1
|
Zsarnovszky A, Alymbaeva D, Jocsak G, Szabo C, Mária Schilling-Tóth B, Sandor Kiss D. Endocrine disrupting effects on morphological synaptic plasticity. Front Neuroendocrinol 2024; 75:101157. [PMID: 39393417 DOI: 10.1016/j.yfrne.2024.101157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 10/03/2024] [Accepted: 10/05/2024] [Indexed: 10/13/2024]
Abstract
Neural regulation of the homeostasis depends on healthy synaptic function. Adaptation of synaptic functions to physiological needs manifests in various forms of synaptic plasticity (SP), regulated by the normal hormonal regulatory circuits. During the past several decades, the hormonal regulation of animal and human organisms have become targets of thousands of chemicals that have the potential to act as agonists or antagonists of the endogenous hormones. As the action mechanism of these endocrine disrupting chemicals (EDCs) came into the focus of research, a growing number of studies suggest that one of the regulatory avenues of hormones, the morphological form of SP, may well be a neural mechanism affected by EDCs. The present review discusses known and potential effects of some of the best known EDCs on morphological synaptic plasticity (MSP). We highlight molecular mechanisms altered by EDCs and indicate the growing need for more research in this area of neuroendocrinology.
Collapse
Affiliation(s)
- Attila Zsarnovszky
- Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, Hungary; Department of Physiology and Animal Health, Agrobiotechnology and Precision Breeding for Food Security National Laboratory, Institute of Physiology and Nutrition, Hungarian University of Agriculture and Life Sciences, H-7400 Kaposvár, Hungary.
| | - Daiana Alymbaeva
- Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, Hungary.
| | - Gergely Jocsak
- Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, Hungary.
| | - Csaba Szabo
- Department of Physiology and Animal Health, Agrobiotechnology and Precision Breeding for Food Security National Laboratory, Institute of Physiology and Nutrition, Hungarian University of Agriculture and Life Sciences, H-7400 Kaposvár, Hungary
| | | | - David Sandor Kiss
- Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, Hungary.
| |
Collapse
|
2
|
Oliveira NAS, Pinho BR, Pinto J, Guedes de Pinho P, Oliveira JMA. Edaravone counteracts redox and metabolic disruptions in an emerging zebrafish model of sporadic ALS. Free Radic Biol Med 2024; 217:126-140. [PMID: 38531462 DOI: 10.1016/j.freeradbiomed.2024.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/05/2024] [Accepted: 03/20/2024] [Indexed: 03/28/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease in which the death of motor neurons leads to loss of muscle function. Additionally, cognitive and circadian disruptions are common in ALS patients, contributing to disease progression and burden. Most ALS cases are sporadic, and environmental exposures contribute to their aetiology. However, animal models of these sporadic ALS cases are scarce. The small vertebrate zebrafish is a leading organism to model neurodegenerative diseases; previous studies have proposed bisphenol A (BPA) or β-methylamino-l-alanine (BMAA) exposure to model sporadic ALS in zebrafish, damaging motor neurons and altering motor responses. Here we characterise the face and predictive validity of sporadic ALS models, showing their potential for the mechanistic study of ALS drugs. We phenotypically characterise the BPA and BMAA-induced models, going beyond motor activity and motor axon morphology, to include circadian, redox, proteostasis, and metabolomic phenotypes, and assessing their predictive validity for ALS modelling. BPA or BMAA exposure induced concentration-dependent activity impairments. Also, exposure to BPA but not BMAA induced motor axonopathy and circadian alterations in zebrafish larvae. Our further study of the BPA model revealed loss of habituation to repetitive startles, increased oxidative damage, endoplasmic reticulum (ER) stress, and metabolome abnormalities. The BPA-induced model shows predictive validity, since the approved ALS drug edaravone counteracted BPA-induced motor phenotypes, ER stress, and metabolic disruptions. Overall, BPA exposure is a promising model of ALS-related redox and ER imbalances, contributing to fulfil an unmet need for validated sporadic ALS models.
Collapse
Affiliation(s)
- Nuno A S Oliveira
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, University of Porto, 4050-313, Porto, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Mitochondria and Neurobiology Lab, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal
| | - Brígida R Pinho
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, University of Porto, 4050-313, Porto, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Mitochondria and Neurobiology Lab, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal
| | - Joana Pinto
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, University of Porto, 4050-313, Porto, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Faculty of Pharmacy, Laboratory of Toxicology, University of Porto, 4050-313, Porto, Portugal
| | - Paula Guedes de Pinho
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, University of Porto, 4050-313, Porto, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Faculty of Pharmacy, Laboratory of Toxicology, University of Porto, 4050-313, Porto, Portugal
| | - Jorge M A Oliveira
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, University of Porto, 4050-313, Porto, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Mitochondria and Neurobiology Lab, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal.
| |
Collapse
|
3
|
De Cock L, Bercier V, Van Den Bosch L. New developments in pre-clinical models of ALS to guide translation. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2024; 176:477-524. [PMID: 38802181 DOI: 10.1016/bs.irn.2024.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder in which selective death of motor neurons leads to muscle weakness and paralysis. Most research has focused on understanding and treating monogenic familial forms, most frequently caused by mutations in SOD1, FUS, TARDBP and C9orf72, although ALS is mostly sporadic and without a clear genetic cause. Rodent models have been developed to study monogenic ALS, but despite numerous pre-clinical studies and clinical trials, few disease-modifying therapies are available. ALS is a heterogeneous disease with complex underlying mechanisms where several genes and molecular pathways appear to play a role. One reason for the high failure rate of clinical translation from the current models could be oversimplification in pre-clinical studies. Here, we review advances in pre-clinical models to better capture the heterogeneous nature of ALS and discuss the value of novel model systems to guide translation and aid in the development of precision medicine.
Collapse
Affiliation(s)
- Lenja De Cock
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Louvain-University of Leuven, Leuven, Belgium; Center for Brain and Disease Research, Laboratory of Neurobiology, VIB, Leuven, Belgium
| | - Valérie Bercier
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Louvain-University of Leuven, Leuven, Belgium; Center for Brain and Disease Research, Laboratory of Neurobiology, VIB, Leuven, Belgium
| | - Ludo Van Den Bosch
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Louvain-University of Leuven, Leuven, Belgium; Center for Brain and Disease Research, Laboratory of Neurobiology, VIB, Leuven, Belgium.
| |
Collapse
|
4
|
Cao X, Xie W, Feng M, Chen J, Zhang J, Luo J, Wang Y. Nanoplastic Exposure Mediates Neurodevelopmental Toxicity by Activating the Oxidative Stress Response in Zebrafish ( Danio rerio). ACS OMEGA 2024; 9:16508-16518. [PMID: 38617687 PMCID: PMC11007712 DOI: 10.1021/acsomega.4c00231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/18/2024] [Accepted: 03/21/2024] [Indexed: 04/16/2024]
Abstract
The global accumulation and adverse effects of nanoplastics (NPs) are a growing concern for the environment and human health. In recent years, more and more studies have begun to focus on the toxicity of plastic particles for early animal development. Different particle sizes of plastic particles have different toxicities to biological development. Nevertheless, the potential toxicological effects of 20 nm NPs, especially on neurodevelopment, have not been well investigated. In this paper, we used fluorescence microscopy to determine neurotoxicity in zebrafish at different concentrations of NPs. Moreover, the behavioral analysis demonstrated that NPs induced abnormal behavior of zebrafish. The results revealed developmental defects in zebrafish embryos after exposure to different concentrations (0, 0.3, 3, and 9 mg/L) of NPs. The morphological deformities, including abnormal body length and the rates of heart, survival, and hatching, were induced after NP exposure in zebrafish embryos. In addition, the development of primary motor neurons was observed the inhibitory effects of NPs on the length, occurrence, and development of primary motor neurons in Tg(hb9:GFP). Quantitative polymerase chain reaction analysis suggested that exposure to NPs significantly affects the expression of the genes involved in the occurrence and differentiation of primary motor neurons in zebrafish. Furthermore, the indicators associated with oxidative stress and apoptosis were found to be modified in zebrafish embryos at 24 and 48 h following exposure to NPs. Our findings demonstrated that NPs could cause toxicity in primary motor neurons by activating the oxidative stress response and inducing apoptosis, consequently impairing motor performance.
