collapse
|
7
|
Buitrago G, Duncombe-Moore J, Harnett MM, Harnett W. Mini Review: Structure and Function of Nematode Phosphorylcholine-Containing Glycoconjugates. FRONTIERS IN TROPICAL DISEASES 2021. [DOI: 10.3389/fitd.2021.769000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
An unusual aspect of the biology of nematodes is the covalent attachment of phosphorylcholine (PC) to carbohydrate in glycoconjugates. Investigation of the structure of these molecules by ever-increasingly sophisticated analytical procedures has revealed that PC is generally in phosphodiester linkage with C6 of N-acetylglucosamine (GlcNAc) in both N-type glycans and glycosphingolipids. Up to five PC groups have been detected in the former, being located on both antenna and core GlcNAc. The PC donor for transfer to carbohydrate appears to be phosphatidylcholine but the enzyme responsible for transfer remains to be identified. Work primarily involving the PC-containing Acanthocheilonema viteae secreted product ES-62, has shown that the PC attached to nematode N-glycans possesses a range of immunomodulatory properties, subverting for example, pro-inflammatory signalling in various immune system cell-types including lymphocytes, mast cells, dendritic cells and macrophages. This has led to the generation of PC-based ES-62 small molecule analogues (SMAs), which mirror the parent molecule in preventing the initiation or progression of disease in mouse models of a number of human conditions associated with aberrant inflammatory responses. These include rheumatoid arthritis, systemic lupus erythematosus and lung and skin allergy such that the SMAs are considered to have widespread therapeutic potential.
Collapse
|
8
|
IL-33: A central cytokine in helminth infections. Semin Immunol 2021; 53:101532. [PMID: 34823996 DOI: 10.1016/j.smim.2021.101532] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 11/10/2021] [Accepted: 11/12/2021] [Indexed: 02/06/2023]
Abstract
IL-33 is an alarmin cytokine which has been implicated in allergy, fibrosis, inflammation, tumorigenesis, metabolism, and homeostasis. However, amongst its strongest roles are in helminth infections, where IL-33 usually (but not always) is central to induction of an effective anti-parasitic immune response. In this review, we will summarise the literature around this fascinating cytokine, its activity on immune and non-immune cells, the unique (and sometimes counterintuitive) responses it induces, and how it can coordinate the immune response during infections by parasitic helminths. Finally, we will summarise some of the ways that parasites have developed to modulate the IL-33 pathway for their own benefit.
Collapse
|
9
|
Lechner A, Bohnacker S, Esser-von Bieren J. Macrophage regulation & function in helminth infection. Semin Immunol 2021; 53:101526. [PMID: 34802871 DOI: 10.1016/j.smim.2021.101526] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 11/03/2021] [Accepted: 11/06/2021] [Indexed: 12/14/2022]
Abstract
Macrophages are innate immune cells with essential roles in host defense, inflammation, immune regulation and repair. During infection with multicellular helminth parasites, macrophages contribute to pathogen trapping and killing as well as to tissue repair and the resolution of type 2 inflammation. Macrophages produce a broad repertoire of effector molecules, including enzymes, cytokines, chemokines and growth factors that govern anti-helminth immunity and repair of parasite-induced tissue damage. Helminth infection and the associated type 2 immune response induces an alternatively activated macrophage (AAM) phenotype that - beyond driving host defense - prevents aberrant Th2 cell activation and type 2 immunopathology. The immune regulatory potential of macrophages is exploited by helminth parasites that induce the production of anti-inflammatory mediators such as interleukin 10 or prostaglandin E2 to evade host immunity. Here, we summarize current insights into the mechanisms of macrophage-mediated host defense and repair during helminth infection and highlight recent progress on the immune regulatory crosstalk between macrophages and helminth parasites. We also point out important remaining questions such as the translation of findings from murine models to human settings of helminth infection as well as long-term consequences of helminth-induced macrophage reprogramming for subsequent host immunity.
Collapse
Affiliation(s)
- Antonie Lechner
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, 80802, Munich, Germany
| | - Sina Bohnacker
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, 80802, Munich, Germany
| | - Julia Esser-von Bieren
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, 80802, Munich, Germany.
