1
|
Tran HNQ, Tran KN, Gunenthiran S, Wang J, Law CS, Lim SY, Gary Lim YC, Abell AD, Marsal LF, Santos A. Tailoring Tamm Plasmon Resonances in Dielectric Nanoporous Photonic Crystals. ACS APPLIED MATERIALS & INTERFACES 2024; 16:11787-11799. [PMID: 38394678 DOI: 10.1021/acsami.3c16981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
The fields of plasmonics and photonic crystals (PCs) have been combined to generate model light-confining Tamm plasmon (TMM) cavities. This approach effectively overcomes the intrinsic limit of diffraction faced by dielectric cavities and mitigates losses associated with the inherent properties of plasmonic materials. In this study, nanoporous anodic alumina PCs, produced by two-step sinusoidal pulse anodization, are used as a model dielectric platform to establish the methodology for tailoring light confinement through TMM resonances. These model dielectric mirrors feature highly organized nanopores and narrow bandwidth photonic stopbands (PSBs) across different positions of the spectrum. Different types of metallic films (gold, silver, and aluminum) were coated on the top of these model dielectric mirrors. By structuring the features of the plasmonic and photonic components of these hybrid structures, the characteristics of TMM resonances were studied to elucidate effective approaches to optimize the light-confining capability of this hybrid TMM model system. Our findings indicate that the coupling of photonic and plasmonic modes is maximized when the PSB of the model dielectric mirror is broad and located within the midvisible region. It was also found that thicker metal films enhance the quality of the confined light. Gas sensing experiments were performed on optimized TMM systems, and their sensitivity was assessed in real time to demonstrate their applicability. Ag films provide superior performance in achieving the highest sensitivity (S = 0.038 ± 0.001 nm ppm-1) based on specific binding interactions between thiol-containing molecules and metal films.
Collapse
Affiliation(s)
- Huong Nguyen Que Tran
- School of Chemical Engineering, The University of Adelaide, South Australia 5005, Australia
- Institute for Photonics and Advanced Sensing, The University of Adelaide, South Australia 5005, Australia
| | - Khoa Nhu Tran
- School of Chemical Engineering, The University of Adelaide, South Australia 5005, Australia
- Institute for Photonics and Advanced Sensing, The University of Adelaide, South Australia 5005, Australia
| | - Satyathiran Gunenthiran
- School of Chemical Engineering, The University of Adelaide, South Australia 5005, Australia
- Institute for Photonics and Advanced Sensing, The University of Adelaide, South Australia 5005, Australia
| | - Juan Wang
- School of Chemical Engineering, The University of Adelaide, South Australia 5005, Australia
- Institute for Photonics and Advanced Sensing, The University of Adelaide, South Australia 5005, Australia
| | - Cheryl Suwen Law
- School of Chemical Engineering, The University of Adelaide, South Australia 5005, Australia
- Institute for Photonics and Advanced Sensing, The University of Adelaide, South Australia 5005, Australia
| | - Siew Yee Lim
- School of Chemical Engineering, The University of Adelaide, South Australia 5005, Australia
- Institute for Photonics and Advanced Sensing, The University of Adelaide, South Australia 5005, Australia
| | - Yong Cheow Gary Lim
- School of Chemical Engineering, The University of Adelaide, South Australia 5005, Australia
| | - Andrew D Abell
- Institute for Photonics and Advanced Sensing, The University of Adelaide, South Australia 5005, Australia
- Department of Chemistry, The University of Adelaide, South Australia 5005, Australia
| | - Lluis F Marsal
- Department of Electronic, Electric, and Automatic Engineering, Rovira i Virgili University, Tarragona 43007, Spain
| | - Abel Santos
- School of Chemical Engineering, The University of Adelaide, South Australia 5005, Australia
- Institute for Photonics and Advanced Sensing, The University of Adelaide, South Australia 5005, Australia
| |
Collapse
|
2
|
Rojas Gómez A, Acosta LK, Ferré-Borrull J, Santos A, Marsal LF. Generation of Tamm Plasmon Resonances for Light Confinement Applications in Narrowband Gradient-Index Filters Based on Nanoporous Anodic Alumina. ACS APPLIED NANO MATERIALS 2023; 6:5274-5283. [PMID: 37092121 PMCID: PMC10112486 DOI: 10.1021/acsanm.2c05356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 03/06/2023] [Indexed: 05/03/2023]
