1
|
Baldassarre F, Schiavi D, Ciarroni S, Tagliavento V, De Stradis A, Vergaro V, Suranna GP, Balestra GM, Ciccarella G. Thymol-Nanoparticles as Effective Biocides against the Quarantine Pathogen Xylella fastidiosa. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1285. [PMID: 37049378 PMCID: PMC10096886 DOI: 10.3390/nano13071285] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/03/2023] [Accepted: 04/05/2023] [Indexed: 06/19/2023]
Abstract
Quarantine pathogens require the investigation of new tools for effective plant protection. In particular, research on sustainable agrochemicals is the actual challenge. Plant extracts, essential oils, and gels are natural sources of efficient biocides, such as aromatic secondary metabolites. Thymol is the major phenolic constituent of thyme and oregano essential oils, and it can inhibit many pathogenic microbes. Thymol nanoparticles were obtained through adsorption on CaCO3 nanocrystals, exploiting their carrier action. High loading efficiency and capability were reached as verified through UV and TGA measurements. We report the first study of thymol effect on Xylella fastidiosa, conducing both fluorometric assay and in vitro inhibition assay. The first test confirmed the great antibacterial effect of this compound. Finally, an in vitro test revealed an interesting synergistic action of thymol and nanocarriers, suggesting the potential application of thymol-nanoparticles as effective biocides to control Xylella fastidiosa infection.
Collapse
Affiliation(s)
- Francesca Baldassarre
- Department of Biological and Environmental Sciences, UdR INSTM of Lecce University of Salento, Via Monteroni, 73100 Lecce, Italy
- Institute of Nanotechnology, CNR NANOTEC, Consiglio Nazionale Delle Ricerche, Via Monteroni, 73100 Lecce, Italy
| | - Daniele Schiavi
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Via S. Camillo de Lellis, Snc, 01100 Viterbo, Italy
| | - Serena Ciarroni
- Phytoparasites Diagnostics (PhyDia) s.r.l., Via S. Camillo de Lellis, Snc, 01100 Viterbo, Italy
| | - Vincenzo Tagliavento
- Phytoparasites Diagnostics (PhyDia) s.r.l., Via S. Camillo de Lellis, Snc, 01100 Viterbo, Italy
| | - Angelo De Stradis
- Institute for Sustainable Plant Protection, CNR—IPSP, Consiglio Nazionale delle Ricerche, Via Amendola 165/A, 70126 Bari, Italy
| | - Viviana Vergaro
- Department of Biological and Environmental Sciences, UdR INSTM of Lecce University of Salento, Via Monteroni, 73100 Lecce, Italy
- Institute of Nanotechnology, CNR NANOTEC, Consiglio Nazionale Delle Ricerche, Via Monteroni, 73100 Lecce, Italy
| | - Gian Paolo Suranna
- Institute of Nanotechnology, CNR NANOTEC, Consiglio Nazionale Delle Ricerche, Via Monteroni, 73100 Lecce, Italy
- Department of Civil, Environmental, Land, Building Engineering and Chemistry (DICATECh), Politecnico di Bari, Via Orabona 4, 70125 Bari, Italy
| | - Giorgio Mariano Balestra
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Via S. Camillo de Lellis, Snc, 01100 Viterbo, Italy
- Phytoparasites Diagnostics (PhyDia) s.r.l., Via S. Camillo de Lellis, Snc, 01100 Viterbo, Italy
| | - Giuseppe Ciccarella
- Department of Biological and Environmental Sciences, UdR INSTM of Lecce University of Salento, Via Monteroni, 73100 Lecce, Italy
- Institute of Nanotechnology, CNR NANOTEC, Consiglio Nazionale Delle Ricerche, Via Monteroni, 73100 Lecce, Italy
| |
Collapse
|
2
|
Xiao D, Wu H, Zhang Y, Kang J, Dong A, Liang W. Advances in stimuli-responsive systems for pesticides delivery: Recent efforts and future outlook. J Control Release 2022; 352:288-312. [PMID: 36273530 DOI: 10.1016/j.jconrel.2022.10.028] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/15/2022] [Accepted: 10/17/2022] [Indexed: 11/08/2022]
Abstract
Effective pest management for enhanced crop output is one of the primary goals of establishing sustainable agricultural practices in the world. Pesticides are critical in preventing biological disasters, ensuring crop productivity, and fostering sustainable agricultural production growth. Studies showed that crops are unable to properly utilize pesticides because of several limiting factors, such as leaching and bioconversion, thereby damaging ecosystems and human health. In recent years, stimuli-responsive systems for pesticides delivery (SRSP) by nanotechnology demonstrated excellent promise in enhancing the effectiveness and safety of pesticides. SRSP are being developed with the goal of delivering precise amounts of active substances in response to biological needs and environmental factors. An in-depth analysis of carrier materials, design fundamentals, and classification of SRSP were provided. The adhesion of SRSP to crop tissue, absorption, translocation in and within plants, mobility in the soil, and toxicity were also discussed. The problems and shortcomings that need be resolved to accelerate the actual deployment of SRSP were highlighted in this review.