Collapse
Affiliation(s)
- Xiaoqian Cao
- Key
Laboratory of Bio-resources and Eco-environment of Ministry of Education,
College of Life Science, Sichuan University, Chengdu 610065, People’s Republic of China
| | - Wenjie Xie
- Key
Laboratory of Bio-resources and Eco-environment of Ministry of Education,
College of Life Science, Sichuan University, Chengdu 610065, People’s Republic of China
- Engineering
Research Center of Key Technique for Biotherapy of Guangdong Province, Shantou University Medical College, Shantou 515041, People’s Republic of China
| | - Meilan Feng
- Key
Laboratory of Bio-resources and Eco-environment of Ministry of Education,
College of Life Science, Sichuan University, Chengdu 610065, People’s Republic of China
| | - Juntao Chen
- Key
Laboratory of Bio-resources and Eco-environment of Ministry of Education,
College of Life Science, Sichuan University, Chengdu 610065, People’s Republic of China
| | - Jiannan Zhang
- Key
Laboratory of Bio-resources and Eco-environment of Ministry of Education,
College of Life Science, Sichuan University, Chengdu 610065, People’s Republic of China
| | - Juanjuan Luo
- Engineering
Research Center of Key Technique for Biotherapy of Guangdong Province, Shantou University Medical College, Shantou 515041, People’s Republic of China
| | - Yajun Wang
- Key
Laboratory of Bio-resources and Eco-environment of Ministry of Education,
College of Life Science, Sichuan University, Chengdu 610065, People’s Republic of China
| |
Collapse
|
5
|
Aksoy YA, Cole AJ, Deng W, Hesselson D. Zebrafish CCNF and FUS Mediate Stress-Specific Motor Responses. Cells 2024; 13:372. [PMID: 38474336 DOI: 10.3390/cells13050372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/09/2024] [Accepted: 02/10/2024] [Indexed: 03/14/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease characterized by the degeneration of motor neurons. Mutations in the cyclin F (CCNF) and fused in sarcoma (FUS) genes have been associated with ALS pathology. In this study, we aimed to investigate the functional role of CCNF and FUS in ALS by using genome editing techniques to generate zebrafish models with genetic disruptions in these genes. Sequence comparisons showed significant homology between human and zebrafish CCNF and FUS proteins. We used CRISPR/Cas9 and TALEN-mediated genome editing to generate targeted disruptions in the zebrafish ccnf and fus genes. Ccnf-deficient zebrafish exhibited abnormal motor neuron development and axonal outgrowth, whereas Fus-deficient zebrafish did not exhibit developmental abnormalities or axonopathies in primary motor neurons. However, Fus-deficient zebrafish displayed motor impairments in response to oxidative and endoplasmic reticulum stress. The Ccnf-deficient zebrafish were only sensitized to endoplasmic reticulum stress, indicating that ALS genes have overlapping as well as unique cellular functions. These zebrafish models provide valuable platforms for studying the functional consequences of CCNF and FUS mutations in ALS pathogenesis. Furthermore, these zebrafish models expand the drug screening toolkit used to evaluate possible ALS treatments.
Collapse
Affiliation(s)
- Yagiz Alp Aksoy
- Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
- Cancer Diagnosis and Pathology Group, Kolling Institute of Medical Research, Royal North Shore Hospital, St Leonards, NSW 2065, Australia
- Macquarie Medical School, Macquarie University, Sydney, NSW 2109, Australia
| | - Alexander J Cole
- Centenary Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Wei Deng
- School of Biomedical Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Daniel Hesselson
- Centenary Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
6
|
Belosludtseva NV, Matveeva LA, Belosludtsev KN. Mitochondrial Dyshomeostasis as an Early Hallmark and a Therapeutic Target in Amyotrophic Lateral Sclerosis. Int J Mol Sci 2023; 24:16833. [PMID: 38069154 PMCID: PMC10706047 DOI: 10.3390/ijms242316833] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal multisystem disease characterized by progressive death of motor neurons, loss of muscle mass, and impaired energy metabolism. More than 40 genes are now known to be associated with ALS, which together account for the majority of familial forms of ALS and only 10% of sporadic ALS cases. To date, there is no consensus on the pathogenesis of ALS, which makes it difficult to develop effective therapy. Accumulating evidence indicates that mitochondria, which play an important role in cellular homeostasis, are the earliest targets in ALS, and abnormalities in their structure and functions contribute to the development of bioenergetic stress and disease progression. Mitochondria are known to be highly dynamic organelles, and their stability is maintained through a number of key regulatory pathways. Mitochondrial homeostasis is dynamically regulated via mitochondrial biogenesis, clearance, fission/fusion, and trafficking; however, the processes providing "quality control" and distribution of the organelles are prone to dysregulation in ALS. Here, we systematically summarized changes in mitochondrial turnover, dynamics, calcium homeostasis, and alterations in mitochondrial transport and functions to provide in-depth insights into disease progression pathways, which may have a significant impact on current symptomatic therapies and personalized treatment programs for patients with ALS.
Collapse
Affiliation(s)
- Natalia V. Belosludtseva
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, Pushchino 142290, Russia;
| | - Lyudmila A. Matveeva
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, pl. Lenina 1, Yoshkar-Ola 424001, Russia;
| | - Konstantin N. Belosludtsev
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, Pushchino 142290, Russia;
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, pl. Lenina 1, Yoshkar-Ola 424001, Russia;
| |
Collapse
|
7
|
Desai-Chowdhry P, Brummer AB, Mallavarapu S, Savage VM. Neuronal branching is increasingly asymmetric near synapses, potentially enabling plasticity while minimizing energy dissipation and conduction time. J R Soc Interface 2023; 20:20230265. [PMID: 37669695 PMCID: PMC10480011 DOI: 10.1098/rsif.2023.0265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 08/15/2023] [Indexed: 09/07/2023] Open
Abstract
Neurons' primary function is to encode and transmit information in the brain and body. The branching architecture of axons and dendrites must compute, respond and make decisions while obeying the rules of the substrate in which they are enmeshed. Thus, it is important to delineate and understand the principles that govern these branching patterns. Here, we present evidence that asymmetric branching is a key factor in understanding the functional properties of neurons. First, we derive novel predictions for asymmetric scaling exponents that encapsulate branching architecture associated with crucial principles such as conduction time, power minimization and material costs. We compare our predictions with extensive data extracted from images to associate specific principles with specific biophysical functions and cell types. Notably, we find that asymmetric branching models lead to predictions and empirical findings that correspond to different weightings of the importance of maximum, minimum or total path lengths from the soma to the synapses. These different path lengths quantitatively and qualitatively affect energy, time and materials. Moreover, we generally observe that higher degrees of asymmetric branching-potentially arising from extrinsic environmental cues and synaptic plasticity in response to activity-occur closer to the tips than the soma (cell body).
Collapse
Affiliation(s)
- Paheli Desai-Chowdhry
- Department of Computational Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Samhita Mallavarapu
- Department of Computational Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Van M. Savage
- Department of Computational Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, CA, USA
- Santa Fe Institute, Santa Fe, NM, USA
| |
Collapse
|
8
|
Kim Y, Kim SS, Park BH, Hwang KS, Bae MA, Cho SH, Kim S, Park HC. Mechanism of Bisphenol F Affecting Motor System and Motor Activity in Zebrafish. TOXICS 2023; 11:477. [PMID: 37368577 DOI: 10.3390/toxics11060477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/17/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023]
Abstract
Bisphenol F (BPF; 4,4'-dihydroxydiphenylmethane) is one of the most frequently used compounds in the manufacture of plastics and epoxy resins. Previous studies have demonstrated that BPF affects locomotor behavior, oxidative stress, and neurodevelopment in zebrafish. However, its neurotoxic effects are controversial, and the underlying mechanisms are unclear. In order to determine whether BPF affects the motor system, we exposed zebrafish embryos to BPF and assessed behavioral, histological, and neurochemical changes. Spontaneous locomotor behavior and startle response were significantly decreased in BPF-treated zebrafish larvae compared with control larvae. BPF induced motor degeneration and myelination defects in zebrafish larvae. In addition, embryonic exposure to BPF resulted in altered metabolic profiles of neurochemicals, including neurotransmitters and neurosteroids, which may impact locomotion and motor function. In conclusion, exposure to BPF has the potential to affect survival, motor axon length, locomotor activity, myelination, and neurochemical levels of zebrafish larvae.