Abstract
Gold-coated gradient-index filters based on nanoporous anodic alumina (Au-coated NAA-GIFs) were used as model platforms to elucidate how Tamm plasmons can be tailored by engineering the geometric features of the plasmonic and photonic components of these hybrid structures. NAA-GIFs with well-resolved, intense photonic stopbands at two positions of the visible spectrum were fabricated through sinusoidal pulse anodization. These model photonic crystals were used to assess how the quality of Tamm plasmon resonances can be enhanced by tuning the features of the dielectric mirror and the thickness of the porous gold coating layer. It is found that the highest value of the quality factor of Tamm resonance (Q Tamm = 237) is obtained for 11 nm of gold on a dielectric mirror with low porosity corresponding to the resonant spectral position of λTamm of ∼698 nm. Our analysis indicates that Tamm resonances in as-produced Au-coated NAA-GIFs are weak due to the constrained range of wavelengths (narrow bands) at which these photonic crystal structures reflect light. However, after broadening of their photonic stopband upon pore widening, Tamm resonances become better resolved, with higher intensity. It is also observed that the quality of light confinement worsens progressively with the thickness of the porous gold coating layer after a critical value. In contrast to conventional surface plasmon resonance systems, this hybrid Tamm porous system does not require complex coupling systems and provides a nanoporous structure that can be readily tailored for a range of photonic technologies such as sensing and lasing.
Collapse
Affiliation(s)
- Alejandro Rojas Gómez
- Department
of Electronic, Electric, and Automatics Engineering, Rovira i Virgili University, Tarragona 43007, Spain
| | - Laura K. Acosta
- Department
of Electronic, Electric, and Automatics Engineering, Rovira i Virgili University, Tarragona 43007, Spain
| | - Josep Ferré-Borrull
- Department
of Electronic, Electric, and Automatics Engineering, Rovira i Virgili University, Tarragona 43007, Spain
| | - Abel Santos
- School
of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, South Australia 5005, Australia
- Institute
for Photonics and Advanced Sensing, The
University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Lluis F. Marsal
- Department
of Electronic, Electric, and Automatics Engineering, Rovira i Virgili University, Tarragona 43007, Spain
| |
Collapse
|
3
|
Jeong C, Jung J, Sheppard K, Choi CH. Control of the Nanopore Architecture of Anodic Alumina via Stepwise Anodization with Voltage Modulation and Pore Widening. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:342. [PMID: 36678095 PMCID: PMC9863362 DOI: 10.3390/nano13020342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/08/2023] [Accepted: 01/11/2023] [Indexed: 06/17/2023]
Abstract
Control of the morphology and hierarchy of the nanopore structures of anodic alumina is investigated by employing stepwise anodizing processes, alternating the two different anodizing modes, including mild anodization (MA) and hard anodization (HA), which are further mediated by a pore-widening (PW) step in between. For the experiment, the MA and HA are applied at the anodizing voltages of 40 and 100 V, respectively, in 0.3 M oxalic acid, at 1 °C, for fixed durations (30 min for MA and 0.5 min for HA), while the intermediate PW is applied in 0.1 M phosphoric acid at 30 °C for different durations. In particular, to examine the effects of the anodizing sequence and the PW time on the morphology and hierarchy of the nanopore structures formed, the stepwise anodization is conducted in two different ways: one with no PW step, such as MA→HA and HA→MA, and the other with the timed PW in between, such as MA→PW→MA, MA→PW→HA, HA→PW→HA, and HA→PW→MA. The results show that both the sequence of the voltage-modulated anodizing modes and the application of the intermediate PW step led to unique three-dimensional morphology and hierarchy of the nanopore structures of the anodic alumina beyond the conventional two-dimensional cylindrical pore geometry. It suggests that the stepwise anodizing process regulated by the sequence of the anodizing modes and the intermediate PW step can allow the design and fabrication of various types of nanopore structures, which can broaden the applications of the nanoporous anodic alumina with greater efficacy and versatility.
