1
|
O'Donoghue L, Hiebner D, Krishnankutty R, Schoen I, von Kriegsheim A, Smolenski A. Platelet inhibition by hypochlorous acid involves cAMP signalling. Cell Signal 2024; 127:111568. [PMID: 39689749 DOI: 10.1016/j.cellsig.2024.111568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 12/11/2024] [Indexed: 12/19/2024]
Abstract
Hypochlorous acid (HOCl), made by neutrophil-derived myeloperoxidase, has been suggested to inhibit platelets, however, the mechanisms involved have not been described. Here we confirm that HOCl exposure changes platelet morphology and inhibits platelet spreading and aggregation. HOCl effects could be reversed by glutathione suggesting a role for cysteine oxidation. Mass spectrometry-based proteomics of HOCl-exposed platelets revealed oxidised cysteine residues in 37 proteins including adenylate cyclase 6 and Rap1B. Adenylate cyclase is involved in the inhibitory cAMP pathway triggered by endothelium-derived prostacyclin and Rap1 is a small G protein required for integrin αIIbβ3 activation and platelet aggregation. We show that HOCl exposure stimulates cAMP production and phosphorylation of the cAMP-dependent protein kinase substrate VASP in platelets and transfected HEK293T cells. In addition, HOCl inhibited Rap1-GTP formation. These data suggest that HOCl inhibits platelets at least in part through the cAMP pathway and by regulating Rap1. Thus, this study provides new insights into HOCl mediated crosstalk between neutrophils and platelets.
Collapse
Affiliation(s)
- Lorna O'Donoghue
- UCD School of Medicine, UCD Conway Institute, University College Dublin, Dublin 4, Belfield, Ireland; Irish Centre for Vascular Biology, Royal College of Surgeons in Ireland, 123 St Stephen's Green, Dublin D02 YN77, Ireland
| | - Dishon Hiebner
- Irish Centre for Vascular Biology, Royal College of Surgeons in Ireland, 123 St Stephen's Green, Dublin D02 YN77, Ireland; UCD School of Chemical & Bioprocess Engineering, Engineering & Materials Science Centre University College Dublin, Dublin 4, Belfield, Ireland
| | - Roopesh Krishnankutty
- Edinburgh Cancer Research UK Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XR, United Kingdom
| | - Ingmar Schoen
- Irish Centre for Vascular Biology, Royal College of Surgeons in Ireland, 123 St Stephen's Green, Dublin D02 YN77, Ireland; School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, 123 St Stephen's Green, Dublin D02 YN77, Ireland
| | - Alex von Kriegsheim
- Edinburgh Cancer Research UK Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XR, United Kingdom
| | - Albert Smolenski
- UCD School of Medicine, UCD Conway Institute, University College Dublin, Dublin 4, Belfield, Ireland; Irish Centre for Vascular Biology, Royal College of Surgeons in Ireland, 123 St Stephen's Green, Dublin D02 YN77, Ireland.
| |
Collapse
|
2
|
Petrich A, Hwang GM, La Rocca L, Hassan M, Anders-Össwein M, Sonntag-Buck V, Heuser AM, Laketa V, Müller B, Kräusslich HG, Klaus S. Expanding Insights: Harnessing Expansion Microscopy for Super-Resolution Analysis of HIV-1-Cell Interactions. Viruses 2024; 16:1610. [PMID: 39459943 PMCID: PMC11512423 DOI: 10.3390/v16101610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/07/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
Expansion microscopy has recently emerged as an alternative technique for achieving high-resolution imaging of biological structures. Improvements in resolution are achieved by physically expanding samples through embedding in a swellable hydrogel before microscopy. However, expansion microscopy has been rarely used in the field of virology. Here, we evaluate and characterize the ultrastructure expansion microscopy (U-ExM) protocol, which facilitates approximately four-fold sample expansion, enabling the visualization of different post-entry stages of the HIV-1 life cycle, focusing on nuclear events. Our findings demonstrate that U-ExM provides robust sample expansion and preservation across different cell types, including cell-culture-adapted and primary CD4+ T-cells as well as monocyte-derived macrophages, which are known HIV-1 reservoirs. Notably, cellular targets such as nuclear bodies and the chromatin landscape remain well preserved after expansion, allowing for detailed investigation of HIV-1-cell interactions at high resolution. Our data indicate that morphologically distinct HIV-1 capsid assemblies can be differentiated within the nuclei of infected cells and that U-ExM enables detection of targets that are masked in commonly used immunofluorescence protocols. In conclusion, we advocate for U-ExM as a valuable new tool for studying virus-host interactions with enhanced spatial resolution.
Collapse
Affiliation(s)
- Annett Petrich
- Department of Infectious Diseases, Virology, Heidelberg University, 69120 Heidelberg, Germany
| | - Gyu Min Hwang
- Department of Infectious Diseases, Virology, Heidelberg University, 69120 Heidelberg, Germany
| | - Laetitia La Rocca
- Department of Infectious Diseases, Virology, Heidelberg University, 69120 Heidelberg, Germany
| | - Mariam Hassan
- Department of Infectious Diseases, Virology, Heidelberg University, 69120 Heidelberg, Germany
| | - Maria Anders-Össwein
- Department of Infectious Diseases, Virology, Heidelberg University, 69120 Heidelberg, Germany
| | - Vera Sonntag-Buck
- Department of Infectious Diseases, Virology, Heidelberg University, 69120 Heidelberg, Germany
| | - Anke-Mareil Heuser
- Department of Infectious Diseases, Virology, Heidelberg University, 69120 Heidelberg, Germany
| | - Vibor Laketa
- Department of Infectious Diseases, Virology, Heidelberg University, 69120 Heidelberg, Germany
- German Center for Infection Research (DZIF), Partner Site Heidelberg, 69120 Heidelberg, Germany
| | - Barbara Müller
- Department of Infectious Diseases, Virology, Heidelberg University, 69120 Heidelberg, Germany
| | - Hans-Georg Kräusslich
- Department of Infectious Diseases, Virology, Heidelberg University, 69120 Heidelberg, Germany
- German Center for Infection Research (DZIF), Partner Site Heidelberg, 69120 Heidelberg, Germany
| | - Severina Klaus
- Department of Infectious Diseases, Virology, Heidelberg University, 69120 Heidelberg, Germany
| |
Collapse
|
3
|
Hernandez RA, Hearn JI, Bhoopalan V, Hamzeh AR, Kwong K, Diamand K, Davies A, Li FJ, Padmanabhan H, Milne R, Ballard F, Spensberger D, Gardiner EE, Miraghazadeh B, Enders A, Cook MC. L-plastin associated syndrome of immune deficiency and hematologic cytopenia. J Allergy Clin Immunol 2024; 154:767-777. [PMID: 38710235 DOI: 10.1016/j.jaci.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 04/01/2024] [Accepted: 05/01/2024] [Indexed: 05/08/2024]
Abstract
BACKGROUND LCP1 encodes L-plastin, an actin-bundling protein primarily expressed in hematopoietic cells. In mouse and fish models, LCP1 deficiency has been shown to result in hematologic and immune defects. OBJECTIVE This study aimed to determine the nature of a human inborn error of immunity resulting from a novel genetic variant of LCP1. METHODS We performed genetic, protein, and cellular analysis of PBMCs from a kindred with apparent autosomal dominant immune deficiency. We identified a candidate causal mutation in LCP1, which we evaluated by engineering the orthologous mutation in mice and Jurkat cells. RESULTS A splice-site variant in LCP1 segregated with lymphopenia, neutropenia, and thrombocytopenia. The splicing defect resulted in at least 2 aberrant transcripts, producing an in-frame deletion of 24 nucleotides, and a frameshift deletion of exon 8. Cellular analysis of the kindred revealed a proportionate reduction of T and B cells and a mild expansion of transitional B cells. Similarly, mice carrying the orthologous genetic variant exhibited the same in-frame aberrant transcript, reduced expression Lcp1 and gene dose-dependent leukopenia, mild thrombocytopenia, and lymphopenia, with a significant reduction of T-cell populations. Functional analysis revealed that LCP1c740-1G>A confers a defect in platelet development and function with aberrant spreading on collagen. Immunologic analysis revealed defective actin organization in T cells, reduced migration of PBMCs from patients, splenocytes from mutant mice, and a mutant Jurkat cell line in response to CXCL12; impaired germinal center B-cell expansion after immunization; and reduced cytokinesis during T cell proliferation. CONCLUSIONS We describe a unique human hematopoietic defect affecting neutrophils, lymphocytes, and platelets arising from partial LCP1 deficiency.