| |
Collapse
|
10
|
Dustin CM, Habibovic A, Hristova M, Schiffers C, Morris CR, Lin MCJ, Bauer RA, Heppner DE, Daphtary N, Aliyeva M, van der Vliet A. Oxidation-Dependent Activation of Src Kinase Mediates Epithelial IL-33 Production and Signaling during Acute Airway Allergen Challenge. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2021; 206:2989-2999. [PMID: 34088769 PMCID: PMC8642476 DOI: 10.4049/jimmunol.2000995] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 04/06/2021] [Indexed: 11/19/2022]
Abstract
The respiratory epithelium forms the first line of defense against inhaled pathogens and acts as an important source of innate cytokine responses to environmental insults. One critical mediator of these responses is the IL-1 family cytokine IL-33, which is rapidly secreted upon acute epithelial injury as an alarmin and induces type 2 immune responses. Our recent work highlighted the importance of the NADPH oxidase dual oxidase 1 (DUOX1) in acute airway epithelial IL-33 secretion by various airborne allergens associated with H2O2 production and reduction-oxidation-dependent activation of Src kinases and epidermal growth factor receptor (EGFR) signaling. In this study, we show that IL-33 secretion in response to acute airway challenge with house dust mite (HDM) allergen critically depends on the activation of Src by a DUOX1-dependent oxidative mechanism. Intriguingly, HDM-induced epithelial IL-33 secretion was dramatically attenuated by small interfering RNA- or Ab-based approaches to block IL-33 signaling through its receptor IL1RL1 (ST2), indicating that HDM-induced IL-33 secretion includes a positive feed-forward mechanism involving ST2-dependent IL-33 signaling. Moreover, activation of type 2 cytokine responses by direct airway IL-33 administration was associated with ST2-dependent activation of DUOX1-mediated H2O2 production and reduction-oxidation-based activation of Src and EGFR and was attenuated in Duox1 -/- and Src +/- mice, indicating that IL-33-induced epithelial signaling and subsequent airway responses involve DUOX1/Src-dependent pathways. Collectively, our findings suggest an intricate relationship between DUOX1, Src, and IL-33 signaling in the activation of innate type 2 immune responses to allergens, involving DUOX1-dependent epithelial Src/EGFR activation in initial IL-33 secretion and in subsequent IL-33 signaling through ST2 activation.
Collapse
Affiliation(s)
- Christopher M Dustin
- Department of Pathology and Laboratory Medicine, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT
| | - Aida Habibovic
- Department of Pathology and Laboratory Medicine, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT
| | - Milena Hristova
- Department of Pathology and Laboratory Medicine, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT
| | - Caspar Schiffers
- Department of Pathology and Laboratory Medicine, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT
- Department of Respiratory Medicine, School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Carolyn R Morris
- Department of Pathology and Laboratory Medicine, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT
| | - Miao-Chong Joy Lin
- Department of Pathology and Laboratory Medicine, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT
| | - Robert A Bauer
- Department of Pathology and Laboratory Medicine, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT
| | - David E Heppner
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, NY; and
| | - Nirav Daphtary
- Department of Medicine, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT
| | - Minara Aliyeva
- Department of Medicine, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT
| | - Albert van der Vliet
- Department of Pathology and Laboratory Medicine, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT;
| |
Collapse
|
11
|
Jiménez M, Cervantes-García D, Córdova-Dávalos LE, Pérez-Rodríguez MJ, Gonzalez-Espinosa C, Salinas E. Responses of Mast Cells to Pathogens: Beneficial and Detrimental Roles. Front Immunol 2021; 12:685865. [PMID: 34211473 PMCID: PMC8240065 DOI: 10.3389/fimmu.2021.685865] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/28/2021] [Indexed: 12/19/2022] Open
Abstract
Mast cells (MCs) are strategically located in tissues close to the external environment, being one of the first immune cells to interact with invading pathogens. They are long living effector cells equipped with different receptors that allow microbial recognition. Once activated, MCs release numerous biologically active mediators in the site of pathogen contact, which induce vascular endothelium modification, inflammation development and extracellular matrix remodeling. Efficient and direct antimicrobial mechanisms of MCs involve phagocytosis with oxidative and non-oxidative microbial destruction, extracellular trap formation, and the release of antimicrobial substances. MCs also contribute to host defense through the attraction and activation of phagocytic and inflammatory cells, shaping the innate and adaptive immune responses. However, as part of their response to pathogens and under an impaired, sustained, or systemic activation, MCs may contribute to tissue damage. This review will focus on the current knowledge about direct and indirect contribution of MCs to pathogen clearance. Antimicrobial mechanisms of MCs are addressed with special attention to signaling pathways involved and molecular weapons implicated. The role of MCs in a dysregulated host response that can increase morbidity and mortality is also reviewed and discussed, highlighting the complexity of MCs biology in the context of host-pathogen interactions.