Collapse
Affiliation(s)
- Chanyoung Jeong
- Department of Advanced Materials Engineering, Dong-eui University, Busan 47340, Republic of Korea
- Department of Mechanical Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, USA
| | - Jeki Jung
- Department of Mechanical Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, USA
| | - Keith Sheppard
- Department of Chemical Engineering and Materials Science, Stevens Institute of Technology, Hoboken, NJ 07030, USA
| | - Chang-Hwan Choi
- Department of Mechanical Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, USA
| |
Collapse
|
4
|
Szwachta G, Białek E, Włodarski M, Norek M. Structural stability and optical properties of 1D photonic crystals based on porous anodic alumina after annealing at different temperatures. NANOTECHNOLOGY 2022; 33:455707. [PMID: 35878593 DOI: 10.1088/1361-6528/ac83ca] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
Porous anodic alumina (PAA) photonic crystals with a photonic stop-band (PSB) placed in the mid-infrared (MIR) spectral region represent a promising approach for increasing of gas sensors sensitivity. An onion-like layered distribution of anionic impurities is a hallmark of PAA, and its presence is generally considered to demarcate the boundary between transparent and opaque ranges in the infrared spectral region. Here, we study the effect of annealing in the temperature range of 450 °C-1 100 °C on the structural stability and optical properties in photonic crystals based on PAA fabricated by pulse anodization in oxalic acid. Pulse sequences were selected in a way to obtain photonic crystals of different periodic structures with a PSB located in visible and MIR spectral regions. The first photonic crystal was composed of layers with gradually changing porosity, whereas the second photonic crystal consisted of a sequentially repeated double-layer unit with an abrupt change in porosity. We investigated the response of alumina with rationally designed porosities and different arrangements of porous layers for high-temperature treatment. The microstructure (scanning electron microscopy), phase composition (x-ray diffraction), and optical properties (optical spectroscopy) were analysed to track possible changes after annealing. Both photonic crystals demonstrated an excellent structural stability after 24 h annealing up to 950 °C. At the same time, the evaporation of the anionic impurities from PAA walls caused a shift of the PSB towards the shorter wavelengths. Furthermore, the annealing at 1 100 °C induced a high transparency (up to 90%) of alumina in MIR spectral region. It was shown thus that properly selected electrochemical and annealing conditions enable the fabrication of porous photonic crystals with the high transparency spanning the spectral range up to around 10μm.
Collapse
Affiliation(s)
- Grzegorz Szwachta
- Institute of Materials Science and Engineering, Faculty of Advanced Technologies and Chemistry, Military University of Technology, Str. Gen Sylwestra Kaliskiego 2, 00-908 Warsaw, Poland
| | - Ewelina Białek
- Institute of Materials Science and Engineering, Faculty of Advanced Technologies and Chemistry, Military University of Technology, Str. Gen Sylwestra Kaliskiego 2, 00-908 Warsaw, Poland
| | - Maksymilian Włodarski
- Institute of Optoelectronics, Military University of Technology, Str. Gen. Sylwestra Kaliskiego 2, 00-908 Warsaw, Poland
| | - Małgorzata Norek
- Institute of Materials Science and Engineering, Faculty of Advanced Technologies and Chemistry, Military University of Technology, Str. Gen Sylwestra Kaliskiego 2, 00-908 Warsaw, Poland
| |
Collapse
|
5
|
Choudhari KS, Choi CH, Chidangil S, George SD. Recent Progress in the Fabrication and Optical Properties of Nanoporous Anodic Alumina. NANOMATERIALS 2022; 12:nano12030444. [PMID: 35159789 PMCID: PMC8838176 DOI: 10.3390/nano12030444] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 02/06/2023]
Abstract
The fabrication of a thick oxide layer onto an aluminum surface via anodization has been a subject of intense research activity for more than a century, largely due to protective and decorative applications. The capability to create well-defined pores via a cost-effective electrochemical oxidation technique onto the surface has made a major renaissance in the field, as the porous surfaces exhibit remarkably different properties compared to a bulk oxide layer. Amongst the various nanoporous structures being investigated, nanoporous anodic alumina (NAA) with well-organized and highly ordered hexagonal honeycomb-like pores has emerged as the most popular nanomaterial due to its wide range of applications, ranging from corrosion resistance to bacterial repelling surfaces. As compared to conventional nanostructure fabrication, the electrochemical anodization route of NAA with well-controlled pore parameters offers an economical route for fabricating nanoscale materials. The review comprehensively reflects the progress made in the fabrication route of NAA to obtain the material with desired pore properties, with a special emphasis on self-organization and pore growth kinetics. Detailed accounts of the various conditions that can play an important role in pore growth kinetics and pore parameters are presented. Further, recent developments in the field of controlling optical properties of NAA are discussed. A critical outlook on the future trends of the fabrication of NAA and its optical properties on the emerging nanomaterials, sensors, and devices are also outlined.