Collapse
Affiliation(s)
- Raquel A Hernandez
- Division of Immunology and Infectious Diseases, John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - James I Hearn
- Division of Genome Sciences and Cancer, John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Vijay Bhoopalan
- Division of Genome Sciences and Cancer, John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | | | - Kristy Kwong
- Australian Phenomics Facility and John Curtin School of Medical Research, Australian National University, Canberra, Australia; Cambridge Institute of Therapeutic Immunology and Infectious Disease, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Koula Diamand
- Australian Phenomics Facility and John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Ainsley Davies
- Australian Phenomics Facility and John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Fei-Ju Li
- Australian Phenomics Facility and John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Harish Padmanabhan
- Australian Phenomics Facility and John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Rachel Milne
- Australian Phenomics Facility and John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Fiona Ballard
- Division of Immunology and Infectious Diseases, John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Dominik Spensberger
- Australian Phenomics Facility and John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Elizabeth E Gardiner
- Division of Genome Sciences and Cancer, John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Bahar Miraghazadeh
- Division of Immunology and Infectious Diseases, John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Anselm Enders
- Division of Immunology and Infectious Diseases, John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Matthew C Cook
- Division of Immunology and Infectious Diseases, John Curtin School of Medical Research, Australian National University, Canberra, Australia; Canberra Clinical Genomics, Canberra, Australia; Cambridge Institute of Therapeutic Immunology and Infectious Disease, Department of Medicine, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
4
|
Liu J, Tan YY, Zheng W, Wang Y, Ju LA, Su QP. Nanoscale insights into hematology: super-resolved imaging on blood cell structure, function, and pathology. J Nanobiotechnology 2024; 22:363. [PMID: 38910248 PMCID: PMC11194919 DOI: 10.1186/s12951-024-02605-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/30/2024] [Indexed: 06/25/2024] Open
Abstract
Fluorescence nanoscopy, also known as super-resolution microscopy, has transcended the conventional resolution barriers and enabled visualization of biological samples at nanometric resolutions. A series of super-resolution techniques have been developed and applied to investigate the molecular distribution, organization, and interactions in blood cells, as well as the underlying mechanisms of blood-cell-associated diseases. In this review, we provide an overview of various fluorescence nanoscopy technologies, outlining their current development stage and the challenges they are facing in terms of functionality and practicality. We specifically explore how these innovations have propelled forward the analysis of thrombocytes (platelets), erythrocytes (red blood cells) and leukocytes (white blood cells), shedding light on the nanoscale arrangement of subcellular components and molecular interactions. We spotlight novel biomarkers uncovered by fluorescence nanoscopy for disease diagnosis, such as thrombocytopathies, malignancies, and infectious diseases. Furthermore, we discuss the technological hurdles and chart out prospective avenues for future research directions. This review aims to underscore the significant contributions of fluorescence nanoscopy to the field of blood cell analysis and disease diagnosis, poised to revolutionize our approach to exploring, understanding, and managing disease at the molecular level.
Collapse
Affiliation(s)
- Jinghan Liu
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Yuping Yolanda Tan
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, 2006, Australia
- Heart Research Institute, Newtown, NSW, 2042, Australia
| | - Wen Zheng
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Yao Wang
- School of Biomedical Engineering, The University of Sydney, Darlington, NSW, 2008, Australia
| | - Lining Arnold Ju
- School of Biomedical Engineering, The University of Sydney, Darlington, NSW, 2008, Australia
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, 2006, Australia
- Heart Research Institute, Newtown, NSW, 2042, Australia
| | - Qian Peter Su
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia.
- Heart Research Institute, Newtown, NSW, 2042, Australia.
| |
Collapse
|
5
|
Mehl J, Farahani SK, Brauer E, Klaus‐Bergmann A, Thiele T, Ellinghaus A, Bartels‐Klein E, Koch K, Schmidt‐Bleek K, Petersen A, Gerhardt H, Vogel V, Duda GN. External Mechanical Stability Regulates Hematoma Vascularization in Bone Healing Rather than Endothelial YAP/TAZ Mechanotransduction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307050. [PMID: 38273642 PMCID: PMC10987120 DOI: 10.1002/advs.202307050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/21/2023] [Indexed: 01/27/2024]
Abstract
Bone fracture healing is regulated by mechanobiological cues. Both, extracellular matrix (ECM) deposition and microvascular assembly determine the dynamics of the regenerative processes. Mechanical instability as by inter-fragmentary shear or compression is known to influence early ECM formation and wound healing. However, it remains unclear how these external cues shape subsequent ECM and microvascular network assembly. As transcriptional coactivators, the mechanotransducers yes-associated protein 1 (YAP)/transcriptional coactivator with PDZ-binding motif (TAZ) translate physical cues into downstream signaling events, yet their role in sprouting angiogenesis into the hematoma after injury is unknown. Using bone healing as model system for scar-free regeneration, the role of endothelial YAP/TAZ in combination with tuning the extrinsic mechanical stability via fracture fixation is investigated. Extrinsically imposed shear across the gap delayed hematoma remodeling and shaped the morphology of early collagen fiber orientations and microvascular networks, suggesting that enhanced shear increased the nutrient exchange in the hematoma. In contrast, endothelial YAP/TAZ deletion has little impact on the overall vascularization of the fracture gap, yet slightly increases the collagen fiber deposition under semi-rigid fixation. Together, these data provide novel insights into the respective roles of endothelial YAP/TAZ and extrinsic mechanical cues in orchestrating the process of bone regeneration.
Collapse
Affiliation(s)
- Julia Mehl
- Julius Wolff InstituteBerlin Institute of Health at Charité – Universitätsmedizin Berlin13353BerlinGermany
- Berlin Institute of Health Center for Regenerative TherapiesBerlin Institute of Health at Charité – Universitätsmedizin Berlin13353BerlinGermany
- Laboratory of Applied MechanobiologyDepartment of Health Sciences and TechnologyETH ZurichZurich8092Switzerland
| | - Saeed Khomeijani Farahani
- Julius Wolff InstituteBerlin Institute of Health at Charité – Universitätsmedizin Berlin13353BerlinGermany
- Berlin Institute of Health Center for Regenerative TherapiesBerlin Institute of Health at Charité – Universitätsmedizin Berlin13353BerlinGermany
| | - Erik Brauer
- Julius Wolff InstituteBerlin Institute of Health at Charité – Universitätsmedizin Berlin13353BerlinGermany
- Berlin Institute of Health Center for Regenerative TherapiesBerlin Institute of Health at Charité – Universitätsmedizin Berlin13353BerlinGermany
| | - Alexandra Klaus‐Bergmann
- Integrative Vascular Biology LaboratoryMax‐Delbrück‐Center for Molecular Medicine (MDC) in the Helmholtz Association13125BerlinGermany
- German Center for Cardiovascular Research (DZHK)Partnersite Berlin10785BerlinGermany
| | - Tobias Thiele
- Julius Wolff InstituteBerlin Institute of Health at Charité – Universitätsmedizin Berlin13353BerlinGermany
- Berlin Institute of Health Center for Regenerative TherapiesBerlin Institute of Health at Charité – Universitätsmedizin Berlin13353BerlinGermany
| | - Agnes Ellinghaus
- Julius Wolff InstituteBerlin Institute of Health at Charité – Universitätsmedizin Berlin13353BerlinGermany
- Berlin Institute of Health Center for Regenerative TherapiesBerlin Institute of Health at Charité – Universitätsmedizin Berlin13353BerlinGermany
| | - Eireen Bartels‐Klein
- Integrative Vascular Biology LaboratoryMax‐Delbrück‐Center for Molecular Medicine (MDC) in the Helmholtz Association13125BerlinGermany
- German Center for Cardiovascular Research (DZHK)Partnersite Berlin10785BerlinGermany
| | - Katharina Koch
- Integrative Vascular Biology LaboratoryMax‐Delbrück‐Center for Molecular Medicine (MDC) in the Helmholtz Association13125BerlinGermany
- German Center for Cardiovascular Research (DZHK)Partnersite Berlin10785BerlinGermany
| | - Katharina Schmidt‐Bleek
- Julius Wolff InstituteBerlin Institute of Health at Charité – Universitätsmedizin Berlin13353BerlinGermany
- Berlin Institute of Health Center for Regenerative TherapiesBerlin Institute of Health at Charité – Universitätsmedizin Berlin13353BerlinGermany
| | - Ansgar Petersen
- Julius Wolff InstituteBerlin Institute of Health at Charité – Universitätsmedizin Berlin13353BerlinGermany
- Berlin Institute of Health Center for Regenerative TherapiesBerlin Institute of Health at Charité – Universitätsmedizin Berlin13353BerlinGermany
| | - Holger Gerhardt
- Integrative Vascular Biology LaboratoryMax‐Delbrück‐Center for Molecular Medicine (MDC) in the Helmholtz Association13125BerlinGermany
- German Center for Cardiovascular Research (DZHK)Partnersite Berlin10785BerlinGermany
| | - Viola Vogel
- Laboratory of Applied MechanobiologyDepartment of Health Sciences and TechnologyETH ZurichZurich8092Switzerland
| | - Georg N. Duda
- Julius Wolff InstituteBerlin Institute of Health at Charité – Universitätsmedizin Berlin13353BerlinGermany
- Berlin Institute of Health Center for Regenerative TherapiesBerlin Institute of Health at Charité – Universitätsmedizin Berlin13353BerlinGermany
| |
Collapse
|
6
|
Kenny M, Pollitt AY, Patil S, Hiebner DW, Smolenski A, Lakic N, Fisher R, Alsufyani R, Lickert S, Vogel V, Schoen I. Contractility defects hinder glycoprotein VI-mediated platelet activation and affect platelet functions beyond clot contraction. Res Pract Thromb Haemost 2024; 8:102322. [PMID: 38379711 PMCID: PMC10877441 DOI: 10.1016/j.rpth.2024.102322] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 12/23/2023] [Accepted: 01/03/2024] [Indexed: 02/22/2024] Open
Abstract
Background Active and passive biomechanical properties of platelets contribute substantially to thrombus formation. Actomyosin contractility drives clot contraction required for stabilizing the hemostatic plug. Impaired contractility results in bleeding but is difficult to detect using platelet function tests. Objectives To determine how diminished myosin activity affects platelet functions, including and beyond clot contraction. Methods Using the myosin IIA-specific pharmacologic inhibitor blebbistatin, we modulated myosin activity in platelets from healthy donors and systematically characterized platelet responses at various levels of inhibition by interrogating distinct platelet functions at each stage of thrombus formation using a range of complementary assays. Results Partial myosin IIA inhibition neither affected platelet von Willebrand factor interactions under arterial shear nor platelet spreading and cytoskeletal rearrangements on fibrinogen. However, it impacted stress fiber formation and the nanoarchitecture of cell-matrix adhesions, drastically reducing and limiting traction forces. Higher blebbistatin concentrations impaired platelet adhesion under flow, altered mechanosensing at lamellipodia edges, and eliminated traction forces without affecting platelet spreading, α-granule secretion, or procoagulant platelet formation. Unexpectedly, myosin IIA inhibition reduced calcium influx, dense granule secretion, and platelet aggregation downstream of glycoprotein (GP)VI and limited the redistribution of GPVI on the cell membrane, whereas aggregation induced by adenosine diphosphate or arachidonic acid was unaffected. Conclusion Our findings highlight the importance of both active contractile and passive crosslinking roles of myosin IIA in the platelet cytoskeleton. They support the hypothesis that highly contractile platelets are needed for hemostasis and further suggest a supportive role for myosin IIA in GPVI signaling.