Collapse
Affiliation(s)
- Yeonhwa Kim
- Zebrafish Translational Medical Research Center, Korea University, Ansan 15588, Republic of Korea
| | - Seong Soon Kim
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34141, Republic of Korea
| | - Byeong Heon Park
- Medical Science Research Center, Ansan Hospital, Korea University, Ansan 15588, Republic of Korea
| | - Kyu-Seok Hwang
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34141, Republic of Korea
| | - Myung Ae Bae
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34141, Republic of Korea
| | - Sung-Hee Cho
- Chemical Analysis Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea
| | - Suhyun Kim
- Zebrafish Translational Medical Research Center, Korea University, Ansan 15588, Republic of Korea
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul 04763, Republic of Korea
| | - Hae-Chul Park
- Zebrafish Translational Medical Research Center, Korea University, Ansan 15588, Republic of Korea
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul 04763, Republic of Korea
| |
Collapse
|
9
|
Zhou R, Zhou D, Yang S, Shi Z, Pan H, Jin Q, Ding Z. Neurotoxicity of polystyrene nanoplastics with different particle sizes at environment-related concentrations on early zebrafish embryos. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 872:162096. [PMID: 36791853 DOI: 10.1016/j.scitotenv.2023.162096] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/30/2023] [Accepted: 02/04/2023] [Indexed: 06/18/2023]
Abstract
Nanoplastics (NPs) have received global attention due to their wide application and detection in various environmental or biological media. NPs can penetrate physical barriers and accumulate in organisms after being ingested, producing a variety of toxic effects and possessing particle size-dependent effects, distinguishing them from traditional contaminants. This paper explored the neurotoxicity of polystyrene (PS)-NPs of different particle sizes on zebrafish (Danio rerio) embryos at environmental concentrations at the tissue and molecular levels using visualized transgenic zebrafish. Results showed that all particle sizes of PS-NPs produced developmental toxicity in zebrafish embryos and induced neuronal loss, axonal deletion/shortening/hybridization, and developmental and apoptotic-related genetic alterations, ultimately leading to behavioral abnormalities. PS-NPs with smaller sizes may have more severe neurotoxicity due to their entry into the embryo and brain through the chorionic pore before hatching. In addition, PS-NPs at 100 nm and 1000 nm can specifically interfere with GABAergic, cholinergic or serotonergic system and affect neuronal signaling. Our results reveal the neurotoxic risk of NPs, and smaller particle-size NPs may have a greater ecological risk. We anticipate that our study can provide a basis for exploring the toxicity mechanisms of NPs and the environmental risk assessment of NPs.
Collapse
Affiliation(s)
- Ranran Zhou
- School of Environmental Science & Engineering, Nanjing Tech University, 30 Puzhu Southern Road, Nanjing 211816, China
| | - Dao Zhou
- School of Environmental Science & Engineering, Nanjing Tech University, 30 Puzhu Southern Road, Nanjing 211816, China
| | - Shixin Yang
- School of Environmental Science & Engineering, Nanjing Tech University, 30 Puzhu Southern Road, Nanjing 211816, China
| | - Zhiqiao Shi
- School of Environmental Science & Engineering, Nanjing Tech University, 30 Puzhu Southern Road, Nanjing 211816, China
| | - Hui Pan
- School of Environmental Science & Engineering, Nanjing Tech University, 30 Puzhu Southern Road, Nanjing 211816, China
| | - Qijie Jin
- School of Environmental Science & Engineering, Nanjing Tech University, 30 Puzhu Southern Road, Nanjing 211816, China
| | - Zhuhong Ding
- School of Environmental Science & Engineering, Nanjing Tech University, 30 Puzhu Southern Road, Nanjing 211816, China.
| |
Collapse
|
10
|
Liu Y. Zebrafish as a Model Organism for Studying Pathologic Mechanisms of Neurodegenerative Diseases and other Neural Disorders. Cell Mol Neurobiol 2023:10.1007/s10571-023-01340-w. [PMID: 37004595 DOI: 10.1007/s10571-023-01340-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 03/19/2023] [Indexed: 04/04/2023]
Abstract
Zebrafish are widely considered an excellent vertebrate model for studying the pathogenesis of human diseases because of their transparency of embryonic development, easy breeding, high similarity with human genes, and easy gene manipulation. Previous studies have shown that zebrafish as a model organism provides an ideal operating platform for clarifying the pathological and molecular mechanisms of neurodegenerative diseases and related human diseases. This review mainly summarizes the achievements and prospects of zebrafish used as model organisms in the research of neurodegenerative diseases and other human diseases related to the nervous system in recent years. In the future study of human disease mechanisms, the application of the zebrafish model will continue to provide a valuable operating platform and technical support for investigating and finding better prevention and treatment of these diseases, which has broad application prospects and practical significance. Zebrafish models used in neurodegenerative diseases and other diseases related to the nervous system.
Collapse
Affiliation(s)
- Yanying Liu
- Department of Basic Medicine, School of Nursing and Health, Qingdao Huanghai University, Qingdao, 266427, China.
| |
Collapse
|
11
|
Oliveira NAS, Pinho BR, Oliveira JMA. Swimming against ALS: How to model disease in zebrafish for pathophysiological and behavioral studies. Neurosci Biobehav Rev 2023; 148:105138. [PMID: 36933816 DOI: 10.1016/j.neubiorev.2023.105138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/02/2023] [Accepted: 03/14/2023] [Indexed: 03/18/2023]
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a neurodegenerative disease that leads to progressive disability and motor impairment. Existing therapies provide modest improvements in patient survival, raising a need for new treatments for ALS. Zebrafish is a promising model animal for translational and fundamental research in ALS - it is an experimentally tractable vertebrate, with high homology to humans and an ample experimental toolbox. These advantages allow high-throughput study of behavioral and pathophysiological phenotypes. The last decade saw an increased interest in modelling ALS in zebrafish, leading to the current abundance and variety of available methods and models. Additionally, the rise of gene editing techniques and toxin combination studies has created novel opportunities for ALS studies in zebrafish. In this review, we address the relevance of zebrafish as a model animal for ALS studies, the strategies for model induction and key phenotypical evaluation. Furthermore, we discuss established and emerging zebrafish models of ALS, analyzing their validity, including their potential for drug testing, and highlighting research opportunities in this area.
Collapse
Affiliation(s)
- Nuno A S Oliveira
- UCIBIO-REQUIMTE, Applied Molecular Biosciences Unit, Mitochondria and Neurobiology Lab, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, Department of Drug Sciences, Pharmacology Lab, University of Porto, 4050-313 Porto, Portugal
| | - Brígida R Pinho
- UCIBIO-REQUIMTE, Applied Molecular Biosciences Unit, Mitochondria and Neurobiology Lab, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, Department of Drug Sciences, Pharmacology Lab, University of Porto, 4050-313 Porto, Portugal
| | - Jorge M A Oliveira
- UCIBIO-REQUIMTE, Applied Molecular Biosciences Unit, Mitochondria and Neurobiology Lab, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, Department of Drug Sciences, Pharmacology Lab, University of Porto, 4050-313 Porto, Portugal.
| |
Collapse
|
12
|
Suzuki N, Nishiyama A, Warita H, Aoki M. Genetics of amyotrophic lateral sclerosis: seeking therapeutic targets in the era of gene therapy. J Hum Genet 2023; 68:131-152. [PMID: 35691950 PMCID: PMC9968660 DOI: 10.1038/s10038-022-01055-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/17/2022] [Accepted: 05/29/2022] [Indexed: 12/12/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is an intractable disease that causes respiratory failure leading to mortality. The main locus of ALS is motor neurons. The success of antisense oligonucleotide (ASO) therapy in spinal muscular atrophy (SMA), a motor neuron disease, has triggered a paradigm shift in developing ALS therapies. The causative genes of ALS and disease-modifying genes, including those of sporadic ALS, have been identified one after another. Thus, the freedom of target choice for gene therapy has expanded by ASO strategy, leading to new avenues for therapeutic development. Tofersen for superoxide dismutase 1 (SOD1) was a pioneer in developing ASO for ALS. Improving protocols and devising early interventions for the disease are vital. In this review, we updated the knowledge of causative genes in ALS. We summarized the genetic mutations identified in familial ALS and their clinical features, focusing on SOD1, fused in sarcoma (FUS), and transacting response DNA-binding protein. The frequency of the C9ORF72 mutation is low in Japan, unlike in Europe and the United States, while SOD1 and FUS are more common, indicating that the target mutations for gene therapy vary by ethnicity. A genome-wide association study has revealed disease-modifying genes, which could be the novel target of gene therapy. The current status and prospects of gene therapy development were discussed, including ethical issues. Furthermore, we discussed the potential of axonal pathology as new therapeutic targets of ALS from the perspective of early intervention, including intra-axonal transcription factors, neuromuscular junction disconnection, dysregulated local translation, abnormal protein degradation, mitochondrial pathology, impaired axonal transport, aberrant cytoskeleton, and axon branching. We simultaneously discuss important pathological states of cell bodies: persistent stress granules, disrupted nucleocytoplasmic transport, and cryptic splicing. The development of gene therapy based on the elucidation of disease-modifying genes and early intervention in molecular pathology is expected to become an important therapeutic strategy in ALS.