Collapse
Affiliation(s)
- Mariela Jiménez
- Laboratory of Immunology, Department of Microbiology, Universidad Autónoma de Aguascalientes, Aguascalientes, Mexico
| | - Daniel Cervantes-García
- Laboratory of Immunology, Department of Microbiology, Universidad Autónoma de Aguascalientes, Aguascalientes, Mexico.,Cátedras CONACYT, National Council of Science and Technology, Mexico City, Mexico
| | - Laura E Córdova-Dávalos
- Laboratory of Immunology, Department of Microbiology, Universidad Autónoma de Aguascalientes, Aguascalientes, Mexico
| | - Marian Jesabel Pérez-Rodríguez
- Department of Pharmacobiology, Centro de Investigación y de Estudios Avanzados (Cinvestav), Unidad Sede Sur, Mexico City, Mexico
| | - Claudia Gonzalez-Espinosa
- Department of Pharmacobiology, Centro de Investigación y de Estudios Avanzados (Cinvestav), Unidad Sede Sur, Mexico City, Mexico
| | - Eva Salinas
- Laboratory of Immunology, Department of Microbiology, Universidad Autónoma de Aguascalientes, Aguascalientes, Mexico
| |
Collapse
|
12
|
Interference of LPS H. pylori with IL-33-Driven Regeneration of Caviae porcellus Primary Gastric Epithelial Cells and Fibroblasts. Cells 2021; 10:cells10061385. [PMID: 34199843 PMCID: PMC8227243 DOI: 10.3390/cells10061385] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/28/2021] [Accepted: 06/01/2021] [Indexed: 02/06/2023] Open
Abstract
Background: Lipopolysaccharide (LPS) of Helicobacter pylori (Hp) bacteria causes disintegration of gastric tissue cells in vitro. It has been suggested that interleukin (IL)-33 is involved in healing gastric injury. Aim: To elucidate whether Hp LPS affects regeneration of gastric barrier initiated by IL-33. Methods: Primary gastric epithelial cells or fibroblasts from Caviae porcellus were transfected with siRNA IL-33. Such cells, not exposed or treated with LPS Hp, were sub-cultured in the medium with or without exogenous IL-33. Then cell migration was assessed in conjunction with oxidative stress and apoptosis, activation of extracellular signal-regulated kinase (Erk), production of collagen I and soluble ST2 (IL-33 decoy). Results: Control cells not treated with LPS Hp migrated in the presence of IL-33. The pro-regenerative activity of IL-33 was related to stimulation of cells to collagen I production. Wound healing by cells exposed to LPS Hp was inhibited even in the presence of IL-33. This could be due to increased oxidative stress and apoptosis in conjunction with Erk activation, sST2 elevation and modulation of collagen I production. Conclusions: The recovery of gastric barrier cells during Hp infection potentially can be affected due to downregulation of pro-regenerative activity of IL-33 by LPS Hp.
Collapse
|
13
|
Bohnacker S, Troisi F, de Los Reyes Jiménez M, Esser-von Bieren J. What Can Parasites Tell Us About the Pathogenesis and Treatment of Asthma and Allergic Diseases. Front Immunol 2020; 11:2106. [PMID: 33013887 PMCID: PMC7516051 DOI: 10.3389/fimmu.2020.02106] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 08/04/2020] [Indexed: 12/18/2022] Open
Abstract
The same mechanisms that enable host defense against helminths also drive allergic inflammation. This suggests that pathomechanisms of allergic diseases represent evolutionary old responses against helminth parasites and that studying antihelminth immunity may provide insights into pathomechanisms of asthma. However, helminths have developed an intricate array of immunoregulatory mechanisms to modulate type 2 immune mechanisms. This has led to the hypothesis that the lack of helminth infection may contribute to the rise in allergic sensitization in modern societies. Indeed, the anti-inflammatory potential of helminth (worm) parasites and their products in allergy and asthma has been recognized for decades. As helminth infections bring about multiple undesired effects including an increased susceptibility to other infections, intended helminth infection is not a feasible approach to broadly prevent or treat allergic asthma. Thus, the development of new helminth-based biopharmaceutics may represent a safer approach of harnessing type 2–suppressive effects of helminths. However, progress regarding the mechanisms and molecules that are employed by helminths to modulate allergic inflammation has been relatively recent. The scavenging of alarmins and the modulation of lipid mediator pathways and macrophage function by helminth proteins have been identified as important immunoregulatory mechanisms targeting innate immunity in asthma and allergy. In addition, by regulating the activation of dendritic cells and by promoting regulatory T-cell responses, helminth proteins can counterregulate the adaptive T helper 2 cell response that drives allergic inflammation. Despite these insights, important open questions remain to be addressed before helminth molecules can be used for the prevention and treatment of asthma and other allergic diseases.
Collapse
Affiliation(s)
- Sina Bohnacker
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, Munich, Germany
| | - Fabiana Troisi
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, Munich, Germany
| | - Marta de Los Reyes Jiménez
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, Munich, Germany
| | - Julia Esser-von Bieren
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, Munich, Germany
| |
Collapse
|
14
|
Ryan S, Shiels J, Taggart CC, Dalton JP, Weldon S. Fasciola hepatica-Derived Molecules as Regulators of the Host Immune Response. Front Immunol 2020; 11:2182. [PMID: 32983184 PMCID: PMC7492538 DOI: 10.3389/fimmu.2020.02182] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 08/10/2020] [Indexed: 12/18/2022] Open
Abstract
Helminths (worms) are one of the most successful organisms in nature given their ability to infect millions of humans and animals worldwide. Their success can be attributed to their ability to modulate the host immune response for their own benefit by releasing excretory-secretory (ES) products. Accordingly, ES products have been lauded as a potential source of immunomodulators/biotherapeutics for an array of inflammatory diseases. However, there is a significant lack of knowledge regarding the specific interactions between these products and cells of the immune response. Many different compounds have been identified within the helminth "secretome," including antioxidants, proteases, mucin-like peptides, as well as helminth defense molecules (HDMs), each with unique influences on the host inflammatory response. HDMs are a conserved group of proteins initially discovered in the secretome of the liver fluke, Fasciola hepatica. HDMs interact with cell membranes without cytotoxic effects and do not exert antimicrobial activity, suggesting that these peptides evolved specifically for immunomodulatory purposes. A peptide generated from the HDM sequence, termed FhHDM-1, has shown extensive anti-inflammatory abilities in clinically relevant models of diseases such as diabetes, multiple sclerosis, asthma, and acute lung injury, offering hope for the development of a new class of therapeutics. In this review, the current knowledge of host immunomodulation by a range of F. hepatica ES products, particularly FhHDM-1, will be discussed. Immune regulators, including HDMs, have been identified from other helminths and will also be outlined to broaden our understanding of the variety of effects these potent molecules exert on immune cells.