Collapse
Affiliation(s)
- Martin Kenny
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
- Irish Centre for Vascular Biology, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Alice Y. Pollitt
- School of Biological Sciences, University of Reading, Reading, United Kingdom
| | - Smita Patil
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
- Irish Centre for Vascular Biology, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Dishon W. Hiebner
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
- Irish Centre for Vascular Biology, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Albert Smolenski
- School of Medicine, Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| | - Natalija Lakic
- School of Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Robert Fisher
- School of Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Reema Alsufyani
- School of Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Sebastian Lickert
- Department of Health Sciences and Technologies, ETH Zurich, Zurich, Switzerland
| | - Viola Vogel
- Department of Health Sciences and Technologies, ETH Zurich, Zurich, Switzerland
| | - Ingmar Schoen
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
- Irish Centre for Vascular Biology, Royal College of Surgeons in Ireland, Dublin, Ireland
| |
Collapse
|
7
|
Abstract
PURPOSE OF REVIEW This review highlights how the perception of platelet function is evolving based on recent insights into platelet mechanobiology. RECENT FINDINGS The mechanosensitive ion channel Piezo1 mediates activation of free-flowing platelets under conditions of flow acceleration through mechanisms independent of adhesion receptors and classical activation pathways. Interference with the initiation of platelet migration or with the phenotypic switch of migrating platelets to a procoagulant state aggravates inflammatory bleeding. Mechanosensing of biochemical and biophysical microenvironmental cues during thrombus formation feed into platelet contractile force generation. Measurements of single platelet contraction and bulk clot retraction show promise to identify individuals at risk for hemorrhage. SUMMARY New findings unravel novel mechanotransduction pathways and effector functions in platelets, establishing mechanobiology as a pivotal component of platelet function. These insights highlight limitations of existing treatments and offer new potential therapeutic approaches and diagnostic avenues based on mechanobiological principles. Further extensive research is required to distinguish between core hemostatic and pathological mechanisms influenced by platelet mechanosensing.
Collapse
Affiliation(s)
- Ingmar Schoen
- School of Pharmacy and Biomolecular Sciences
- Irish Centre for Vascular Biology
| | - Martin Kenny
- UCD Conway SPHERE Research Group
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | - Smita Patil
- School of Pharmacy and Biomolecular Sciences
- Irish Centre for Vascular Biology
| |
Collapse
|
8
|
Pluthero FG, Kahr WHA. Evaluation of human platelet granules by structured illumination laser fluorescence microscopy. Platelets 2023; 34:2157808. [PMID: 36572649 DOI: 10.1080/09537104.2022.2157808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Many roles of human platelets in health and disease are linked to their ability to transport and secrete a variety of small molecules and proteins carried in dense (δ-) and α-granules. Determination of granule number and content is important for diagnosis of platelet disorders and for studies of platelet structure, function, and development. We have optimized methods for detection and localization of platelet proteins via antibody and lectin staining, imaging via structured illumination laser fluorescence microscopy (SIM), and three-dimension (3D) image analysis. The methods were validated via comparison with published studies based on electron microscopy and high-resolution fluorescence microscopy. The α-granule cargo proteins thrombospondin-1 (TSP1), osteonectin (SPARC), fibrinogen (FGN), and Von Willebrand factor (VWF) were localized within the granule lumen, as was the proteoglycan serglycin (SRGN). Colocalization analysis indicates that staining with fluorescently labeled wheat germ agglutinin (WGA) allows detection of α-granules as effectively as immunostaining for cargo proteins, with the advantage of not requiring antibodies. RAB27B was observed to be concentrated at dense granules, allowing them to be counted via visual scoring and object analysis. We present a workflow for counting dense and α-granules via object analysis of 3D SIM images of platelets stained for RAB27B and with WGA.Abbreviation: SIM: structured illumination microscopy; WGA: wheat germ agglutinin; FGN: fibrinogen; TSP1: thrombospondin 1; ER: endoplasmic reticulum.
Collapse
Affiliation(s)
- Fred G Pluthero
- Cell Biology Program, Research Institute, Hospital for Sick Children, Toronto, ON, Canada
| | - Walter H A Kahr
- Cell Biology Program, Research Institute, Hospital for Sick Children, Toronto, ON, Canada.,Department of Biochemistry, University of Toronto, Toronto, ON, Canada.,Division of Haematology/Oncology, Department of Paediatrics, University of Toronto and The Hospital for Sick Children, Toronto, ON, Canada
| |
Collapse
|
9
|
Grichine A, Jacob S, Eckly A, Villaret J, Joubert C, Appaix F, Pezet M, Ribba AS, Denarier E, Mazzega J, Rinckel JY, Lafanechère L, Elena-Herrmann B, Rowley JW, Sadoul K. The fate of mitochondria during platelet activation. Blood Adv 2023; 7:6290-6302. [PMID: 37624769 PMCID: PMC10589785 DOI: 10.1182/bloodadvances.2023010423] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Blood platelets undergo several successive motor-driven reorganizations of the cytoskeleton when they are recruited to an injured part of a vessel. These reorganizations take place during the platelet activation phase, the spreading process on the injured vessel or between fibrin fibers of the forming clot, and during clot retraction. All these steps require a lot of energy, especially the retraction of the clot when platelets develop strong forces similar to those of muscle cells. Platelets can produce energy through glycolysis and mitochondrial respiration. However, although resting platelets have only 5 to 8 individual mitochondria, they produce adenosine triphosphate predominantly via oxidative phosphorylation. Activated, spread platelets show an increase in size compared with resting platelets, and the question arises as to where the few mitochondria are located in these larger platelets. Using expansion microscopy, we show that the number of mitochondria per platelet is increased in spread platelets. Live imaging and focused ion beam-scanning electron microscopy suggest that a mitochondrial fission event takes place during platelet activation. Fission is Drp1 dependent because Drp1-deficient platelets have fused mitochondria. In nucleated cells, mitochondrial fission is associated with a shift to a glycolytic phenotype, and using clot retraction assays, we show that platelets have a more glycolytic energy production during clot retraction and that Drp1-deficient platelets show a defect in clot retraction.