Collapse
Affiliation(s)
- Naoki Suzuki
- Department of Neurology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Japan.
| | - Ayumi Nishiyama
- Department of Neurology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Japan
| | - Hitoshi Warita
- Department of Neurology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Japan
| | - Masashi Aoki
- Department of Neurology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Japan.
| |
Collapse
|
13
|
Nainu F, Mamada SS, Harapan H, Emran TB. Inflammation-Mediated Responses in the Development of Neurodegenerative Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1411:39-70. [PMID: 36949305 DOI: 10.1007/978-981-19-7376-5_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
Since its first description over a century ago, neurodegenerative diseases (NDDs) have impaired the lives of millions of people worldwide. As one of the major threats to human health, NDDs are characterized by progressive loss of neuronal structure and function, leading to the impaired function of the CNS. While the precise mechanisms underlying the emergence of NDDs remains elusive, association of neuroinflammation with the emergence of NDDs has been suggested. The immune system is tightly controlled to maintain homeostatic milieu and failure in doing so has been shown catastrophic. Here, we review current concepts on the cellular and molecular drivers responsible in the induction of neuroinflammation and how such event further promotes neuronal damage leading to neurodegeneration. Experimental data generated from cell culture and animal studies, gross and molecular pathologies of human CNS samples, and genome-wide association study are discussed to provide deeper insights into the mechanistic details of neuroinflammation and its roles in the emergence of NDDs.
Collapse
Affiliation(s)
- Firzan Nainu
- Department of Pharmacy, Faculty of Pharmacy, Hasanuddin University, Makassar, Indonesia
| | - Sukamto S Mamada
- Department of Pharmacy, Faculty of Pharmacy, Hasanuddin University, Makassar, Indonesia
| | - Harapan Harapan
- School of Medicine, Universitas Syiah Kuala, Banda Aceh, Indonesia
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, Bangladesh
| |
Collapse
|
14
|
How axon and dendrite branching are guided by time, energy, and spatial constraints. Sci Rep 2022; 12:20810. [PMID: 36460669 PMCID: PMC9718790 DOI: 10.1038/s41598-022-24813-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 11/21/2022] [Indexed: 12/05/2022] Open
Abstract
Neurons are connected by complex branching processes-axons and dendrites-that process information for organisms to respond to their environment. Classifying neurons according to differences in structure or function is a fundamental part of neuroscience. Here, by constructing biophysical theory and testing against empirical measures of branching structure, we develop a general model that establishes a correspondence between neuron structure and function as mediated by principles such as time or power minimization for information processing as well as spatial constraints for forming connections. We test our predictions for radius scale factors against those extracted from neuronal images, measured for species that range from insects to whales, including data from light and electron microscopy studies. Notably, our findings reveal that the branching of axons and peripheral nervous system neurons is mainly determined by time minimization, while dendritic branching is determined by power minimization. Our model also predicts a quarter-power scaling relationship between conduction time delay and body size.
Collapse
|
15
|
Sevastre-Berghian AC, Casandra C, Gheban D, Olteanu D, Olanescu Vaida Voevod MC, Rogojan L, Filip GA, Bâldea I. Neurotoxicity of Bisphenol A and the Impact of Melatonin Administration on Oxidative Stress, ERK/NF-kB Signaling Pathway, and Behavior in Rats. Neurotox Res 2022; 40:1882-1894. [PMID: 36515867 DOI: 10.1007/s12640-022-00618-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/25/2022] [Accepted: 12/05/2022] [Indexed: 12/15/2022]
Abstract
Bisphenol A (BPA) exposure can be associated with neurodevelopmental disorders due to impairment of cell proliferation and synaptic development. Our study evaluated the effects of melatonin (MEL) on ambulatory activity, lipid peroxidation, cytokines, ERK/NF-kB signaling pathway in the hippocampus and frontal lobe, and histopathological changes in the hippocampus of the BPA-treated rats. The animals were divided into 4 groups: control, BPA, BPA + MEL I, and BPA + MEL II. MEL I (20 mg/kg b.w.) and MEL II (40 mg/kg b.w.) were orally administered for 28 days. On the 29th day, BPA (1 mg/kg b.w.) was intraperitoneally administered, and, after 24 h, an open field test (OFT) and an elevated plus maze (EPM) were conducted. The results showed that the MEL II group made significantly more entries in the open arms of EPM, traveled significantly greater distance, and spent more time in the central part of OFT. Malondialdehyde levels were diminished by MEL II in the hippocampus and by MEL I in the frontal lobe. In the hippocampus, the MAPK level was significantly lowered by both doses of MEL (p < 0.05) while in the frontal lobe, only MEL II reduced the MAPK activation. MEL I and II significantly decreased the γH2AX and upregulated the NFkB and pNFkB expressions in the hippocampus while MEL II downregulated the MCP1 expression. Both doses of MEL attenuated the BPA-evoked histopathological alterations in the hippocampus. These data indicate that MEL can mediate the neuroprotection against BPA-induced neurotoxicity and improves behavioral changes suggesting a real potential as a protective agent in brain toxicity.
Collapse
Affiliation(s)
- Alexandra C Sevastre-Berghian
- Department of Physiology, "Iuliu Hatieganu" University of Medicine and Pharmacy, 1 Clinicilor Street, 400006, Cluj-Napoca-Napoca, Romania
| | - Cristina Casandra
- Department of Physiology, "Iuliu Hatieganu" University of Medicine and Pharmacy, 1 Clinicilor Street, 400006, Cluj-Napoca-Napoca, Romania
| | - Dan Gheban
- Department of Morphopathology, "Iuliu Hatieganu" University of Medicine and Pharmacy, 3-5 Clinicilor Street, 400006, Cluj-Napoca-Napoca, Romania
| | - Diana Olteanu
- Department of Physiology, "Iuliu Hatieganu" University of Medicine and Pharmacy, 1 Clinicilor Street, 400006, Cluj-Napoca-Napoca, Romania
| | | | - Liliana Rogojan
- Department of Morphopathology, District Hospital, 3-5 Clinicilor Street, 400006, Cluj-Napoca Napoca, Romania
| | - Gabriela A Filip
- Department of Physiology, "Iuliu Hatieganu" University of Medicine and Pharmacy, 1 Clinicilor Street, 400006, Cluj-Napoca-Napoca, Romania.
| | - Ioana Bâldea
- Department of Physiology, "Iuliu Hatieganu" University of Medicine and Pharmacy, 1 Clinicilor Street, 400006, Cluj-Napoca-Napoca, Romania
| |
Collapse
|
16
|
Chia K, Klingseisen A, Sieger D, Priller J. Zebrafish as a model organism for neurodegenerative disease. Front Mol Neurosci 2022; 15:940484. [PMID: 36311026 PMCID: PMC9606821 DOI: 10.3389/fnmol.2022.940484] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/01/2022] [Indexed: 11/20/2022] Open
Abstract
The zebrafish is increasingly recognized as a model organism for translational research into human neuropathology. The zebrafish brain exhibits fundamental resemblance with human neuroanatomical and neurochemical pathways, and hallmarks of human brain pathology such as protein aggregation, neuronal degeneration and activation of glial cells, for example, can be modeled and recapitulated in the fish central nervous system. Genetic manipulation, imaging, and drug screening are areas where zebrafish excel with the ease of introducing mutations and transgenes, the expression of fluorescent markers that can be detected in vivo in the transparent larval stages overtime, and simple treatment of large numbers of fish larvae at once followed by automated screening and imaging. In this review, we summarize how zebrafish have successfully been employed to model human neurodegenerative diseases such as Parkinson’s disease, Alzheimer’s disease, amyotrophic lateral sclerosis, and Huntington’s disease. We discuss advantages and disadvantages of choosing zebrafish as a model for these neurodegenerative conditions.
Collapse
Affiliation(s)
- Kelda Chia
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
- United Kingdom Dementia Research Institute at University of Edinburgh, Edinburgh, United Kingdom
| | - Anna Klingseisen
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
- United Kingdom Dementia Research Institute at University of Edinburgh, Edinburgh, United Kingdom
| | - Dirk Sieger
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
- *Correspondence: Dirk Sieger,
| | - Josef Priller
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
- United Kingdom Dementia Research Institute at University of Edinburgh, Edinburgh, United Kingdom
- Department of Psychiatry and Psychotherapy, School of Medicine, Technical University of Munich, Munich, Germany
- Neuropsychiatry and Laboratory of Molecular Psychiatry, Charité - Universitätsmedizin Berlin, DZNE, Berlin, Germany
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
- Josef Priller,
| |
Collapse
|
17
|
Welch C, Mulligan K. Does Bisphenol A Confer Risk of Neurodevelopmental Disorders? What We Have Learned from Developmental Neurotoxicity Studies in Animal Models. Int J Mol Sci 2022; 23:2894. [PMID: 35270035 PMCID: PMC8910940 DOI: 10.3390/ijms23052894] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/02/2022] [Accepted: 03/05/2022] [Indexed: 02/01/2023] Open
Abstract
Substantial evidence indicates that bisphenol A (BPA), a ubiquitous environmental chemical used in the synthesis of polycarbonate plastics and epoxy resins, can impair brain development. Clinical and epidemiological studies exploring potential connections between BPA and neurodevelopmental disorders in humans have repeatedly identified correlations between early BPA exposure and developmental disorders, such as attention deficit/hyperactivity disorder and autism spectrum disorder. Investigations using invertebrate and vertebrate animal models have revealed that developmental exposure to BPA can impair multiple aspects of neuronal development, including neural stem cell proliferation and differentiation, synapse formation, and synaptic plasticity-neuronal phenotypes that are thought to underpin the fundamental changes in behavior-associated neurodevelopmental disorders. Consistent with neuronal phenotypes caused by BPA, behavioral analyses of BPA-treated animals have shown significant impacts on behavioral endophenotypes related to neurodevelopmental disorders, including altered locomotor activity, learning and memory deficits, and anxiety-like behavior. To contextualize the correlations between BPA and neurodevelopmental disorders in humans, this review summarizes the current literature on the developmental neurotoxicity of BPA in laboratory animals with an emphasis on neuronal phenotypes, molecular mechanisms, and behavioral outcomes. The collective works described here predominantly support the notion that gestational exposure to BPA should be regarded as a risk factor for neurodevelopmental disorders.