Collapse
Affiliation(s)
- Sinéad Ryan
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| | - Jenna Shiels
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| | - Clifford C Taggart
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| | - John P Dalton
- Centre of One Health (COH), Ryan Institute, School of Natural Sciences, National University of Ireland Galway, Galway, United Kingdom
| | - Sinéad Weldon
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| |
Collapse
|
15
|
Sharebiani H, Mohareri M, Mirhosseini A, Fazeli B. The IL-33/sST2 Axis in Thromboangiitis Obliterans. J Inflamm Res 2020; 13:317-323. [PMID: 32765040 PMCID: PMC7371438 DOI: 10.2147/jir.s253980] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 07/08/2020] [Indexed: 12/03/2022] Open
Abstract
Background Until recently, it remains unknown whether thromboangiitis obliterans (TAO) is a type of systemic vasculitis. A high level of IL-33 and its soluble decoy receptor sST2 in the acute phase of systemic vasculitis has been demonstrated. Methods The serum level of IL-33 and sST2 in 50 TAO patients, 20 age- and smoking habit-matched controls and 19 age-matched non-smoker controls was evaluated. Results The mean level of IL-33 in TAO, smokers and non-smokers was 370.2±61.7ng/mL,132.14±2.6ng/mL and 11.3±0.38ng/mL, respectively. The IL-33 was significantly higher in the TAO than in either control groups (p < 0.001). The IL-33 in the acute phase of TAO was significantly higher than in the patients in the quiescent phase of the disease (p = 0.019). Also, IL-33 in the patients with gangrene was significantly higher than in the patients with non-healing ulcers (p = 0.021). The sST2 in the TAO patients was 49.3±5.58ng/mL, and in smoker and non-smoker controls, it was 45.3±6.3ng/mL and 4.11±0.17ng/mL, respectively. No significant difference was found between the patients and smoker control groups (p = 0.87). The mean ratio of IL-33/sST2 was 27.89±10.44 in the TAO group and, in smokers and non-smokers, it was 2.85±0.48 and 2.84±0.14, respectively. A significantly high level of IL-33/sST2 ratio was observed in TAO patients in both the active and quiescent phases of the disease in comparison to both control groups (p<0.001). Conclusion The regulation pattern of IL-33/sST2 was different in TAO in comparison to autoimmune vasculitis.
Collapse
Affiliation(s)
- Hiva Sharebiani
- Immunology Research Center, Inflammation and Inflammatory Diseases Division, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehran Mohareri
- Immunology Research Center, Inflammation and Inflammatory Diseases Division, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Mirhosseini
- Immunology Research Center, Inflammation and Inflammatory Diseases Division, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bahare Fazeli
- Immunology Research Center, Inflammation and Inflammatory Diseases Division, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Vascular Independent Research and Education, European Foundation, Milan, Italy
| |
Collapse
|
16
|
Eissmann MF, Buchert M, Ernst M. IL33 and Mast Cells-The Key Regulators of Immune Responses in Gastrointestinal Cancers? Front Immunol 2020; 11:1389. [PMID: 32719677 PMCID: PMC7350537 DOI: 10.3389/fimmu.2020.01389] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 05/29/2020] [Indexed: 12/13/2022] Open
Abstract
The Interleukin (IL-)1 family IL33 is best known for eliciting type 2 immune responses by stimulating mast cells (MCs), regulatory T-cells (Tregs), innate lymphoid cells (ILCs) and other immune cells. MCs and IL33 provide critical control of immunological and epithelial homeostasis in the gastrointestinal (GI) tract. Meanwhile, the role of MCs in solid malignancies appears tissue-specific with both pro and anti-tumorigenic activities. Likewise, IL33 signaling significantly shapes immune responses in the tumor microenvironment, but these effects remain often dichotomous when assessed in experimental models of cancer. Thus, the balance between tumor suppressing and tumor promoting activities of IL33 are highly context dependent, and most likely dictated by the mixture of cell types responding to IL33. Adding to this complexity is the promiscuous nature by which MCs respond to cytokines other than IL33 and release chemotactic factors that recruit immune cells into the tumor microenvironment. In this review, we integrate the outcomes of recent studies on the role of MCs and IL33 in cancer with our own observations in the GI tract. We propose a working model where the most abundant IL33 responsive immune cell type is likely to dictate an overall tumor-supporting or tumor suppressing outcome in vivo. We discuss how these opposing responses affect the therapeutic potential of targeting MC and IL33, and highlight the caveats and challenges facing our ability to effectively harness MCs and IL33 biology for anti-cancer immunotherapy.