Collapse
Affiliation(s)
- Khoobaram S. Choudhari
- Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India;
- Correspondence: (K.S.C.); (S.D.G.)
| | - Chang-Hwan Choi
- Department of Mechanical Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, USA;
| | - Santhosh Chidangil
- Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India;
| | - Sajan D. George
- Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India;
- Centre for Applied Nanosciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
- Correspondence: (K.S.C.); (S.D.G.)
| |
Collapse
|
6
|
Tran HNQ, Le NDA, Le QN, Law CS, Lim SY, Abell AD, Santos A. Spectral Engineering of Tamm Plasmon Resonances in Dielectric Nanoporous Photonic Crystal Sensors. ACS APPLIED MATERIALS & INTERFACES 2021; 14:22747-22761. [PMID: 34664952 DOI: 10.1021/acsami.1c14949] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Model light-confining Tamm plasmon cavities based on gold-coated nanoporous anodic alumina photonic crystals (TMM-NAA-PCs) with spectrally tunable resonance bands were engineered. Laplacian and Lorentzian NAA-PCs produced by a modified Gaussian-like pulse anodization approach showed well-resolved, high-quality photonic stopbands, the position of which was precisely controlled across the visible spectrum by the periodicity in the input anodization profile. These PC structures were used as a platform material to develop highly reflective distributed Bragg mirrors, the top sides of which were coated with a thin gold film. The resulting nanoporous hybrid plasmonic-photonic crystals showed strong light-confining properties attributed to Tamm plasmon resonances at three specific positions of the visible spectrum. These structures achieved high sensitivity to changes in refractive index, with a sensitivity of ∼106 nm RIU-1. The optical sensitivity of TMM-NAA-PCs was assessed in real time, using a model chemically selective binding interaction between thiol-containing molecules and gold. The optical sensitivity was found to rely linearly on the spectral position of the Tamm resonance band, for both Laplacian and Lorentzian TMM-NAA-PCs. The density of self-assembled monolayers of thiol-containing analyte molecules formed on the surface of the metallic film directly contributes to the dependence of sensitivity on TMM resonance position in these optical transducers. Our findings provide opportunities to integrate TMM modes in NAA-based photonic crystal structures, with promising potential for optical technologies and applications requiring high-quality surface plasmon resonance bands.