Collapse
Affiliation(s)
- Chloe Welch
- Division of Biological Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA;
| | - Kimberly Mulligan
- Department of Biological Sciences, California State University, Sacramento, 6000 J Street, Sacramento, CA 95819, USA
| |
Collapse
|
18
|
Sun M, Cao Y, Sun Q, Ren X, Hu J, Sun Z, Duan J. Exposure to polydopamine nanoparticles induces neurotoxicity in the developing zebrafish. NANOIMPACT 2021; 24:100353. [PMID: 35559812 DOI: 10.1016/j.impact.2021.100353] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 08/17/2021] [Accepted: 08/23/2021] [Indexed: 06/15/2023]
Abstract
Currently, the potential applications of polydopamine (PDA) nanoparticles in the biomedical field are being extensively studied, such as cell internalization, biocompatible surface modification, biological imaging, nano-drug delivery, cancer diagnosis, and treatment. However, the subsequent toxicological response to PDA nanoparticles, especially on nervous system damage was still largely unknown. In this regard, the evaluation of the neurotoxicity of PDA nanoparticles was performed in the developing zebrafish larvae. Results of the transmission electron microscope (TEM), diameter analysis, 1H NMR, and thermogravimetric analysis (TGA) indicated that PDA nanoparticles had high stability without any depolymerization; the maximum non-lethal dose (MNLD) and LD10 of PDA nanoparticles for zebrafish were determined to be 0.5 mg/mL and 4 mg/mL. Pericardial edema and uninflated swim bladders were observed in zebrafish larvae after exposure to PDA nanoparticles. At a concentration higher than MNLD, the fluorescence images manifested that the PDA nanoparticles could inhibit the axonal growth of peripheral motor neurons in zebrafish, which might affect the movement distances and speed, disturb the movement trace, finally resulting in impaired motor function. However, in further investigating the mechanism of PDA nanoparticles-induced neurotoxicity in zebrafish larvae, we did not find apoptosis of central neurocytes. Our data suggested that PDA nanoparticles might trigger neurotoxicity in zebrafish, which could provide an essential clue for the safety assessment of PDA nanoparticles.
Collapse
Affiliation(s)
- Mengqi Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Yuanyuan Cao
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Qinglin Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Xiaoke Ren
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Junjie Hu
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Zhiwei Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Junchao Duan
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China.
| |
Collapse
|
19
|
Amor S, Nutma E, Marzin M, Puentes F. Imaging immunological processes from blood to brain in amyotrophic lateral sclerosis. Clin Exp Immunol 2021; 206:301-313. [PMID: 34510431 PMCID: PMC8561688 DOI: 10.1111/cei.13660] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/18/2021] [Accepted: 08/29/2021] [Indexed: 12/12/2022] Open
Abstract
Neuropathology studies of amyotrophic lateral sclerosis (ALS) and animal models of ALS reveal a strong association between aberrant protein accumulation and motor neurone damage, as well as activated microglia and astrocytes. While the role of neuroinflammation in the pathology of ALS is unclear, imaging studies of the central nervous system (CNS) support the idea that innate immune activation occurs early in disease in both humans and rodent models of ALS. In addition, emerging studies also reveal changes in monocytes, macrophages and lymphocytes in peripheral blood as well as at the neuromuscular junction. To more clearly understand the association of neuroinflammation (innate and adaptive) with disease progression, the use of biomarkers and imaging modalities allow monitoring of immune parameters in the disease process. Such approaches are important for patient stratification, selection and inclusion in clinical trials, as well as to provide readouts of response to therapy. Here, we discuss the different imaging modalities, e.g. magnetic resonance imaging, magnetic resonance spectroscopy and positron emission tomography as well as other approaches, including biomarkers of inflammation in ALS, that aid the understanding of the underlying immune mechanisms associated with motor neurone degeneration in ALS.
Collapse
Affiliation(s)
- Sandra Amor
- Department of Pathology, Amsterdam UMC Location VUmc, Amsterdam, the Netherlands.,Department of Neuroscience and Trauma, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Erik Nutma
- Department of Pathology, Amsterdam UMC Location VUmc, Amsterdam, the Netherlands
| | - Manuel Marzin
- Department of Pathology, Amsterdam UMC Location VUmc, Amsterdam, the Netherlands
| | - Fabiola Puentes
- Department of Neuroscience and Trauma, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
20
|
Sahoo PK, Aparna S, Naik PK, Singh SB, Das SK. Bisphenol A exposure induces neurobehavioral deficits and neurodegeneration through induction of oxidative stress and activated caspase-3 expression in zebrafish brain. J Biochem Mol Toxicol 2021; 35:e22873. [PMID: 34342104 DOI: 10.1002/jbt.22873] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 03/18/2021] [Accepted: 07/23/2021] [Indexed: 12/20/2022]
Abstract
Bisphenol A (BPA) is noted for its adversative effects by inducing oxidative stress, carcinogenicity, neurotoxicity, inflammation, etc. However, the likely act of BPA in inducing neurodegenerative phenotypes remains elusive in the available literature. Hence, the present study was conducted to decipher the neurodegenerative potential of BPA in inducing Parkinson's disease like phenotypes in zebrafish. Zebrafish were subjected to chronic waterborne exposure to BPA for 56 days. Locomotor activities and neurobehavioral response were assessed by the NTDT (novel tank diving test), OFT (open field test), and LDPT (light-dark preference test). The oxidative stress markers and histopathological observation for pyknosis and chromatin condensation were carried out. Immunohistochemistry for activated caspase-3 and targeted proteins expression study was performed. The basic findings reveal that chronic BPA exposure significantly induces locomotor dysfunction through a significant decline in mean velocity and total distance traveled. As a measure of pyknosis and chromatin condensation, pyknotic and Hoechst positive neurons in telencephalon and diencephalon significantly increased by BPA exposure. A higher concentration of BPA adversely affects the neurobehavioral response, antioxidant status, and neuromorphology in zebrafish. Parkinson-relevant targeted protein expression viz. alpha-synuclein and LRRK2, were significantly upregulated, whereas tyrosine hydroxylase, NeuN, and Nurr1 were significantly downregulated in the zebrafish brain. As an indicator of cell death by apoptosis, the expression of activated caspase-3 was significantly increased in the BPA-exposed zebrafish brain. These basic results of the current study indicate that chronic waterborne exposure to BPA induces neuropathological manifestation leading to the development of motor dysfunction and Parkinsonism-like neurodegenerative phenotypes in zebrafish.
Collapse
Affiliation(s)
- Pradyumna K Sahoo
- Neurobiology Laboratory, Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University), Kalinga Nagar, Bhubaneswar, India
| | - Sai Aparna
- Neurobiology Laboratory, Department of Zoology, Ravenshaw University, Cuttack, India
| | - Pradeep K Naik
- Department of Biotechnology and Bioinformatics, Sambalpur University, Burla, India
| | - Shashi B Singh
- National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, India
| | - Saroj K Das
- Neurobiology Laboratory, Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University), Kalinga Nagar, Bhubaneswar, India
| |
Collapse
|
21
|
Wang X, Zhang JB, He KJ, Wang F, Liu CF. Advances of Zebrafish in Neurodegenerative Disease: From Models to Drug Discovery. Front Pharmacol 2021; 12:713963. [PMID: 34335276 PMCID: PMC8317260 DOI: 10.3389/fphar.2021.713963] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 06/30/2021] [Indexed: 12/11/2022] Open
Abstract
Neurodegenerative disease (NDD), including Alzheimer’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis, are characterized by the progressive loss of neurons which leads to the decline of motor and/or cognitive function. Currently, the prevalence of NDD is rapidly increasing in the aging population. However, valid drugs or treatment for NDD are still lacking. The clinical heterogeneity and complex pathogenesis of NDD pose a great challenge for the development of disease-modifying therapies. Numerous animal models have been generated to mimic the pathological conditions of these diseases for drug discovery. Among them, zebrafish (Danio rerio) models are progressively emerging and becoming a powerful tool for in vivo study of NDD. Extensive use of zebrafish in pharmacology research or drug screening is due to the high conserved evolution and 87% homology to humans. In this review, we summarize the zebrafish models used in NDD studies, and highlight the recent findings on pharmacological targets for NDD treatment. As high-throughput platforms in zebrafish research have rapidly developed in recent years, we also discuss the application prospects of these new technologies in future NDD research.