Collapse
Affiliation(s)
- Moritz F Eissmann
- Olivia Newton-John Cancer Research Institute, and La Trobe University School of Cancer Medicine, Heidelberg, VIC, Australia
| | - Michael Buchert
- Olivia Newton-John Cancer Research Institute, and La Trobe University School of Cancer Medicine, Heidelberg, VIC, Australia
| | - Matthias Ernst
- Olivia Newton-John Cancer Research Institute, and La Trobe University School of Cancer Medicine, Heidelberg, VIC, Australia
| |
Collapse
|
17
|
Abstract
Outbreaks of trichinellosis caused by Trichinella papuae have been reported in South-East Asia. Mebendazole and thiabendazole are the treatments of choice for trichinellosis; however, both drugs result in significant side effects and are less effective for muscle-stage larvae (L1). An alternative therapeutic agent is needed to improve treatment. Information on lipid composition and metabolic pathways may bridge gaps in our knowledge and lead to new antiparasitics. The T. papuae L1 lipidome was analysed using a mass spectrometry-based approach, and 403 lipid components were identified. Eight lipid classes were found and glycerophospholipids were dominant, corresponding to 63% of total lipids, of which the glycerolipid DG (20:1[11Z]/22:4[7Z,10Z,13Z,16Z]/0:0) (iso2) was the most abundant. Overall, 57% of T. papuae lipids were absent in humans; therefore, lipid metabolism may be dissimilar in the two species. Proteins involved T. papuae lipid metabolism were explored using bioinformatics. We found that 4-hydroxybutyrate coenzyme A transferase, uncharacterized protein (A0A0V1MCB5) and ML-domain-containing protein are not present in humans. T. papuae glycerophospholipid metabolic and phosphatidylinositol dephosphorylation processes contain several proteins that are dissimilar to those in humans. These findings provide insights into T. papuae lipid composition and metabolism, which may facilitate the development of novel trichinellosis treatments.
Collapse
|
18
|
Ryan N, Anderson K, Volpedo G, Varikuti S, Satoskar M, Satoskar S, Oghumu S. The IL-33/ST2 Axis in Immune Responses Against Parasitic Disease: Potential Therapeutic Applications. Front Cell Infect Microbiol 2020; 10:153. [PMID: 32363166 PMCID: PMC7180392 DOI: 10.3389/fcimb.2020.00153] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 03/23/2020] [Indexed: 12/15/2022] Open
Abstract
Parasitic infections pose a wide and varying threat globally, impacting over 25% of the global population with many more at risk of infection. These infections are comprised of, but not limited to, toxoplasmosis, malaria, leishmaniasis and any one of a wide variety of helminthic infections. While a great deal is understood about the adaptive immune response to each of these parasites, there remains a need to further elucidate the early innate immune response. Interleukin-33 is being revealed as one of the earliest players in the cytokine milieu responding to parasitic invasion, and as such has been given the name "alarmin." A nuclear cytokine, interleukin-33 is housed primarily within epithelial and fibroblastic tissues and is released upon cellular damage or death. Evidence has shown that interleukin-33 seems to play a crucial role in priming the immune system toward a strong T helper type 2 immune response, necessary in the clearance of some parasites, while disease exacerbating in the context of others. With the possibility of being a double-edged sword, a great deal remains to be seen in how interleukin-33 and its receptor ST2 are involved in the immune response different parasites elicit, and how those parasites may manipulate or evade this host mechanism. In this review article we compile the current cutting-edge research into the interleukin-33 response to toxoplasmosis, malaria, leishmania, and helminthic infection. Furthermore, we provide insight into directions interleukin-33 research may take in the future, potential immunotherapeutic applications of interleukin-33 modulation and how a better clarity of early innate immune system responses involving interleukin-33/ST2 signaling may be applied in development of much needed treatment options against parasitic invaders.