Collapse
Affiliation(s)
- Huong Nguyen Que Tran
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Nhi Dang Ai Le
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Quan Ngoc Le
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Cheryl Suwen Law
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, South Australia 5005, Australia
- Institute for Photonics and Advanced Sensing, The University of Adelaide, Adelaide, South Australia 5005, Australia
- Monash Institute of Pharmaceutics Science, Monash University, Melbourne, Victoria 3052, Australia
| | - Siew Yee Lim
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, South Australia 5005, Australia
- Institute for Photonics and Advanced Sensing, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Andrew D Abell
- Institute for Photonics and Advanced Sensing, The University of Adelaide, Adelaide, South Australia 5005, Australia
- Department of Chemistry, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Abel Santos
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, South Australia 5005, Australia
- Institute for Photonics and Advanced Sensing, The University of Adelaide, Adelaide, South Australia 5005, Australia
| |
Collapse
|
7
|
Liu S, Tian J, Zhang W. Fabrication and application of nanoporous anodic aluminum oxide: a review. NANOTECHNOLOGY 2021; 32:222001. [PMID: 0 DOI: 10.1088/1361-6528/abe25f] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 02/01/2021] [Indexed: 05/28/2023]
Abstract
Abstract
Due to the unique optical and electrochemical properties, large surface area, tunable properties, and high thermal stability, nanoporous anodic aluminum oxide (AAO) has become one of the most popular materials with a large potential to develop emerging applications in numerous areas, including biosensors, desalination, high-risk pollutants detection, capacitors, solar cell devices, photonic crystals, template-assisted fabrication of nanostructures, and so on. This review covers the mechanism of AAO formation, manufacturing technology, the relationship between the properties of AAO and fabrication conditions, and applications of AAO. Properties of AAO, like pore diameter, interpore distance, wall thickness, and anodized aluminum layer thickness, can be fully controlled by fabrication conditions, including electrolyte, applied voltage, anodizing and widening time. Generally speaking, the pore diameter of AAO will affect its specific application to a large extent. Moreover, manufacturing technology like one/two/multi step anodization, nanoimprint lithography anodization, and pulse/cyclic anodization also have a major impact on overall array arrangement. The review aims to provide a perspective overview of the relationship between applications and their corresponding AAO pore sizes, systematically. And the review also focuses on the strategies by which the structures and functions of AAO can be utilized.
Collapse
|
8
|
Law CS, Lim SY, Liu L, Abell AD, Marsal LF, Santos A. Realization of high-quality optical nanoporous gradient-index filters by optimal combination of anodization conditions. NANOSCALE 2020; 12:9404-9415. [PMID: 32124886 DOI: 10.1039/c9nr10526c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
High-quality nanoporous anodic alumina gradient-index filters (NAA-GIFs) are realized by sinusoidal pulse anodisation (SPA) of aluminum. A three-level factorial design of experiments is used to determine the effect of three critical anodization parameters -electrolyte temperature, concentration of the electrolyte and anodization time- on the quality of light control in these photonic crystal (PC) structures. Quantitative analysis of the effect of these anodization parameters on the quality of the characteristic photonic stopband (PSB) of NAA-GIFs reveals that all three anodization parameters and their respective combinations have statistically significant effects. However, anodization time is found to have the highest impact on the quality of light control in NAA-GIFs, followed by the electrolyte concentration and its temperature. Our findings demonstrate that NAA-GIFs fabricated under optimal conditions achieve an outstanding quality factor of ∼86 (i.e.∼18% superior to that of other NAA-based PCs reported in the literature). This study provides new insight into optimal anodization conditions to fabricate high-quality NAA-based PC structures, opening new exciting opportunities to integrate these nanoporous PCs as platform materials for light-based technologies requiring a precise control over photons such as ultra-sensitive optical sensors and biosensors, photocatalysts for green energy generation and environmental remediation, optical encoding and lasing.
Collapse
Affiliation(s)
- Cheryl Suwen Law
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, South Australia 5005, Australia.
| | | | | | | | | | | |
Collapse
|
9
|
Electrochemical Engineering of Nanoporous Materials for Photocatalysis: Fundamentals, Advances, and Perspectives. Catalysts 2019. [DOI: 10.3390/catal9120988] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Photocatalysis comprises a variety of light-driven processes in which solar energy is converted into green chemical energy to drive reactions such as water splitting for hydrogen energy generation, degradation of environmental pollutants, CO2 reduction and NH3 production. Electrochemically engineered nanoporous materials are attractive photocatalyst platforms for a plethora of applications due to their large effective surface area, highly controllable and tuneable light-harvesting capabilities, efficient charge carrier separation and enhanced diffusion of reactive species. Such tailor-made nanoporous substrates with rational chemical and structural designs provide new exciting opportunities to develop advanced optical semiconductor structures capable of performing precise and versatile control over light–matter interactions to harness electromagnetic waves with unprecedented high efficiency and selectivity for photocatalysis. This review introduces fundamental developments and recent advances of electrochemically engineered nanoporous materials and their application as platforms for photocatalysis, with a final prospective outlook about this dynamic field.