Collapse
Affiliation(s)
- Xiaobo Wang
- Department of Neurology, The Second Affiliated Hospital of Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Jin-Bao Zhang
- Department of Neurology, The Second Affiliated Hospital of Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Kai-Jie He
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Fen Wang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Chun-Feng Liu
- Department of Neurology, The Second Affiliated Hospital of Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China.,Department of Neurology, Suqian First Hospital, Suqian, China
| |
Collapse
|
22
|
Pullaguri N, Grover P, Abhishek S, Rajakumara E, Bhargava Y, Bhargava A. Triclosan affects motor function in zebrafish larva by inhibiting ache and syn2a genes. CHEMOSPHERE 2021; 266:128930. [PMID: 33223207 DOI: 10.1016/j.chemosphere.2020.128930] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/31/2020] [Accepted: 11/08/2020] [Indexed: 06/11/2023]
Abstract
The widespread use of triclosan in personal care products as an antimicrobial agent is leading to its alarming tissue-bioaccumulation including human brain. However, knowledge of its potential effects on the vertebrate nervous system is still limited. Here, we hypothesized that sublethal triclosan concentrations are potent enough to alter motor neuron structure and function in zebrafish embryos exposed for prolonged duration. In this study, zebrafish embryos were used as vertebrate-animal model. Prolonged exposure (up to 4 days) of 0.6 mg/L (LC50, 96 h) and 0.3 mg/L (<LC50, Sublethal) triclosan produced aberrations in motor neuron innervations in skeletal muscles and reduced touch-evoked escape response in zebrafish larvae. This suggests motor dysfunction in treated embryos. To further explore the mechanisms of triclosan induced neurotoxicity, we determined the enzyme activity of acetylcholinesterase (AChE) and the expression of acetylcholinesterase (ache), myelin basic protein (mbp) and synapsin IIa (syn2a) genes which play an important role in the neural development and synaptic transmission. The ache and syn2a genes were down-regulated in triclosan treated larvae without any significant changes in mbp gene expression. At functional level, we observed a decrease in the AChE activity. Furthermore, docking results showed that triclosan can form a stable interaction with binding pocket of AChE and perhaps it can compete with natural acetylcholine for direct binding to AChE thereby inhibiting it and affecting cholinergic transmission. Therefore, triclosan can be regarded as a neurotoxic agent even at sublethal concentrations. Overall, the growing toxicological evidence against triclosan including ours suggest caution in its widespread use.
Collapse
Affiliation(s)
- Narasimha Pullaguri
- Department of Biotechnology, Indian Institute of Technology Hyderabad (IITH), Kandi, Sangareddy, Telangana, 502285, India
| | - Poonam Grover
- Department of Biotechnology, Indian Institute of Technology Hyderabad (IITH), Kandi, Sangareddy, Telangana, 502285, India
| | - Suman Abhishek
- Macromolecular Structural Biology Lab, Department of Biotechnology, Indian Institute of Technology Hyderabad (IITH), Kandi, Sangareddy, Telangana, 502285, India
| | - Eerappa Rajakumara
- Macromolecular Structural Biology Lab, Department of Biotechnology, Indian Institute of Technology Hyderabad (IITH), Kandi, Sangareddy, Telangana, 502285, India
| | - Yogesh Bhargava
- Molecular Engineering and Imaging Lab, School of Biological Sciences, Dr Harisingh Gour Central University, Sagar, MP, 470003, India
| | - Anamika Bhargava
- Department of Biotechnology, Indian Institute of Technology Hyderabad (IITH), Kandi, Sangareddy, Telangana, 502285, India.
| |
Collapse
|
23
|
Effect of Cadmium and Nickel Exposure on Early Development in Zebrafish (Danio rerio) Embryos. WATER 2020. [DOI: 10.3390/w12113005] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Exposure to even low concentrations of heavy metals can be toxic to aquatic organisms, especially during embryonic development. Thus, this study aimed to investigate the toxicity of nickel and cadmium in zebrafish (Danio rerio) embryos exposed to environmentally relevant concentrations of each metal alone or in combination from 4 h through to 72 h postfertilization. Neither metal altered survival, but individual and combined exposures decreased hatching rate. Whereas cadmium did not affect total body length, trunk area, eye diameter, or eye area, nickel alone and in combination with cadmium decreased each morphological parameter. Yolk sac area, an index of metabolic rate, was not affected by nickel, but was larger in embryos exposed to high cadmium concentrations or nickel and cadmium combined at high concentrations. Nickel decreased spontaneous movement, whereas cadmium alone or nickel and cadmium combined had no effect. Neither metal altered elicited movement, but nickel and cadmium combined decreased elicited movement. Myosin protein expression in skeletal muscle was not altered by cadmium exposure. However, exposure to nickel at low concentrations and combined exposure to nickel and cadmium decreased myosin expression. Overall, nickel was more toxic than cadmium. In conclusion, we observed that combined exposures had a greater effect on movement than gross morphology, and no significant additive or synergistic interactions were present. These results imply that nickel and cadmium are toxic to developing embryos, even at very low exposure concentrations, and that these metals act via different mechanisms.
Collapse
|
24
|
Martínez R, Tu W, Eng T, Allaire-Leung M, Piña B, Navarro-Martín L, Mennigen JA. Acute and long-term metabolic consequences of early developmental Bisphenol A exposure in zebrafish (Danio rerio). CHEMOSPHERE 2020; 256:127080. [PMID: 32450349 DOI: 10.1016/j.chemosphere.2020.127080] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 05/22/2023]
Abstract
Bisphenol A (BPA) is an estrogenic contaminant linked to metabolic disruption. Developmental BPA exposure is of particular concern, as organizational effects may irreversibly disrupt metabolism at later life-stages. While BPA exposures in adult fish elicit metabolic perturbations similar to effects described in rodents, the metabolic effects of developmental BPA exposure in juvenile fish remain largely unknown. Following embryonic zebrafish exposure to BPA (0.1, 1 and 4 mg/L) and EE2 (10 ng/L) from 2 to 5 dpf, we assessed the metabolic phenotype in larvae (4-6 dpf) and juveniles (43-49 dpf) which had been divided into regular-fed and overfed groups at 29 dpf. Developmental BPA exposure in larvae dose-dependently reduced food-intake and locomotion and increased energy expenditure. Juveniles (29 dpf) exhibited a transient increase in body weight after developmental BPA exposure and persistent diet-dependent locomotion changes (43-49 dpf). At the molecular level, glucose and lipid metabolism-related transcript abundance clearly separated BPA exposed fish from controls and EE2 exposed fish at the larval stage, in juveniles on a regular diet and, to a lesser extent, in overfed juveniles. In general, the metabolic endpoints affected by BPA exposure were not mimicked by EE2 treatment. We conclude that developmental BPA exposure elicits acute metabolic effects in zebrafish larvae and fewer transient and persistent effects in juveniles and that these metabolic effects are largely independent of BPA's estrogenicity.