Collapse
Affiliation(s)
- Alexei Grichine
- INSERM U1209, Centre National de la Recherche Scientifique Unité Mixed de Recherche 5309, Institute for Advanced Biosciences, University Grenoble Alpes, Grenoble, France
| | - Shancy Jacob
- Molecular Medicine Program, University of Utah, Salt Lake City, UT
| | - Anita Eckly
- INSERM, EFS Grand Est, Biologie et Pharmacologie des Plaquettes Sanguines Unité Mixed de Recherche-S 1255, Fédération de Médecine Translationnelle de Strasbourg, University of Strasbourg, Strasbourg, France
| | - Joran Villaret
- INSERM U1209, Centre National de la Recherche Scientifique Unité Mixed de Recherche 5309, Institute for Advanced Biosciences, University Grenoble Alpes, Grenoble, France
| | - Clotilde Joubert
- INSERM U1209, Centre National de la Recherche Scientifique Unité Mixed de Recherche 5309, Institute for Advanced Biosciences, University Grenoble Alpes, Grenoble, France
| | - Florence Appaix
- INSERM U1209, Centre National de la Recherche Scientifique Unité Mixed de Recherche 5309, Institute for Advanced Biosciences, University Grenoble Alpes, Grenoble, France
| | - Mylène Pezet
- INSERM U1209, Centre National de la Recherche Scientifique Unité Mixed de Recherche 5309, Institute for Advanced Biosciences, University Grenoble Alpes, Grenoble, France
| | - Anne-Sophie Ribba
- INSERM U1209, Centre National de la Recherche Scientifique Unité Mixed de Recherche 5309, Institute for Advanced Biosciences, University Grenoble Alpes, Grenoble, France
| | - Eric Denarier
- INSERM U1216, Commissariat à l'Energie Atomique, Grenoble Institute of Neuroscience, University Grenoble Alpes, Grenoble, France
| | - Jacques Mazzega
- INSERM U1209, Centre National de la Recherche Scientifique Unité Mixed de Recherche 5309, Institute for Advanced Biosciences, University Grenoble Alpes, Grenoble, France
| | - Jean-Yves Rinckel
- INSERM, EFS Grand Est, Biologie et Pharmacologie des Plaquettes Sanguines Unité Mixed de Recherche-S 1255, Fédération de Médecine Translationnelle de Strasbourg, University of Strasbourg, Strasbourg, France
| | - Laurence Lafanechère
- INSERM U1209, Centre National de la Recherche Scientifique Unité Mixed de Recherche 5309, Institute for Advanced Biosciences, University Grenoble Alpes, Grenoble, France
| | - Bénédicte Elena-Herrmann
- INSERM U1209, Centre National de la Recherche Scientifique Unité Mixed de Recherche 5309, Institute for Advanced Biosciences, University Grenoble Alpes, Grenoble, France
| | - Jesse W. Rowley
- Molecular Medicine Program, University of Utah, Salt Lake City, UT
| | - Karin Sadoul
- INSERM U1209, Centre National de la Recherche Scientifique Unité Mixed de Recherche 5309, Institute for Advanced Biosciences, University Grenoble Alpes, Grenoble, France
| |
Collapse
|
10
|
Mollica MY, Beussman KM, Kandasamy A, Rodríguez LM, Morales FR, Chen J, Manohar K, Del Álamo JC, López JA, Thomas WE, Sniadecki NJ. Distinct platelet F-actin patterns and traction forces on von Willebrand factor versus fibrinogen. Biophys J 2023; 122:3738-3748. [PMID: 37434354 PMCID: PMC10541491 DOI: 10.1016/j.bpj.2023.07.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/27/2023] [Accepted: 07/07/2023] [Indexed: 07/13/2023] Open
Abstract
Upon vascular injury, platelets form a hemostatic plug by binding to the subendothelium and to each other. Platelet-to-matrix binding is initially mediated by von Willebrand factor (VWF) and platelet-to-platelet binding is mediated mainly by fibrinogen and VWF. After binding, the actin cytoskeleton of a platelet drives its contraction, generating traction forces that are important to the cessation of bleeding. Our understanding of the relationship between adhesive environment, F-actin morphology, and traction forces is limited. Here, we examined F-actin morphology of platelets attached to surfaces coated with fibrinogen and VWF. We identified distinct F-actin patterns induced by these protein coatings and found that these patterns were identifiable into three classifications via machine learning: solid, nodular, and hollow. We observed that traction forces for platelets were significantly higher on VWF than on fibrinogen coatings and these forces varied by F-actin pattern. In addition, we analyzed the F-actin orientation in platelets and noted that their filaments were more circumferential when on fibrinogen coatings and having a hollow F-actin pattern, while they were more radial on VWF and having a solid F-actin pattern. Finally, we noted that subcellular localization of traction forces corresponded to protein coating and F-actin pattern: VWF-bound, solid platelets had higher forces at their central region while fibrinogen-bound, hollow platelets had higher forces at their periphery. These distinct F-actin patterns on fibrinogen and VWF and their differences in F-actin orientation, force magnitude, and force localization could have implications in hemostasis, thrombus architecture, and venous versus arterial thrombosis.
Collapse
Affiliation(s)
- Molly Y Mollica
- Department of Bioengineering, University of Washington, Seattle, Washington; Division of Hematology, School of Medicine, University of Washington, Seattle, Washington; Bloodworks Research Institute, Seattle, Washington; Department of Mechanical Engineering, University of Maryland, Baltimore County, Baltimore, Maryland.
| | - Kevin M Beussman
- Department of Mechanical Engineering, University of Washington, Seattle, Washington; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington
| | - Adithan Kandasamy
- Department of Mechanical Engineering, University of Washington, Seattle, Washington; Center for Cardiovascular Biology, University of Washington, Seattle, Washington
| | | | | | - Junmei Chen
- Bloodworks Research Institute, Seattle, Washington
| | - Krithika Manohar
- Department of Mechanical Engineering, University of Washington, Seattle, Washington
| | - Juan C Del Álamo
- Department of Mechanical Engineering, University of Washington, Seattle, Washington; Center for Cardiovascular Biology, University of Washington, Seattle, Washington
| | - José A López
- Division of Hematology, School of Medicine, University of Washington, Seattle, Washington; Bloodworks Research Institute, Seattle, Washington
| | - Wendy E Thomas
- Department of Bioengineering, University of Washington, Seattle, Washington
| | - Nathan J Sniadecki
- Department of Bioengineering, University of Washington, Seattle, Washington; Department of Mechanical Engineering, University of Washington, Seattle, Washington; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington; Center for Cardiovascular Biology, University of Washington, Seattle, Washington; Resuscitation Engineering Science Unit, University of Washington, Seattle, Washington; Molecular Engineering and Science Institute, University of Washington, Seattle, Washington; Department of Lab Medicine and Pathology, University of Washington, Seattle, Washington.
| |
Collapse
|
11
|
Zelená A, Blumberg J, Probst D, Gerasimaitė R, Lukinavičius G, Schwarz US, Köster S. Force generation in human blood platelets by filamentous actomyosin structures. Biophys J 2023; 122:3340-3353. [PMID: 37475214 PMCID: PMC10465724 DOI: 10.1016/j.bpj.2023.07.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 02/11/2023] [Accepted: 07/17/2023] [Indexed: 07/22/2023] Open
Abstract
Blood platelets are central elements of the blood clotting response after wounding. Upon vessel damage, they bind to the surrounding matrix and contract the forming thrombus, thus helping to restore normal blood circulation. The hemostatic function of platelets is directly connected to their mechanics and cytoskeletal organization. The reorganization of the platelet cytoskeleton during spreading occurs within minutes and leads to the formation of contractile actomyosin bundles, but it is not known if there is a direct correlation between the emerging actin structures and the force field that is exerted to the environment. In this study, we combine fluorescence imaging of the actin structures with simultaneous traction force measurements in a time-resolved manner. In addition, we image the final states with superresolution microscopy. We find that both the force fields and the cell shapes have clear geometrical patterns defined by stress fibers. Force generation is localized in a few hotspots, which appear early during spreading, and, in the mature state, anchor stress fibers in focal adhesions. Moreover, we show that, for a gel stiffness in the physiological range, force generation is a very robust mechanism and we observe no systematic dependence on the amount of added thrombin in solution or fibrinogen coverage on the substrate, suggesting that force generation after platelet activation is a threshold phenomenon that ensures reliable thrombus contraction in diverse environments.