Collapse
Affiliation(s)
- Nathan Ryan
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Division of Anatomy, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Kelvin Anderson
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Greta Volpedo
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Department of Microbiology, The Ohio State University, Columbus, OH, United States
| | - Sanjay Varikuti
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Monika Satoskar
- Northeast Ohio Medical University, Rootstown, OH, United States
| | - Sanika Satoskar
- Northeast Ohio Medical University, Rootstown, OH, United States
| | - Steve Oghumu
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| |
Collapse
|
19
|
Lyons DO, Pullen NA. Beyond IgE: Alternative Mast Cell Activation Across Different Disease States. Int J Mol Sci 2020; 21:ijms21041498. [PMID: 32098318 PMCID: PMC7073060 DOI: 10.3390/ijms21041498] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 02/20/2020] [Accepted: 02/21/2020] [Indexed: 12/14/2022] Open
Abstract
Mast cells are often regarded through the lens of IgE-dependent reactions as a cell specialized only for anti-parasitic and type I hypersensitive responses. However, recently many researchers have begun to appreciate the expansive repertoire of stimuli that mast cells can respond to. After the characterization of the interleukin (IL)-33/suppression of tumorigenicity 2 (ST2) axis of mast cell activation-a pathway that is independent of the adaptive immune system-researchers are revisiting other stimuli to induce mast cell activation and/or subsequent degranulation independent of IgE. This discovery also underscores that mast cells act as important mediators in maintaining body wide homeostasis, especially through barrier defense, and can thus be the source of disease as well. Particularly in the gut, inflammatory bowel diseases (Crohn's disease, ulcerative colitis, etc.) are characterized with enhanced mast cell activity in the context of autoimmune disease. Mast cells show phenotypic differences based on tissue residency, which could manifest as different receptor expression profiles, allowing for unique mast cell responses (both IgE and non-IgE mediated) across varying tissues as well. This variety in receptor expression suggests mast cells respond differently, such as in the gut where immunosuppressive IL-10 stimulates the development of food allergy or in the lungs where transforming growth factor-β1 (TGF-β1) can enhance mast cell IL-6 production. Such differences in receptor expression illustrate the truly diverse effector capabilities of mast cells, and careful consideration must be given toward the phenotype of mast cells observed in vitro. Given mast cells' ubiquitous tissue presence and their capability to respond to a broad spectrum of non-IgE stimuli, it is expected that mast cells may also contribute to the progression of autoimmune disorders and other disease states such as metastatic cancer through promoting chronic inflammation in the local tissue microenvironment and ultimately polarizing toward a unique Th17 immune response. Furthermore, these interconnected, atypical activation pathways may crosstalk with IgE-mediated signaling differently across disorders such as parasitism, food allergies, and autoimmune disorders of the gut. In this review, we summarize recent research into familiar and novel pathways of mast cells activation and draw connections to clinical human disease.
Collapse
|
20
|
Cildir G, Toubia J, Yip KH, Zhou M, Pant H, Hissaria P, Zhang J, Hong W, Robinson N, Grimbaldeston MA, Lopez AF, Tergaonkar V. Genome-wide Analyses of Chromatin State in Human Mast Cells Reveal Molecular Drivers and Mediators of Allergic and Inflammatory Diseases. Immunity 2019; 51:949-965.e6. [PMID: 31653482 DOI: 10.1016/j.immuni.2019.09.021] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 02/18/2019] [Accepted: 09/25/2019] [Indexed: 12/21/2022]
Abstract
Mast cells (MCs) are versatile immune cells capable of rapidly responding to a diverse range of extracellular cues. Here, we mapped the genomic and transcriptomic changes in human MCs upon diverse stimuli. Our analyses revealed broad H3K4me3 domains and enhancers associated with activation. Notably, the rise of intracellular calcium concentration upon immunoglobulin E (IgE)-mediated crosslinking of the high-affinity IgE receptor (FcεRI) resulted in genome-wide reorganization of the chromatin landscape and was associated with a specific chromatin signature, which we term Ca2+-dependent open chromatin (COC) domains. Examination of differentially expressed genes revealed potential effectors of MC function, and we provide evidence for fibrinogen-like protein 2 (FGL2) as an MC mediator with potential relevance in chronic spontaneous urticaria. Disease-associated single-nucleotide polymorphisms mapped onto cis-regulatory regions of human MCs suggest that MC function may impact a broad range of pathologies. The datasets presented here constitute a resource for the further study of MC function.
Collapse
Affiliation(s)
- Gökhan Cildir
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA 5000, Australia; Laboratory of NF-κB Signaling, Institute of Molecular and Cell Biology (IMCB), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - John Toubia
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA 5000, Australia; ACRF Cancer Genomics Facility, Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA 5000, Australia
| | - Kwok Ho Yip
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA 5000, Australia
| | - Mingyan Zhou
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA 5000, Australia
| | - Harshita Pant
- School of Medicine, University of Adelaide, Adelaide, SA, Australia
| | | | - Jingxian Zhang
- Institute of Molecular and Cell Biology (IMCB), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Wanjin Hong
- Institute of Molecular and Cell Biology (IMCB), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Nirmal Robinson
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA 5000, Australia
| | | | - Angel F Lopez
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA 5000, Australia
| | - Vinay Tergaonkar
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA 5000, Australia; Laboratory of NF-κB Signaling, Institute of Molecular and Cell Biology (IMCB), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore; Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119074, Singapore.
| |
Collapse
|
21
|
Maizels RM, Smits HH, McSorley HJ. Modulation of Host Immunity by Helminths: The Expanding Repertoire of Parasite Effector Molecules. Immunity 2018; 49:801-818. [PMID: 30462997 PMCID: PMC6269126 DOI: 10.1016/j.immuni.2018.10.016] [Citation(s) in RCA: 266] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/13/2018] [Accepted: 10/30/2018] [Indexed: 02/09/2023]
Abstract
Helminths are extraordinarily successful parasites due to their ability to modulate the host immune response. They have evolved a spectrum of immunomodulatory molecules that are now beginning to be defined, heralding a molecular revolution in parasite immunology. These discoveries have the potential both to transform our understanding of parasite adaptation to the host and to develop possible therapies for immune-mediated disease. In this review we will summarize the current state of the art in parasite immunomodulation and discuss perspectives on future areas for research and discovery.