Collapse
Affiliation(s)
- Rubén Martínez
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Jordi Girona, Barcelona, Spain; Department of Cellular Biology, Physiology and Immunology, Universitat de Barcelona (UB), Barcelona, Spain
| | - Wenqing Tu
- Research Institute of Poyang Lake, Jiangxi Academy of Sciences, Nanchang 330012, China
| | - Tyler Eng
- Department of Biology, University of Ottawa, 20 Marie-Curie K1N 6N5, Ottawa, Ontario, Canada
| | - Melissa Allaire-Leung
- Department of Biology, University of Ottawa, 20 Marie-Curie K1N 6N5, Ottawa, Ontario, Canada
| | - Benjamin Piña
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Jordi Girona, Barcelona, Spain
| | - Laia Navarro-Martín
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Jordi Girona, Barcelona, Spain
| | - Jan A Mennigen
- Department of Biology, University of Ottawa, 20 Marie-Curie K1N 6N5, Ottawa, Ontario, Canada.
| |
Collapse
|
25
|
Var SR, Byrd-Jacobs CA. Role of Macrophages and Microglia in Zebrafish Regeneration. Int J Mol Sci 2020; 21:E4768. [PMID: 32635596 PMCID: PMC7369716 DOI: 10.3390/ijms21134768] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/02/2020] [Accepted: 07/03/2020] [Indexed: 12/11/2022] Open
Abstract
Currently, there is no treatment for recovery of human nerve function after damage to the central nervous system (CNS), and there are limited regenerative capabilities in the peripheral nervous system. Since fish are known for their regenerative abilities, understanding how these species modulate inflammatory processes following injury has potential translational importance for recovery from damage and disease. Many diseases and injuries involve the activation of innate immune cells to clear damaged cells. The resident immune cells of the CNS are microglia, the primary cells that respond to infection and injury, and their peripheral counterparts, macrophages. These cells serve as key modulators of development and plasticity and have been shown to be important in the repair and regeneration of structure and function after injury. Zebrafish are an emerging model for studying macrophages in regeneration after injury and microglia in neurodegenerative disorders such as Parkinson's disease and Alzheimer's disease. These fish possess a high degree of neuroanatomical, neurochemical, and emotional/social behavioral resemblance with humans, serving as an ideal simulator for many pathologies. This review explores literature on macrophage and microglial involvement in facilitating regeneration. Understanding innate immune cell behavior following damage may help to develop novel methods for treating toxic and chronic inflammatory processes that are seen in trauma and disease.
Collapse
|
26
|
Suzuki N, Akiyama T, Warita H, Aoki M. Omics Approach to Axonal Dysfunction of Motor Neurons in Amyotrophic Lateral Sclerosis (ALS). Front Neurosci 2020; 14:194. [PMID: 32269505 PMCID: PMC7109447 DOI: 10.3389/fnins.2020.00194] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 02/24/2020] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is an intractable adult-onset neurodegenerative disease that leads to the loss of upper and lower motor neurons (MNs). The long axons of MNs become damaged during the early stages of ALS. Genetic and pathological analyses of ALS patients have revealed dysfunction in the MN axon homeostasis. However, the molecular pathomechanism for the degeneration of axons in ALS has not been fully elucidated. This review provides an overview of the proposed axonal pathomechanisms in ALS, including those involving the neuronal cytoskeleton, cargo transport within axons, axonal energy supply, clearance of junk protein, neuromuscular junctions (NMJs), and aberrant axonal branching. To improve understanding of the global changes in axons, the review summarizes omics analyses of the axonal compartments of neurons in vitro and in vivo, including a motor nerve organoid approach that utilizes microfluidic devices developed by this research group. The review also discusses the relevance of intra-axonal transcription factors frequently identified in these omics analyses. Local axonal translation and the relationship among these pathomechanisms should be pursued further. The development of novel strategies to analyze axon fractions provides a new approach to establishing a detailed understanding of resilience of long MN and MN pathology in ALS.
Collapse
Affiliation(s)
- Naoki Suzuki
- Department of Neurology, Tohoku University School of Medicine, Sendai, Japan.,Department of Neurology, Shodo-kai Southern Tohoku General Hospital, Miyagi, Japan
| | - Tetsuya Akiyama
- Department of Neurology, Tohoku University School of Medicine, Sendai, Japan
| | - Hitoshi Warita
- Department of Neurology, Tohoku University School of Medicine, Sendai, Japan
| | - Masashi Aoki
- Department of Neurology, Tohoku University School of Medicine, Sendai, Japan
| |
Collapse
|
27
|
Morrice JR, Gregory-Evans CY, Shaw CA. Investigating microglia during motor neuron degeneration using a zebrafish model. Micron 2020; 133:102852. [PMID: 32203887 DOI: 10.1016/j.micron.2020.102852] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/14/2020] [Accepted: 02/19/2020] [Indexed: 12/11/2022]
Abstract
Many different types of pathologies can arise in the central nervous system (CNS), such as neurodegeneration. The incidence of neurodegenerative diseases continues to increase, yet the pathogenesis underlying most neurodegenerative diseases, notably in amyotrophic lateral sclerosis (ALS), remains elusive. Neuronal support cells, or glia, are known to play a crucial role in ALS. Microglia are the resident immune cells of the CNS and also have neurotrophic support functions. These cells have a disease-modifying function in ALS, yet this role is not well understood. A likely reason for this is that the intact CNS is particularly challenging to access for investigation in patients and in most animal models, which has impeded research in this field. The zebrafish is emerging as a robust model system to investigate cells in vivo, and offer distinct advantages over other vertebrate models for investigating neurodegenerative diseases. Live imaging in vivo is a powerful technique to characterize the role of dynamic cells such as microglia during neurodegeneration, and zebrafish provide a convenient means for live imaging. Here, we discuss the zebrafish as a model for live imaging, provide a brief overview of available high resolution imaging platforms that accommodate zebrafish, and describe our own in vivo studies on the role of microglia during motor neuron degeneration. Live in vivo imaging is anticipated to provide invaluable advancements to defining the pathogenesis underlying neurodegenerative diseases, which may in turn allow for more specifically targeted therapeutics.
Collapse
Affiliation(s)
- Jessica R Morrice
- Experimental Medicine Program, University of British Columbia, 2329 West Mall, Vancouver, British Columbia, V6T 1Z4, Canada.
| | - Cheryl Y Gregory-Evans
- Experimental Medicine Program, University of British Columbia, 2329 West Mall, Vancouver, British Columbia, V6T 1Z4, Canada; Department of Ophthalmology and Visual Sciences, University of British Columbia, 2329 West Mall, Vancouver, British Columbia, V6T 1Z4, Canada
| | - Christopher A Shaw
- Experimental Medicine Program, University of British Columbia, 2329 West Mall, Vancouver, British Columbia, V6T 1Z4, Canada; Department of Ophthalmology and Visual Sciences, University of British Columbia, 2329 West Mall, Vancouver, British Columbia, V6T 1Z4, Canada
| |
Collapse
|
28
|
Yuan L, Qian L, Qian Y, Liu J, Yang K, Huang Y, Wang C, Li Y, Mu X. Bisphenol F-Induced Neurotoxicity toward Zebrafish Embryos. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:14638-14648. [PMID: 31702913 DOI: 10.1021/acs.est.9b04097] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In this study, the influence of bisphenol F (BPF) toward central nervous system (CNS) was assessed using zebrafish embryos. We found that BPF could induce significant neurotoxicity toward zebrafish embryos, including inhibited locomotion, reduced moving distance, and CNS cell apoptosis at an effective concentration of 0.0005 mg/L. Immunofluorescence assay showed that both microglia and astrocyte in zebrafish brain were significantly activated by BPF, indicating the existence of neuroinflammatory response. Peripheral motor neuron development was significantly inhibited by BPF at 72 hpf. RNA-seq data indicated that neuronal developmental processes and cell apoptosis pathways were significantly affected by BPF exposure, which was consistent with the phenotypic results. Chip-seq assay implied that the transcriptional changes were not mediated by ERα. Additionally, no significant change was found in neurotransmitter levels (5-hydroxytryptamine, dopamine, and acetylcholine) or acetylcholinesterase (Ache) enzyme activity after BPF exposure, indicating that BPF may not affect neurotransmission. In conclusion, BPF could lead to abnormal neural outcomes during zebrafish early life stage through inducing neuroinflammation and CNS cell apoptosis even at environmentally relevant concentration.