Collapse
|
10
|
Sadykov A, Kushnir S, Roslyakov I, Baranchikov A, Napolskii K. Selenic acid anodizing of aluminium for preparation of 1D photonic crystals. Electrochem commun 2019. [DOI: 10.1016/j.elecom.2019.01.027] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
11
|
Acosta LK, Bertó-Roselló F, Xifre-Perez E, Santos A, Ferré-Borrull J, Marsal LF. Stacked Nanoporous Anodic Alumina Gradient-Index Filters with Tunable Multispectral Photonic Stopbands as Sensing Platforms. ACS APPLIED MATERIALS & INTERFACES 2019; 11:3360-3371. [PMID: 30590008 DOI: 10.1021/acsami.8b19411] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
This study presents the development and optical engineering of stacked nanoporous anodic alumina gradient-index (NAA-GIFs) filters with tunable multispectral photonic stopbands for sensing applications. The structure of these photonic crystals (PC) is formed by stacked layers of NAA produced with sinusoidally modified effective medium. The progressive modification of the sinusoidal period during the anodization process enables the generation and precise tuning of the characteristic photonic stopbands (PSB) (i.e., one per sinusoidal period in the anodization profile) of these PC structures. Four types of NAA-GIFs featuring three distinctive PSBs positioned within the visible spectral region are developed. The sensitivity of the effective medium of these NAA-GIFs is systematically assessed by measuring spectral shifts in the characteristic PSBs upon infiltration of their nanoporous structure with analytical solutions of d-glucose with several concentrations (0.025-1 M). This study provides new insights into the intrinsic relationship between the nanoporous architecture of these PCs and their optical properties, generating opportunities to fabricate advanced optical sensing systems for high-throughput and multiplexed detection of analytes in a single sensing platform.
Collapse
Affiliation(s)
- Laura K Acosta
- Departament d'Enginyeria Electrònica, Elèctrica i Automàtica , Universitat Rovira i Virgili , Avinguda Països Catalans 26 , 43007 Tarragona , Spain
| | - Francesc Bertó-Roselló
- Departament d'Enginyeria Electrònica, Elèctrica i Automàtica , Universitat Rovira i Virgili , Avinguda Països Catalans 26 , 43007 Tarragona , Spain
| | - Elisabet Xifre-Perez
- Departament d'Enginyeria Electrònica, Elèctrica i Automàtica , Universitat Rovira i Virgili , Avinguda Països Catalans 26 , 43007 Tarragona , Spain
| | - Abel Santos
- School of Chemical Engineering , The University of Adelaide , Adelaide , South Australia 5005 , Australia
- Institute for Photonics and Advanced Sensing (IPAS) , The University of Adelaide , Adelaide , South Australia 5005 , Australia
- ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP) , The University of Adelaide , Adelaide , South Australia 5005 , Australia
| | - Josep Ferré-Borrull
- Departament d'Enginyeria Electrònica, Elèctrica i Automàtica , Universitat Rovira i Virgili , Avinguda Països Catalans 26 , 43007 Tarragona , Spain
| | - Lluis F Marsal
- Departament d'Enginyeria Electrònica, Elèctrica i Automàtica , Universitat Rovira i Virgili , Avinguda Països Catalans 26 , 43007 Tarragona , Spain
| |
Collapse
|
12
|
Lim SY, Law CS, Liu L, Markovic M, Abell AD, Santos A. Integrating surface plasmon resonance and slow photon effects in nanoporous anodic alumina photonic crystals for photocatalysis. Catal Sci Technol 2019. [DOI: 10.1039/c9cy00627c] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This study explores the potential of gold-coated titania-functionalized nanoporous anodic alumina distributed Bragg reflectors (Au-TiO2-NAA-DBRs) as platforms to enhance photocatalytic reactions by integrating “slow photons” and surface plasmon resonance (SPR).