Collapse
Affiliation(s)
- Anna Zelená
- Institute for X-Ray Physics, University of Göttingen, Göttingen, Germany
| | - Johannes Blumberg
- Institute for Theoretical Physics, University of Heidelberg, Heidelberg, Germany; BioQuant-Center for Quantitative Biology, University of Heidelberg, Heidelberg, Germany
| | - Dimitri Probst
- Institute for Theoretical Physics, University of Heidelberg, Heidelberg, Germany; BioQuant-Center for Quantitative Biology, University of Heidelberg, Heidelberg, Germany
| | - Rūta Gerasimaitė
- Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | | | - Ulrich S Schwarz
- Institute for Theoretical Physics, University of Heidelberg, Heidelberg, Germany; BioQuant-Center for Quantitative Biology, University of Heidelberg, Heidelberg, Germany.
| | - Sarah Köster
- Institute for X-Ray Physics, University of Göttingen, Göttingen, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany; Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany.
| |
Collapse
|
12
|
Beussman KM, Mollica MY, Leonard A, Miles J, Hocter J, Song Z, Stolla M, Han SJ, Emery A, Thomas WE, Sniadecki NJ. Black dots: High-yield traction force microscopy reveals structural factors contributing to platelet forces. Acta Biomater 2023; 163:302-311. [PMID: 34781024 PMCID: PMC9098698 DOI: 10.1016/j.actbio.2021.11.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 10/12/2021] [Accepted: 11/10/2021] [Indexed: 01/03/2023]
Abstract
Measuring the traction forces produced by cells provides insight into their behavior and physiological function. Here, we developed a technique (dubbed 'black dots') that microcontact prints a fluorescent micropattern onto a flexible substrate to measure cellular traction forces without constraining cell shape or needing to detach the cells. To demonstrate our technique, we assessed human platelets, which can generate a large range of forces within a population. We find platelets that exert more force have more spread area, are more circular, and have more uniformly distributed F-actin filaments. As a result of the high yield of data obtainable by this technique, we were able to evaluate multivariate mixed effects models with interaction terms and conduct a clustering analysis to identify clusters within our data. These statistical techniques demonstrated a complex relationship between spread area, circularity, F-actin dispersion, and platelet force, including cooperative effects that significantly associate with platelet traction forces. STATEMENT OF SIGNIFICANCE: Cells produce contractile forces during division, migration, or wound healing. Measuring cellular forces provides insight into their health, behavior, and function. We developed a technique that calculates cellular forces by seeding cells onto a pattern and quantifying how much each cell displaces the pattern. This technique is capable of measuring hundreds of cells without needing to detach them. Using this technique to evaluate human platelets, we find that platelets exerting more force tend to have more spread area, are more circular in shape, and have more uniformly distributed cytoskeletal filaments. Due to our high yield of data, we were able to apply statistical techniques that revealed combinatorial effects between these factors.
Collapse
Affiliation(s)
- Kevin M Beussman
- Department of Mechanical Engineering, University of Washington, Seattle, WA, United States
| | - Molly Y Mollica
- Department of Bioengineering, University of Washington, Seattle, WA, United States
| | - Andrea Leonard
- Department of Mechanical Engineering, University of Washington, Seattle, WA, United States
| | - Jeffrey Miles
- Bloodworks Northwest Research Institute, Seattle, WA
| | - John Hocter
- Department of Biostatistics, University of Washington, Seattle, WA, United States
| | - Zizhen Song
- School of Computer Science & Engineering, University of Washington, Seattle, WA, United States
| | - Moritz Stolla
- Bloodworks Northwest Research Institute, Seattle, WA; Division of Hematology, Department of Medicine, University of Washington, Seattle, WA, United States
| | - Sangyoon J Han
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI, United States
| | - Ashley Emery
- Department of Mechanical Engineering, University of Washington, Seattle, WA, United States
| | - Wendy E Thomas
- Department of Bioengineering, University of Washington, Seattle, WA, United States
| | - Nathan J Sniadecki
- Department of Mechanical Engineering, University of Washington, Seattle, WA, United States; Department of Bioengineering, University of Washington, Seattle, WA, United States; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, United States; Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA, United States; Resuscitation Engineering Science Unit (RESCU), University of Washington, Seattle, WA, United States.
| |
Collapse
|
13
|
Alderfer S, Sun J, Tahtamouni L, Prasad A. Morphological signatures of actin organization in single cells accurately classify genetic perturbations using CNNs with transfer learning. SOFT MATTER 2022; 18:8342-8354. [PMID: 36222484 DOI: 10.1039/d2sm01000c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The actin cytoskeleton plays essential roles in countless cell processes, from cell division to migration to signaling. In cancer cells, cytoskeletal dynamics, cytoskeletal filament organization, and overall cell morphology are known to be altered substantially. We hypothesize that actin fiber organization and cell shape may carry specific signatures of genetic or signaling perturbations. We used convolutional neural networks (CNNs) on a small fluorescence microscopy image dataset of retinal pigment epithelial (RPE) cells and triple-negative breast cancer (TNBC) cells for identifying morphological signatures in cancer cells. Using a transfer learning approach, CNNs could be trained to accurately distinguish between normal and oncogenically transformed RPE cells with an accuracy of about 95% or better at the single cell level. Furthermore, CNNs could distinguish transformed cell lines differing by an oncogenic mutation from each other and could also detect knockdown of cofilin in TNBC cells, indicating that each single oncogenic mutation or cytoskeletal perturbation produces a unique signature in actin morphology. Application of the Local Interpretable Model-Agnostic Explanations (LIME) method for visually interpreting the CNN results revealed features of the global actin structure relevant for some cells and classification tasks. Interestingly, many of these features were supported by previous biological observation. Actin fiber organization is thus a sensitive marker for cell identity, and identification of its perturbations could be very useful for assaying cell phenotypes, including disease states.
Collapse
Affiliation(s)
- Sydney Alderfer
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, CO 80523, USA.
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80523, USA
| | - Jiangyu Sun
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Lubna Tahtamouni
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
- Department of Biology and Biotechnology, The Hashemite University, Zarqa, Jordan
| | - Ashok Prasad
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, CO 80523, USA.
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
14
|
Kenny M, Stamboroski S, Taher R, Brüggemann D, Schoen I. Nanofiber Topographies Enhance Platelet-Fibrinogen Scaffold Interactions. Adv Healthc Mater 2022; 11:e2200249. [PMID: 35526111 PMCID: PMC11469041 DOI: 10.1002/adhm.202200249] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 04/05/2022] [Indexed: 11/07/2022]
Abstract
The initial contact with blood and its components, including plasma proteins and platelets, directs the body's response to foreign materials. Natural scaffolds of extracellular matrix or fibrin contain fibrils with nanoscale dimensions, but how platelets specifically respond to the topography and architecture of fibrous materials is still incompletely understood. Here, planar and nanofiber scaffolds are fabricated from native fibrinogen to characterize the morphology of adherent platelets and activation markers for phosphatidylserine exposure and α-granule secretion by confocal fluorescence microscopy and scanning electron microscopy. Different fibrinogen topographies equally support the spreading and α-granule secretion of washed platelets. In contrast, preincubation of the scaffolds with plasma diminishes platelet spreading on planar fibrinogen surfaces but not on nanofibers. The data show that the enhanced interactions of platelets with nanofibers result from a higher locally accessible surface area, effectively increasing the ligand density for integrin-mediated responses. Overall, fibrinogen nanofibers direct platelets toward robust adhesion formation and α-granule secretion while minimizing their procoagulant activity. Similar results on fibrinogen-coated polydimethylsiloxane substrates with micrometer-sized 3D features suggest that surface topography could be used more generally to steer blood-materials interactions on different length scales for enhancing the initial wound healing steps.