Collapse
Affiliation(s)
- Lilai Yuan
- Fishery Resource and Environment Research Center , Chinese Academy of Fishery Sciences , Beijing 100141 , People's Republic of China
| | - Le Qian
- College of Sciences , China Agricultural University , Beijing 100193 , People's Republic of China
| | - Yu Qian
- Fishery Resource and Environment Research Center , Chinese Academy of Fishery Sciences , Beijing 100141 , People's Republic of China
| | - Jia Liu
- Fishery Resource and Environment Research Center , Chinese Academy of Fishery Sciences , Beijing 100141 , People's Republic of China
| | - Ke Yang
- Fishery Resource and Environment Research Center , Chinese Academy of Fishery Sciences , Beijing 100141 , People's Republic of China
| | - Ying Huang
- Fishery Resource and Environment Research Center , Chinese Academy of Fishery Sciences , Beijing 100141 , People's Republic of China
| | - Chengju Wang
- College of Sciences , China Agricultural University , Beijing 100193 , People's Republic of China
| | - Yingren Li
- Fishery Resource and Environment Research Center , Chinese Academy of Fishery Sciences , Beijing 100141 , People's Republic of China
| | - Xiyan Mu
- Fishery Resource and Environment Research Center , Chinese Academy of Fishery Sciences , Beijing 100141 , People's Republic of China
| |
Collapse
|
29
|
Chudinova AV, Rossel M, Vergunst A, Le-Masson G, Camu W, Raoul C, Lumbroso S, Mouzat K. Theme 4 In vivo experimental models. Amyotroph Lateral Scler Frontotemporal Degener 2019; 20:160-187. [PMID: 31702459 DOI: 10.1080/21678421.2019.1646992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Background: In 90% of Amyotrophic Lateral Sclerosis (ALS) cases, the disease is sporadic, the remaining 10% being familial. Many genes have been associated with the disease. The use of next generation sequencing has allowed increasing the number of genes analysed in routine diagnostics. However, this increase raises the issue of genetic variants interpretation within a growing number of ALS-associated-genes. Variant classification is based on a combinatory analysis of multiple factors. Among them, functional analyses provide strong arguments on pathogenicity interpretation.Objectives: We developed a simple animal model, the Zebrafish, for the functional analysis of candidate variants pathogenicity identified by routine genetic testing.Methods: Transient overexpression of different ALS associated genetic variants has been performed by mRNA injection in 1-cell stage zebrafish eggs. Validation of protein overexpression has been done by western blot. Embryos mortality, developmental delay and morphological abnormalities have been assessed within the first two days of development. Cellular phenotype has been investigated by the analysis of axonal length of 2-days old larvae with confocal microscopy. Motor phenotype of 5-days old larvae has been explored by touched-evoked response assay.Results: The model has been validated by the analysis of well-described ALS mutations, SOD1-Gly93Ala and OPTN Glu478Gly. Overexpression of this mutated protein was shown to provoke a shortening of axons and a premature axonal branching, as well as an impairment of motor performances as expected. We did not observe these aberrations in SOD1-WT injected fishes. Two candidate variants observed in ALS-patients have been explored with our model: SOD1 NM_000454.4:c.400_402del, p.Glu134del and OPTN NM_021980.4:c.1475T > G, p. Leu492Arg. Overexpression of both variants induced morphological abnormalities and motor impairment, suggesting a pathogenic involvement of these variants in ALS-patients.Discussion and conclusions: We developed for the first time a simple animal model, the Zebrafish, useful for the functional analysis of variant pathogenicity in order to assist ALS molecular diagnosis. Our model has been used to assess the pathogenicity of SOD1 and OPTN candidate variants, allowing to improve genetic testing interpretation.
Collapse
Affiliation(s)
- Aleksandra V Chudinova
- Laboratoire de Biochimie et Biologie Moléculaire, CHU Nîmes et Université de Montpellier, Nimes, France.,INSERM UMR1051, Institut des Neurosciences de Montpellier, Hôpital Saint Eloi, Montpellier, France
| | - Mireille Rossel
- 3MMDN, Univ. Montpellier, EPHE, INSERM, U1198, PSL Research University, Montpellier, France
| | | | - Gwendal Le-Masson
- Department of Neurology, Nerve-Muscle Unit and Centre de Référence Des Pathologies Neuromusculaires CHU Bordeaux (Groupe Hospitalier Pellegrin), University of Bordeaux, Bordeaux, France
| | - William Camu
- INSERM UMR1051, Institut des Neurosciences de Montpellier, Hôpital Saint Eloi, Montpellier, France.,ALS Center, Département de Neurologie, CHU Gui de Chauliac, Montpellier, France
| | - Cédric Raoul
- INSERM UMR1051, Institut des Neurosciences de Montpellier, Hôpital Saint Eloi, Montpellier, France
| | - Serge Lumbroso
- Laboratoire de Biochimie et Biologie Moléculaire, CHU Nîmes et Université de Montpellier, Nimes, France.,INSERM UMR1051, Institut des Neurosciences de Montpellier, Hôpital Saint Eloi, Montpellier, France
| | - Kevin Mouzat
- Laboratoire de Biochimie et Biologie Moléculaire, CHU Nîmes et Université de Montpellier, Nimes, France.,INSERM UMR1051, Institut des Neurosciences de Montpellier, Hôpital Saint Eloi, Montpellier, France
| |
Collapse
|
30
|
Lin CY, Zhang PH, Chen YJ, Wu CL, Tsai HJ. Conditional Overexpression of rtn4al in Muscle of Adult Zebrafish Displays Defects Similar to Human Amyotrophic Lateral Sclerosis. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2019; 21:52-64. [PMID: 30443836 DOI: 10.1007/s10126-018-9857-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 10/21/2018] [Indexed: 06/09/2023]
Abstract
The protein level of muscle-specific human NogoA is abnormally upregulated in amyotrophic lateral sclerosis (ALS) mice and patients. On the other hand, while the presence of miR-206 in muscle cells delays onset and death in ALS, the relationship between these two phenomena remains unclear. Mammalian NogoA protein, also known as Reticulon 4a (Rtn4a), plays an important role in inhibiting the outgrowth of motor neurons. Our group previously identified zebrafish rtn4al as the target gene of miR-206 and found that knockdown of miR-206 increases rtn4al mRNA and Rtn4al protein in zebrafish embryos. It can be concluded from these results that neurite outgrowth of motor neurons is inhibited by Rtn4a1, which is entirely consistent with overexpression of either human NogoA or zebrafish homolog Rtn4al. Since an animal model able to express NogoA/rtn4al at the mature stage is unavailable, we generated a zebrafish transgenic line, Tg(Zα:TetON-Rtn4al), which conditionally and specifically overexpresses Rtn4al in the muscle tissue. After doxycycline induction, adult zebrafish displayed denervation at neuromuscular junction during the first week, then muscle disintegration and split myofibers during the third week, and, finally, significant weight loss in the sixth week. These results suggest that this zebrafish transgenic line, representing the inducible overexpression of Rtn4a1 in muscle, may provide an alternative animal model with which to study ALS because it exhibits ALS-like phenotype.
Collapse
Affiliation(s)
- Cheng-Yung Lin
- Institute of Biomedical Sciences, Mackay Medical College, No. 46, Sec. 3, Zhongzhen Road, Sanzhi Dist., New Taipei City, 252, Taiwan
| | - Po-Hsiang Zhang
- Institute of Biomedical Sciences, Mackay Medical College, No. 46, Sec. 3, Zhongzhen Road, Sanzhi Dist., New Taipei City, 252, Taiwan
| | - You-Jei Chen
- Institute of Molecular and Cellular Biology, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei, 106, Taiwan
| | - Chia-Lun Wu
- Institute of Molecular and Cellular Biology, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei, 106, Taiwan
| | - Huai-Jen Tsai
- Institute of Biomedical Sciences, Mackay Medical College, No. 46, Sec. 3, Zhongzhen Road, Sanzhi Dist., New Taipei City, 252, Taiwan.
| |
Collapse
|
31
|
Morrice JR, Gregory-Evans CY, Shaw CA. Animal models of amyotrophic lateral sclerosis: A comparison of model validity. Neural Regen Res 2018; 13:2050-2054. [PMID: 30323119 PMCID: PMC6199948 DOI: 10.4103/1673-5374.241445] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Animal models are necessary to investigate the pathogenic features underlying motor neuron degeneration and for therapeutic development in amyotrophic lateral sclerosis (ALS). Measures of model validity allow for a critical interpretation of results from each model and caution from over-interpretation of experimental models. Face and construct validity refer to the similarity in phenotype and the proposed causal factor to the human disease, respectively. More recently developed models are restricted by limited phenotype characterization, yet new models hold promise for novel disease insights, thus highlighting their importance. In this article, we evaluate the features of face and construct validity of our new zebrafish model of environmentally-induced motor neuron degeneration and discuss this in the context of current environmental and genetic ALS models, including C9orf72, mutant Cu/Zn superoxide dismutase 1 and TAR DNA-binding protein 43 mouse and zebrafish models. In this mini-review, we discuss the pros and cons to validity criteria in each model. Our zebrafish model of environmentally-induced motor neuron degeneration displays convincing features of face validity with many hallmarks of ALS-like features, and weakness in construct validity. However, the value of this model may lie in its potential to be more representative of the pathogenic features underlying sporadic ALS cases, where environmental factors may be more likely to be involved in disease etiology than single dominant gene mutations. It may be necessary to compare findings between different strains and species modeling specific genes or environmental factors to confirm findings from ALS animal models and tease out arbitrary strain- and overexpression-specific effects.
Collapse
Affiliation(s)
- Jessica R Morrice
- Experimental Medicine Program, University of British Columbia, Vancouver, Canada
| | - Cheryl Y Gregory-Evans
- Experimental Medicine Program; Department of Ophthalmology and Visual Sciences; Neuroscience Program, University of British Columbia, Vancouver, Canada
| | - Christopher A Shaw
- Experimental Medicine Program; Department of Ophthalmology and Visual Sciences; Neuroscience Program; Department of Pathology, University of British Columbia, Vancouver, Canada
| |
Collapse
|