Collapse
Affiliation(s)
- Rick M Maizels
- Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK.
| | | | - Henry J McSorley
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
22
|
Lyons DO, Plewes MR, Pullen NA. Soluble transforming growth factor beta-1 enhances murine mast cell release of Interleukin 6 in IgE-independent and Interleukin 13 in IgE-dependent settings in vitro. PLoS One 2018; 13:e0207704. [PMID: 30444930 PMCID: PMC6239331 DOI: 10.1371/journal.pone.0207704] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 11/03/2018] [Indexed: 12/05/2022] Open
Abstract
INTRODUCTION For immune cells transforming growth factor beta-1 (TGF-β1) can enhance or repress effector functions. Here, we characterize the effects of TGF-β1 on IgE-mediated and IL-33-mediated activation of primary murine mast cells derived from hematopoietic stem cells (bone marrow derived mast cells; BMMC). We also investigated potential interactions between TGF-β1 and stem cell factor (SCF). We conclude TGF-β1 plays a selectively stimulatory role for mast cell cultures in vitro. METHODS BMMCs from C57BL/6 mice were differentiated with IL-3 and then treated with TGF-β1. BMMCs were exposed to TGF-β1, primed with IgE, activated with antigen, and then IL-6 and IL-13 cytokine release was quantified using ELISA. Additionally, the effects of TGF-β1 on both IgE and IL-33-mediated short term activation were observed via flow cytometric analysis of both surface LAMP-1 expression and intracellular IL-6. Receptor colocalization was visualized using fluorescence confocal microscopy and individual receptor expression levels were also quantified. RESULTS Resting IL-6 production increased with TGF-β1 but significance was lost following BMMC activation via IgE receptor (FcεRI) crosslinking. This was similar to a comparison effect due to SCF treatment alone, which also enhanced resting levels of IL-6. TGF-β1 treatment enhanced release of IL-13 only with FcεRI-IgE-mediated activation. TGF-β1 suppressed mobilization of IL-6 with short-term BMMC activation when stimulated with IL-33. Lastly, colocalization patterns of the SCF receptor (CD117) and FcεRI with IgE crosslinking were unaffected by TGF-β1 treatment, but individual expression levels for FcεRI, CD117, and TGFβRII were all reduced following either IgE activation or TGF-β1 treatment; this reduction was partially recovered in BMMCs that were both activated by IgE and treated with TGF-β1. DISCUSSION These data reveal a novel positive effect of soluble TGF-β1 on mast cell activation in vitro, suggesting mast cells may be activated through a non-canonical pathway by TGF-β1. Understanding this interaction will provide insight into the potential role of mast cells in settings where TGF-β1 is produced in an aberrant manner, such as in and around high grade tumors.
Collapse
Affiliation(s)
- David O. Lyons
- School of Biological Sciences, University of Northern Colorado, Greeley, Colorado, United States of America
| | - Michele R. Plewes
- Olson Center for Women's Health, Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Nicholas A. Pullen
- School of Biological Sciences, University of Northern Colorado, Greeley, Colorado, United States of America
| |
Collapse
|
23
|
Li W, Yin N, Tao W, Wang Q, Fan H, Wang Z. Berberine suppresses IL-33-induced inflammatory responses in mast cells by inactivating NF-κB and p38 signaling. Int Immunopharmacol 2018; 66:82-90. [PMID: 30445310 DOI: 10.1016/j.intimp.2018.11.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 10/29/2018] [Accepted: 11/07/2018] [Indexed: 02/06/2023]
Abstract
Berberine (BBR) possesses many pharmacological characteristics including anti-inflammation, anti-allergy, anti-angiogenesis and anti-tumor. However, the effects and mechanisms of BBR on IL-33-induced mast cell inflammatory responses are kept unknown. To investigate these, rat peritoneal mast cells (RPMCs) were isolated from the peritoneal cavity and cultured with BBR treatment in combination IL-33 stimulation. Firstly, cytotoxic effect of BBR on RPMCs was detected by MTT assay. Then, IL-33-induced cytokine production and the expression of ST2 receptor, were evaluated by ELISA and real-time PCR, respectively. In addition, NF-κB and MAPK signaling involved in IL-33-mediated mast cell activation were assessed by Western blot, which also was confirmed using the signal transduction inhibitors. Simultaneously, the effect of BBR on IL-33-activated enhancement of IgE-mediated mast cell responses was analyzed. Lastly, SD rats were used to explore the effect of BBR on IL-33-induced inflammation in vivo. BBR treatment significantly reduced IL-33-stimulated cytokine production in RPMCs, such as IL-6, TNF-α, IL-13 and MCP-1, but had little effect in ST2 expression. BBR modulated IL-33 signaling via suppressing IL-33-induced NF-ΚB transcription and p38 phosphorylation, but not ERK and JNK. Additionally, BBR also hampered the combined effects of IL-33 and IgE-mediated mast cell activation. Decreased cytokine production followed BBR treatment in vitro was consistent with that in vivo, where BBR injection i.p. into rats obviously inhibited IL-33-induced plasma cytokine levels. These findings demonstrated that BBR suppressed IL-33-mediated inflammation in mast cells by inactivating NF-κB and p38 signaling, suggesting its potential application for the treatment of allergic inflammation.