Collapse
Affiliation(s)
- Martin Kenny
- School of Pharmacy and Biomolecular SciencesRoyal College of Surgeons in Ireland (RCSI)123 St Stephen's GreenDublinD02 YN77Ireland
- Irish Centre for Vascular BiologyRoyal College of Surgeons in Ireland (RCSI)123 St Stephen's GreenDublinD02 YN77Ireland
| | - Stephani Stamboroski
- Institute for BiophysicsUniversity of BremenOtto‐Hahn‐Allee 1Bremen28359Germany
- Fraunhofer Institute for Manufacturing Technology and Advanced Materials (IFAM)Wiener Strasse 12Bremen28359Germany
| | - Reem Taher
- School of Pharmacy and Biomolecular SciencesRoyal College of Surgeons in Ireland (RCSI)123 St Stephen's GreenDublinD02 YN77Ireland
| | - Dorothea Brüggemann
- Institute for BiophysicsUniversity of BremenOtto‐Hahn‐Allee 1Bremen28359Germany
- MAPEX Center for Materials and ProcessesUniversity of BremenBremen28359Germany
| | - Ingmar Schoen
- School of Pharmacy and Biomolecular SciencesRoyal College of Surgeons in Ireland (RCSI)123 St Stephen's GreenDublinD02 YN77Ireland
- Irish Centre for Vascular BiologyRoyal College of Surgeons in Ireland (RCSI)123 St Stephen's GreenDublinD02 YN77Ireland
| |
Collapse
|
15
|
Wright JR, Jones S, Parvathy S, Kaczmarek LK, Forsythe I, Farndale RW, Gibbins JM, Mahaut-Smith MP. The voltage-gated K + channel Kv1.3 modulates platelet motility and α 2β 1 integrin-dependent adhesion to collagen. Platelets 2022; 33:451-461. [PMID: 34348571 PMCID: PMC8935947 DOI: 10.1080/09537104.2021.1942818] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/03/2021] [Accepted: 06/03/2021] [Indexed: 12/13/2022]
Abstract
Kv1.3 is a voltage-gated K+-selective channel with roles in immunity, insulin-sensitivity, neuronal excitability and olfaction. Despite being one of the largest ionic conductances of the platelet surface membrane, its contribution to platelet function is poorly understood. Here we show that Kv1.3-deficient platelets display enhanced ADP-evoked platelet aggregation and secretion, and an increased surface expression of platelet integrin αIIb. In contrast, platelet adhesion and thrombus formation in vitro under arterial shear conditions on surfaces coated with collagen were reduced for samples from Kv1.3-/- compared to wild type mice. Use of collagen-mimetic peptides revealed a specific defect in the engagement with α2β1. Kv1.3-/- platelets developed significantly fewer, and shorter, filopodia than wild type platelets during adhesion to collagen fibrils. Kv1.3-/- mice displayed no significant difference in thrombus formation within cremaster muscle arterioles using a laser-induced injury model, thus other pro-thrombotic pathways compensate in vivo for the adhesion defect observed in vitro. This may include the increased platelet counts of Kv1.3-/- mice, due in part to a prolonged lifespan. The ability of Kv1.3 to modulate integrin-dependent platelet adhesion has important implications for understanding its contribution to normal physiological platelet function in addition to its reported roles in auto-immune diseases and thromboinflammatory models of stroke.
Collapse
Affiliation(s)
- Joy R Wright
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
| | - Sarah Jones
- Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
- Department of Life Sciences, Manchester Metropolitan University, Manchester, UK
| | - Sasikumar Parvathy
- Institute for Cardiovascular and Metabolic Research, University of Reading, Reading, UK
| | - Leonard K Kaczmarek
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, USA
| | - Ian Forsythe
- Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, UK
| | | | - Jonathan M Gibbins
- Institute for Cardiovascular and Metabolic Research, University of Reading, Reading, UK
| | | |
Collapse
|
16
|
Kempster C, Butler G, Kuznecova E, Taylor KA, Kriek N, Little G, Sowa MA, Sage T, Johnson LJ, Gibbins JM, Pollitt AY. Fully automated platelet differential interference contrast image analysis via deep learning. Sci Rep 2022; 12:4614. [PMID: 35301400 PMCID: PMC8931011 DOI: 10.1038/s41598-022-08613-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 03/08/2022] [Indexed: 11/12/2022] Open
Abstract
Platelets mediate arterial thrombosis, a leading cause of myocardial infarction and stroke. During injury, platelets adhere and spread over exposed subendothelial matrix substrates of the damaged blood vessel wall. The mechanisms which govern platelet activation and their interaction with a range of substrates are therefore regularly investigated using platelet spreading assays. These assays often use differential interference contrast (DIC) microscopy to assess platelet morphology and analysis performed using manual annotation. Here, a convolutional neural network (CNN) allowed fully automated analysis of platelet spreading assays captured by DIC microscopy. The CNN was trained using 120 generalised training images. Increasing the number of training images increases the mean average precision of the CNN. The CNN performance was compared to six manual annotators. Significant variation was observed between annotators, highlighting bias when manual analysis is performed. The CNN effectively analysed platelet morphology when platelets spread over a range of substrates (CRP-XL, vWF and fibrinogen), in the presence and absence of inhibitors (dasatinib, ibrutinib and PRT-060318) and agonist (thrombin), with results consistent in quantifying spread platelet area which is comparable to published literature. The application of a CNN enables, for the first time, automated analysis of platelet spreading assays captured by DIC microscopy.
Collapse
Affiliation(s)
- Carly Kempster
- School of Biological Sciences, University of Reading, Reading, UK
| | - George Butler
- School of Biological Sciences, University of Reading, Reading, UK.,The Brady Urological Institute, Johns Hopkins School of Medicine, Baltimore, USA
| | - Elina Kuznecova
- School of Biological Sciences, University of Reading, Reading, UK
| | - Kirk A Taylor
- School of Biological Sciences, University of Reading, Reading, UK
| | - Neline Kriek
- School of Biological Sciences, University of Reading, Reading, UK
| | - Gemma Little
- School of Biological Sciences, University of Reading, Reading, UK
| | - Marcin A Sowa
- School of Biological Sciences, University of Reading, Reading, UK
| | - Tanya Sage
- School of Biological Sciences, University of Reading, Reading, UK
| | - Louise J Johnson
- School of Biological Sciences, University of Reading, Reading, UK
| | | | - Alice Y Pollitt
- School of Biological Sciences, University of Reading, Reading, UK.
| |
Collapse
|
17
|
Lickert S, Kenny M, Selcuk K, Mehl JL, Bender M, Früh SM, Burkhardt MA, Studt JD, Nieswandt B, Schoen I, Vogel V. Platelets drive fibronectin fibrillogenesis using integrin αIIbβ3. SCIENCE ADVANCES 2022; 8:eabj8331. [PMID: 35275711 PMCID: PMC8916723 DOI: 10.1126/sciadv.abj8331] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Platelets interact with multiple adhesion proteins during thrombogenesis, yet little is known about their ability to assemble fibronectin matrix. In vitro three-dimensional superresolution microscopy complemented by biophysical and biochemical methods revealed fundamental insights into how platelet contractility drives fibronectin fibrillogenesis. Platelets adhering to thrombus proteins (fibronectin and fibrin) versus basement membrane components (laminin and collagen IV) pull fibronectin fibrils along their apical membrane versus underneath their basal membrane, respectively. In contrast to other cell types, platelets assemble fibronectin nanofibrils using αIIbβ3 rather than α5β1 integrins. Apical fibrillogenesis correlated with a stronger activation of integrin-linked kinase, higher platelet traction forces, and a larger tension in fibrillar-like adhesions compared to basal fibrillogenesis. Our findings have potential implications for how mechanical thrombus integrity might be maintained during remodeling and vascular repair.
Collapse
Affiliation(s)
- Sebastian Lickert
- Laboratory of Applied Mechanobiology, Department of Health Sciences and Technology, ETH Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland
| | - Martin Kenny
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, 123 St Stephen’s Green, Dublin 2, Ireland
| | - Kateryna Selcuk
- Laboratory of Applied Mechanobiology, Department of Health Sciences and Technology, ETH Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland
| | - Johanna L. Mehl
- Laboratory of Applied Mechanobiology, Department of Health Sciences and Technology, ETH Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland
| | - Markus Bender
- Institute of Experimental Biomedicine – Chair I, University Hospital, and Rudolf Virchow Center, Julius Maximilian University of Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany
| | - Susanna M. Früh
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany
- Laboratory for MEMS Applications, IMTEK Department of Microsystems Engineering, University of Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg, Germany
| | - Melanie A. Burkhardt
- Laboratory of Applied Mechanobiology, Department of Health Sciences and Technology, ETH Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland
| | - Jan-Dirk Studt
- Division of Hematology, University Hospital Zurich, Rämistrasse 100, 8091 Zurich, Switzerland
| | - Bernhard Nieswandt
- Institute of Experimental Biomedicine – Chair I, University Hospital, and Rudolf Virchow Center, Julius Maximilian University of Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany
| | - Ingmar Schoen
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, 123 St Stephen’s Green, Dublin 2, Ireland
- Corresponding author. (V.V.); (I.S.)
| | - Viola Vogel
- Laboratory of Applied Mechanobiology, Department of Health Sciences and Technology, ETH Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland
- Corresponding author. (V.V.); (I.S.)
| |
Collapse
|
18
|
Tyagi T, Jain K, Gu SX, Qiu M, Gu VW, Melchinger H, Rinder H, Martin KA, Gardiner EE, Lee AI, Ho Tang W, Hwa J. A guide to molecular and functional investigations of platelets to bridge basic and clinical sciences. NATURE CARDIOVASCULAR RESEARCH 2022; 1:223-237. [PMID: 37502132 PMCID: PMC10373053 DOI: 10.1038/s44161-022-00021-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 01/17/2022] [Indexed: 07/29/2023]
Abstract
Platelets have been shown to be associated with pathophysiological process beyond thrombosis, demonstrating critical additional roles in homeostatic processes, such as immune regulation, and vascular remodeling. Platelets themselves can have multiple functional states and can communicate and regulate other cells including immune cells and vascular smooth muscle cells, to serve such diverse functions. Although traditional platelet functional assays are informative and reliable, they are limited in their ability to unravel platelet phenotypic heterogeneity and interactions. Developments in methods such as electron microscopy, flow cytometry, mass spectrometry, and 'omics' studies, have led to new insights. In this Review, we focus on advances in platelet biology and function, with an emphasis on current and promising methodologies. We also discuss technical and biological challenges in platelet investigations. Using coronavirus disease 2019 (COVID-19) as an example, we further describe the translational relevance of these approaches and the possible 'bench-to-bedside' utility in patient diagnosis and care.