Collapse
Affiliation(s)
- Siew Yee Lim
- School of Chemical Engineering
- The University of Adelaide
- 5005 Adelaide
- Australia
- Institute for Photonics and Advanced Sensing (IPAS)
| | - Cheryl Suwen Law
- School of Chemical Engineering
- The University of Adelaide
- 5005 Adelaide
- Australia
- Institute for Photonics and Advanced Sensing (IPAS)
| | - Lina Liu
- School of Chemical Engineering
- The University of Adelaide
- 5005 Adelaide
- Australia
- School of Chemistry and Chemical Engineering
| | - Marijana Markovic
- School of Chemical Engineering
- The University of Adelaide
- 5005 Adelaide
- Australia
- Center of Chemistry
| | - Andrew D. Abell
- Institute for Photonics and Advanced Sensing (IPAS)
- The University of Adelaide
- 5005 Adelaide
- Australia
- ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP)
| | - Abel Santos
- School of Chemical Engineering
- The University of Adelaide
- 5005 Adelaide
- Australia
- Institute for Photonics and Advanced Sensing (IPAS)
| |
Collapse
|
13
|
Law CS, Lim SY, Abell AD, Voelcker NH, Santos A. Nanoporous Anodic Alumina Photonic Crystals for Optical Chemo- and Biosensing: Fundamentals, Advances, and Perspectives. NANOMATERIALS (BASEL, SWITZERLAND) 2018; 8:E788. [PMID: 30287772 PMCID: PMC6215225 DOI: 10.3390/nano8100788] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 10/01/2018] [Accepted: 10/01/2018] [Indexed: 12/15/2022]
Abstract
Optical sensors are a class of devices that enable the identification and/or quantification of analyte molecules across multiple fields and disciplines such as environmental protection, medical diagnosis, security, food technology, biotechnology, and animal welfare. Nanoporous photonic crystal (PC) structures provide excellent platforms to develop such systems for a plethora of applications since these engineered materials enable precise and versatile control of light⁻matter interactions at the nanoscale. Nanoporous PCs provide both high sensitivity to monitor in real-time molecular binding events and a nanoporous matrix for selective immobilization of molecules of interest over increased surface areas. Nanoporous anodic alumina (NAA), a nanomaterial long envisaged as a PC, is an outstanding platform material to develop optical sensing systems in combination with multiple photonic technologies. Nanoporous anodic alumina photonic crystals (NAA-PCs) provide a versatile nanoporous structure that can be engineered in a multidimensional fashion to create unique PC sensing platforms such as Fabry⁻Pérot interferometers, distributed Bragg reflectors, gradient-index filters, optical microcavities, and others. The effective medium of NAA-PCs undergoes changes upon interactions with analyte molecules. These changes modify the NAA-PCs' spectral fingerprints, which can be readily quantified to develop different sensing systems. This review introduces the fundamental development of NAA-PCs, compiling the most significant advances in the use of these optical materials for chemo- and biosensing applications, with a final prospective outlook about this exciting and dynamic field.
Collapse
Affiliation(s)
- Cheryl Suwen Law
- School of Chemical Engineering, The University of Adelaide, Adelaide SA 5005, Australia.
- Institute for Photonics and Advanced Sensing (IPAS), The University of Adelaide, Adelaide SA 5005, Australia.
- ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), The University of Adelaide, Adelaide SA 5005, Australia.
| | - Siew Yee Lim
- School of Chemical Engineering, The University of Adelaide, Adelaide SA 5005, Australia.
- Institute for Photonics and Advanced Sensing (IPAS), The University of Adelaide, Adelaide SA 5005, Australia.
- ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), The University of Adelaide, Adelaide SA 5005, Australia.
| | - Andrew D Abell
- Institute for Photonics and Advanced Sensing (IPAS), The University of Adelaide, Adelaide SA 5005, Australia.
- ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), The University of Adelaide, Adelaide SA 5005, Australia.
- Department of Chemistry, The University of Adelaide, Adelaide SA 5005, Australia.
| | - Nicolas H Voelcker
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Melbourne 3168, Australia.
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne 3052, Australia.
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Melbourne 3168, Australia.
- INM-Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany.
| | - Abel Santos
- School of Chemical Engineering, The University of Adelaide, Adelaide SA 5005, Australia.
- Institute for Photonics and Advanced Sensing (IPAS), The University of Adelaide, Adelaide SA 5005, Australia.
- ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), The University of Adelaide, Adelaide SA 5005, Australia.
| |
Collapse
|