Collapse
Affiliation(s)
- Weihua Li
- Department of Cardiology, Affiliated Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430077, China
| | - Nina Yin
- Department of Anatomy, School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Wenting Tao
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Qian Wang
- Department of Pathogen Biology, School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Hong Fan
- Department of Pathogen Biology, School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Zhigang Wang
- Department of Pathogen Biology, School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, China.
| |
Collapse
|
24
|
Yap GS, Gause WC. Helminth Infections Induce Tissue Tolerance Mitigating Immunopathology but Enhancing Microbial Pathogen Susceptibility. Front Immunol 2018; 9:2135. [PMID: 30386324 PMCID: PMC6198046 DOI: 10.3389/fimmu.2018.02135] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 08/30/2018] [Indexed: 01/17/2023] Open
Abstract
Helminths are ubiquitous and have chronically infected vertebrates throughout their evolution. As such helminths have likely exerted considerable selection pressure on our immune systems. The large size of multicellular helminths and their limited replicative capacity in the host necessarily elicits different host protective mechanisms than the immune response evoked by microbial pathogens such as bacteria, viruses and intracellular parasites. The cellular damage resulting from helminth migration through tissues is a major trigger of the type 2 and regulatory immune responses, which activates wound repair mechanisms that increases tissue tolerance to injury and resistance mechanisms that enhance resistance to further colonization with larval stages. While these wound healing and anti-inflammatory responses may be beneficial to the helminth infected host, they may also compromise the host's ability to mount protective immune responses to microbial pathogens. In this review we will first describe helminth-induced tolerance mechanisms that develop in specific organs including the lung and the intestine, and how adaptive immunity may contribute to these responses through differential activation of T cells in the secondary lymphoid organs. We will then integrate studies that have examined how the immune response is modulated in these specific tissues during coinfection of helminths with viruses, protozoa, and bacteria.
Collapse
Affiliation(s)
- George S Yap
- Department of Medicine, Center for Immunity and Inflammation, Rutgers University-New Jersey Medical School, Newark, NJ, United States
| | - William C Gause
- Department of Medicine, Center for Immunity and Inflammation, Rutgers University-New Jersey Medical School, Newark, NJ, United States
| |
Collapse
|
25
|
Ding W, Zou GL, Zhang W, Lai XN, Chen HW, Xiong LX. Interleukin-33: Its Emerging Role in Allergic Diseases. Molecules 2018; 23:E1665. [PMID: 29987222 PMCID: PMC6099536 DOI: 10.3390/molecules23071665] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 07/05/2018] [Accepted: 07/06/2018] [Indexed: 12/15/2022] Open
Abstract
Allergic diseases, which include asthma, allergic rhinitis (AR), chronic rhinosinusitis (CRS), atopic dermatitis (AD), food allergy (FA), allergic keratoconjunctivitis, seriously affect the quality of life of people all over the world. Recently, interleukin-33 (IL-33) has been found to play an important role in these refractory disorders, mainly by inducing T helper (Th) 2 immune responses. This article reviews the mobilization and biological function of IL-33 in allergic disorders, providing novel insights for addressing these hypersensitive conditions.
Collapse
Affiliation(s)
- Wen Ding
- Department of Pathophysiology, Medical College, Nanchang University, 461 Bayi Road, Nanchang 330006, China.
| | - Gui-Lin Zou
- Department of Pathophysiology, Medical College, Nanchang University, 461 Bayi Road, Nanchang 330006, China.
| | - Wei Zhang
- Gannan Medical University, Rongjiang New Area, Ganzhou 341000, China.
| | - Xing-Ning Lai
- Department of Pathophysiology, Medical College, Nanchang University, 461 Bayi Road, Nanchang 330006, China.
| | - Hou-Wen Chen
- Department of Pathophysiology, Medical College, Nanchang University, 461 Bayi Road, Nanchang 330006, China.
| | - Li-Xia Xiong
- Department of Pathophysiology, Medical College, Nanchang University, 461 Bayi Road, Nanchang 330006, China.
| |
Collapse
|