Collapse
Affiliation(s)
- Tarun Tyagi
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine Yale University School of Medicine, New Haven, CT, USA
| | - Kanika Jain
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine Yale University School of Medicine, New Haven, CT, USA
| | - Sean X Gu
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine Yale University School of Medicine, New Haven, CT, USA
- Department of Laboratory Medicine, Yale University School of Medicine, Yale New Haven Hospital, New Haven, CT, USA
| | - Miaoyun Qiu
- Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623 Guangdong China
| | - Vivian W Gu
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine Yale University School of Medicine, New Haven, CT, USA
| | - Hannah Melchinger
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine Yale University School of Medicine, New Haven, CT, USA
| | - Henry Rinder
- Department of Laboratory Medicine, Yale University School of Medicine, Yale New Haven Hospital, New Haven, CT, USA
| | - Kathleen A Martin
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine Yale University School of Medicine, New Haven, CT, USA
| | - Elizabeth E Gardiner
- John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Alfred I Lee
- Section of Hematology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Wai Ho Tang
- Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623 Guangdong China
| | - John Hwa
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
19
|
Dohet-Eraly J, Boudjeltia KZ, Rousseau A, Queeckers P, Lelubre C, Desmet JM, Chopard B, Yourassowsky C, Dubois F. Three-dimensional analysis of blood platelet spreading using digital holographic microscopy: a statistical study of the differential effect of coatings in healthy volunteers and dialyzed patients. BIOMEDICAL OPTICS EXPRESS 2022; 13:502-513. [PMID: 35154888 PMCID: PMC8803030 DOI: 10.1364/boe.448817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
In cardiovascular disorders, the study of thrombocytes, commonly known as platelets, is highly important since they are involved in blood clotting, essential in hemostasis, and they can in pathological situations affect the blood circulation. In this paper, single deposited platelets are measured using interferometric digital holographic microscopy. We have shown that the average optical height of platelets is significantly lower in healthy volunteers than in dialyzed patients, meaning a better spreading. It demonstrates the great interest for assessing this parameter in any patients, and therefore the high potential of analyzing single spread platelets using digital holographic microscopy in fundamental research as well as a diagnostic tool in routine laboratories, for usual blood tests.
Collapse
Affiliation(s)
- Jérôme Dohet-Eraly
- Laboratory of Experimental Medicine (ULB222), Faculty of Medicine, Université libre de Bruxelles, Centre hospitalier universitaire de Charleroi, 706 Rue de Gozée, 6110 Montigny-le-Tilleul, Belgium
- Microgravity Research Centre, Université libre de Bruxelles, 50 Avenue Franklin Roosevelt, 1050 Bruxelles, Belgium
- These authors contributed equally
| | - Karim Zouaoui Boudjeltia
- Laboratory of Experimental Medicine (ULB222), Faculty of Medicine, Université libre de Bruxelles, Centre hospitalier universitaire de Charleroi, 706 Rue de Gozée, 6110 Montigny-le-Tilleul, Belgium
- These authors contributed equally
| | - Alexandre Rousseau
- Laboratory of Experimental Medicine (ULB222), Faculty of Medicine, Université libre de Bruxelles, Centre hospitalier universitaire de Charleroi, 706 Rue de Gozée, 6110 Montigny-le-Tilleul, Belgium
| | - Patrick Queeckers
- Microgravity Research Centre, Université libre de Bruxelles, 50 Avenue Franklin Roosevelt, 1050 Bruxelles, Belgium
| | - Christophe Lelubre
- Laboratory of Experimental Medicine (ULB222), Faculty of Medicine, Université libre de Bruxelles, Centre hospitalier universitaire de Charleroi, 706 Rue de Gozée, 6110 Montigny-le-Tilleul, Belgium
- Department of Internal Medicine, Centre hospitalier universitaire de Charleroi - Hôpital civil Marie Curie, 140 Chaussée de Bruxelles, 6042 Charleroi, Belgium
| | - Jean-Marc Desmet
- Department of Nephrology, Centre hospitalier universitaire de Charleroi - Hôpital Vésale, 706 Rue de Gozée, 6110 Montigny-le-Tilleul, Belgium
| | - Bastien Chopard
- Computer Science Department, University of Geneva, 7 Route de Drize, 1227 Carouge, Switzerland
| | - Catherine Yourassowsky
- Microgravity Research Centre, Université libre de Bruxelles, 50 Avenue Franklin Roosevelt, 1050 Bruxelles, Belgium
| | - Frank Dubois
- Microgravity Research Centre, Université libre de Bruxelles, 50 Avenue Franklin Roosevelt, 1050 Bruxelles, Belgium
| |
Collapse
|
20
|
Structural analysis of receptors and actin polarity in platelet protrusions. Proc Natl Acad Sci U S A 2021; 118:2105004118. [PMID: 34504018 PMCID: PMC8449362 DOI: 10.1073/pnas.2105004118] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2021] [Indexed: 11/18/2022] Open
Abstract
During activation the platelet cytoskeleton is reorganized, inducing adhesion to the extracellular matrix and cell spreading. These processes are critical for wound healing and clot formation. Initially, this task relies on the formation of strong cellular-extracellular matrix interactions, exposed in subendothelial lesions. Despite the medical relevance of these processes, there is a lack of high-resolution structural information on the platelet cytoskeleton controlling cell spreading and adhesion. Here, we present in situ structural analysis of membrane receptors and the underlying cytoskeleton in platelet protrusions by applying cryoelectron tomography to intact platelets. We utilized three-dimensional averaging procedures to study receptors at the plasma membrane. Analysis of substrate interaction-free receptors yielded one main structural class resolved to 26 Å, resembling the αIIbβ3 integrin folded conformation. Furthermore, structural analysis of the actin network in pseudopodia indicates a nonuniform polarity of filaments. This organization would allow generation of the contractile forces required for integrin-mediated cell adhesion.
Collapse
|
21
|
Blanchard A, Combs JD, Brockman JM, Kellner AV, Glazier R, Su H, Bender RL, Bazrafshan AS, Chen W, Quach ME, Li R, Mattheyses AL, Salaita K. Turn-key mapping of cell receptor force orientation and magnitude using a commercial structured illumination microscope. Nat Commun 2021; 12:4693. [PMID: 34344862 PMCID: PMC8333341 DOI: 10.1038/s41467-021-24602-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 06/22/2021] [Indexed: 02/07/2023] Open
Abstract
Many cellular processes, including cell division, development, and cell migration require spatially and temporally coordinated forces transduced by cell-surface receptors. Nucleic acid-based molecular tension probes allow one to visualize the piconewton (pN) forces applied by these receptors. Building on this technology, we recently developed molecular force microscopy (MFM) which uses fluorescence polarization to map receptor force orientation with diffraction-limited resolution (~250 nm). Here, we show that structured illumination microscopy (SIM), a super-resolution technique, can be used to perform super-resolution MFM. Using SIM-MFM, we generate the highest resolution maps of both the magnitude and orientation of the pN traction forces applied by cells. We apply SIM-MFM to map platelet and fibroblast integrin forces, as well as T cell receptor forces. Using SIM-MFM, we show that platelet traction force alignment occurs on a longer timescale than adhesion. Importantly, SIM-MFM can be implemented on any standard SIM microscope without hardware modifications.
Collapse
Affiliation(s)
- Aaron Blanchard
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - J Dale Combs
- Department of Chemistry, Emory University, Atlanta, GA, USA
| | - Joshua M Brockman
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Anna V Kellner
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Roxanne Glazier
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Hanquan Su
- Department of Chemistry, Emory University, Atlanta, GA, USA
| | | | | | - Wenchun Chen
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - M Edward Quach
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Renhao Li
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Alexa L Mattheyses
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Khalid Salaita
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA.
- Department of Chemistry, Emory University, Atlanta, GA, USA.
| |
Collapse
|
22
|
Kim H, Jang Y, Jung J, Oh J. Parylene-C coated microporous PDMS structure protecting from functional deconditioning of platelets exposed to cardiostimulants. LAB ON A CHIP 2020; 20:2284-2295. [PMID: 32478781 DOI: 10.1039/d0lc00253d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Most elderly patients after orthopedic and dental implant surgeries are exposed to cardiostimulants to reduce potential blood pressure-related risks of cardiovascular diseases. Such treatments lead to deconditioning of platelet function, which is an important factor in wound healing treatments. We introduced an innovative parylene-C coated microporous PDMS structure that can prevent the functional deconditioning of platelets caused by certain cardiostimulants. At different concentrations of cardiostimulants (IPR; isoprenaline and DA; dopamine), pre-activation, activation, and post-activation of platelets were intensively examined under mechanical and chemical stimulation mimicking the physiological environment on four different surfaces (glass, flat parylene-C coated glass (F-PPXC), microporous PDMS structure (P-PDMS), and parylene-C-coated microporous PDMS structure (S-PPXC)). The 3D microporous structure with parylene-C (S-PPXC) surface could attenuate the deconditioning of platelet function caused by IPR. Moreover, the S-PPXC surface further enhanced the DA-dependent stimulation of platelet function. The reason for this is that the 3D microporous structure with parylene-C S-PPXC induced stable and fast adhesion of platelets through increased surface roughness and softness, resulting in a significant enhancement of platelet activity. Therefore, we propose the use of functional S-PPXC surfaces as a novel strategy in the development of biomedical products.
Collapse
Affiliation(s)
- Hyojae Kim
- Department of Bio-Nano System Engineering, College of Engineering, Jeonbuk National University, Jeonju 54896, South Korea
| | | | | | | |
Collapse
|
23
|
Mayr S, Hauser F, Puthukodan S, Axmann M, Göhring J, Jacak J. Statistical analysis of 3D localisation microscopy images for quantification of membrane protein distributions in a platelet clot model. PLoS Comput Biol 2020; 16:e1007902. [PMID: 32603371 PMCID: PMC7384682 DOI: 10.1371/journal.pcbi.1007902] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 07/27/2020] [Accepted: 04/22/2020] [Indexed: 11/19/2022] Open
Abstract
We present the software platform 2CALM that allows for a comparative analysis of 3D localisation microscopy data representing protein distributions in two biological samples. The in-depth statistical analysis reveals differences between samples at the nanoscopic level using parameters such as cluster-density and -curvature. An automatic classification system combines multiplex and multi-level statistical approaches into one comprehensive parameter for similarity testing of the compared samples. We demonstrated the biological importance of 2CALM, comparing the protein distributions of CD41 and CD62p on activated platelets in a 3D artificial clot. Additionally, using 2CALM, we quantified the impact of the inflammatory cytokine interleukin-1β on platelet activation in clots. The platform is applicable to any other cell type and biological system and can provide new insights into biological and medical applications.
Collapse
Affiliation(s)
- Sandra Mayr
- University of Applied Sciences Upper Austria, Linz, Austria
| | - Fabian Hauser
- University of Applied Sciences Upper Austria, Linz, Austria
| | | | - Markus Axmann
- University of Applied Sciences Upper Austria, Linz, Austria
| | - Janett Göhring
- Center for Pathophysiology, Infectiology and Immunology, Institute for Hygiene and Applied Immunology, Medical University of Vienna, Vienna, Austria
| | - Jaroslaw Jacak
- University of Applied Sciences Upper Austria, Linz, Austria
| |
Collapse
|
24
|
Horev MB, Zabary Y, Zarka R, Sorrentino S, Medalia O, Zaritsky A, Geiger B. Differential dynamics of early stages of platelet adhesion and spreading on collagen IV- and fibrinogen-coated surfaces. F1000Res 2020; 9. [PMID: 32566134 PMCID: PMC7281675 DOI: 10.12688/f1000research.23598.2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/25/2020] [Indexed: 12/29/2022] Open
Abstract
Background: Upon wound formation, platelets adhere to the neighboring extracellular matrix and spread on it, a process which is critical for physiological wound healing. Multiple external factors, such as the molecular composition of the environment and its mechanical properties, play a key role in this process and direct its speed and outcome. Methods: We combined live cell imaging, quantitative interference reflection microscopy and cryo-electron tomography to characterize, at a single platelet level, the differential spatiotemporal dynamics of the adhesion process to fibrinogen- and collagen IV-functionalized surfaces. Results: Initially, platelets sense both substrates by transient rapid extensions of filopodia. On collagen IV, a short-term phase of filopodial extension is followed by lamellipodia-based spreading. This transition is preceded by the extension of a single or couple of microtubules into the platelet's periphery and their apparent insertion into the core of the filopodia. On fibrinogen surfaces, the filopodia-to-lamellipodia transition was partial and microtubule extension was not observed leading to limited spreading, which could be restored by manganese or thrombin. Conclusions: Based on these results, we propose that interaction with collagen IV stimulate platelets to extend microtubules to peripheral filopodia, which in turn, enhances filopodial-to-lamellipodial transition and overall lamellipodia-based spreading. Fibrinogen, on the other hand, fails to induce these early microtubule extensions, leading to full lamellipodia spreading in only a fraction of the seeded platelets. We further suggest that activation of integrin αIIbβ3 is essential for filopodial-to-lamellipodial transition, based on the capacity of integrin activators to enhance lamellipodia spreading on fibrinogen.
Collapse
Affiliation(s)
- Melanie B Horev
- Department of Immunology, Weizmann Institute of Science, Rehovot, Rehovot, 76100, Israel
| | - Yishaia Zabary
- Department of Software and Information Systems Engineering, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Revital Zarka
- Department of Immunology, Weizmann Institute of Science, Rehovot, Rehovot, 76100, Israel
| | - Simona Sorrentino
- Department of Biochemistry, University of Zurich, Zurich, CH-8057, Switzerland
| | - Ohad Medalia
- Department of Biochemistry, University of Zurich, Zurich, CH-8057, Switzerland
| | - Assaf Zaritsky
- Department of Software and Information Systems Engineering, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Benjamin Geiger
- Department of Immunology, Weizmann Institute of Science, Rehovot, Rehovot, 76100, Israel
| |
Collapse
|
25
|
Burzava ALS, Jasieniak M, Cockshell MP, Voelcker NH, Bonder CS, Griesser HJ, Moore E. Surface-Grafted Hyperbranched Polyglycerol Coating: Varying Extents of Fouling Resistance across a Range of Proteins and Cells. ACS APPLIED BIO MATERIALS 2020; 3:3718-3730. [DOI: 10.1021/acsabm.0c00336] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Anouck L. S. Burzava
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia
| | - Marek Jasieniak
- Cooperative Research Centre for Cell Therapy Manufacturing, Adelaide, SA 5000, Australia
| | - Michaelia P. Cockshell
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA 5000, Australia
| | - Nicolas H. Voelcker
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, VIC 3168, Australia
| | - Claudine S. Bonder
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA 5000, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5000, Australia
| | - Hans J. Griesser
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia
| | - Eli Moore
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA 5000, Australia
| |
Collapse
|
26
|
Montague SJ, Lim YJ, Lee WM, Gardiner EE. Imaging Platelet Processes and Function-Current and Emerging Approaches for Imaging in vitro and in vivo. Front Immunol 2020; 11:78. [PMID: 32082328 PMCID: PMC7005007 DOI: 10.3389/fimmu.2020.00078] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Accepted: 01/13/2020] [Indexed: 12/22/2022] Open
Abstract
Platelets are small anucleate cells that are essential for many biological processes including hemostasis, thrombosis, inflammation, innate immunity, tumor metastasis, and wound healing. Platelets circulate in the blood and in order to perform all of their biological roles, platelets must be able to arrest their movement at an appropriate site and time. Our knowledge of how platelets achieve this has expanded as our ability to visualize and quantify discreet platelet events has improved. Platelets are exquisitely sensitive to changes in blood flow parameters and so the visualization of rapid intricate platelet processes under conditions found in flowing blood provides a substantial challenge to the platelet imaging field. The platelet's size (~2 μm), rapid activation (milliseconds), and unsuitability for genetic manipulation, means that appropriate imaging tools are limited. However, with the application of modern imaging systems to study platelet function, our understanding of molecular events mediating platelet adhesion from a single-cell perspective, to platelet recruitment and activation, leading to thrombus (clot) formation has expanded dramatically. This review will discuss current platelet imaging techniques in vitro and in vivo, describing how the advancements in imaging have helped answer/expand on platelet biology with a particular focus on hemostasis. We will focus on platelet aggregation and thrombus formation, and how platelet imaging has enhanced our understanding of key events, highlighting the knowledge gained through the application of imaging modalities to experimental models in vitro and in vivo. Furthermore, we will review the limitations of current imaging techniques, and questions in thrombosis research that remain to be addressed. Finally, we will speculate how the same imaging advancements might be applied to the imaging of other vascular cell biological functions and visualization of dynamic cell-cell interactions.
Collapse
Affiliation(s)
- Samantha J. Montague
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Yean J. Lim
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
- Research School of Electrical, Energy and Materials Engineering, The Australian National University, Canberra, ACT, Australia
| | - Woei M. Lee
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
- Research School of Electrical, Energy and Materials Engineering, The Australian National University, Canberra, ACT, Australia
| | - Elizabeth E. Gardiner
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| |
Collapse
|