Collapse
Affiliation(s)
- Douxin Xiao
- College of Chemistry and Chemical Engineering, Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot 010021, PR China
| | - Haixia Wu
- College of Chemistry and Chemical Engineering, Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot 010021, PR China
| | - Yanling Zhang
- College of Chemistry and Chemical Engineering, Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot 010021, PR China
| | - Jing Kang
- College of Chemistry and Chemical Engineering, Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot 010021, PR China
| | - Alideertu Dong
- College of Chemistry and Chemical Engineering, Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot 010021, PR China.
| | - Wenlong Liang
- Institute of Pesticide and Environmental Toxicology, the Key Laboratory of Molecular Biology of Crop Pathogens and Insects, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou 310058, PR China.
| |
Collapse
|
3
|
Sol-Gel Coatings with Azofoska Fertilizer Deposited onto Pea Seeds. Polymers (Basel) 2022; 14:polym14194119. [PMID: 36236067 PMCID: PMC9571079 DOI: 10.3390/polym14194119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/07/2022] [Accepted: 09/11/2022] [Indexed: 11/17/2022] Open
Abstract
Pure silica sol obtained by hydrolysis of tetraethoxysilane and the same silica sol doped with fertilizer Azofoska were used to cover the surface of pea seeds. The surface state of the coated seeds (layer continuity, thickness, elemental composition) was studied by a scanning electron microscope (SEM) and energy dispersive X-ray (EDX) detector. Different conditions such as sol mixing method, seed immersion time, effect of diluting the sol with water, and ethanol (EtOH) were studied to obtain thin continuous coatings. The coated seeds were subjected to a germination and growth test to demonstrate that the produced SiO2 coating did not inhibit these processes; moreover, the presence of fertilizer in the coating structure facilitates the development of the seedling. The supply of nutrients directly to the grain's vicinity contributes to faster germination and development of seedlings. This may give the developing plants an advantage in growth over other undesirable plant species. These activities are in the line with the trends of searching for technologies increasing yields without creating an excessive burden on the natural environment.
Collapse
|
4
|
Velázquez-Carriles C, Macías-Rodríguez ME, Ramírez-Alvarado O, Corona-González RI, Macías-Lamas A, García-Vera I, Cavazos-Garduño A, Villagrán Z, Silva-Jara JM. Nanohybrid of Thymol and 2D Simonkolleite Enhances Inhibition of Bacterial Growth, Biofilm Formation, and Free Radicals. Molecules 2022; 27:molecules27196161. [PMID: 36234690 PMCID: PMC9571740 DOI: 10.3390/molecules27196161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 11/21/2022] Open
Abstract
Due to the current concerns against opportunistic pathogens and the challenge of antimicrobial resistance worldwide, alternatives to control pathogen growth are required. In this sense, this work offers a new nanohybrid composed of zinc-layered hydroxide salt (Simonkolleite) and thymol for preventing bacterial growth. Materials were characterized with XRD diffraction, FTIR and UV–Vis spectra, SEM microscopy, and dynamic light scattering. It was confirmed that the Simonkolleite structure was obtained, and thymol was adsorbed on the hydroxide in a web-like manner, with a concentration of 0.863 mg thymol/mg of ZnLHS. Absorption kinetics was described with non-linear models, and a pseudo-second-order equation was the best fit. The antibacterial test was conducted against Escherichia coli O157:H7 and Staphylococcus aureus strains, producing inhibition halos of 21 and 24 mm, respectively, with a 10 mg/mL solution of thymol–ZnLHS. Moreover, biofilm formation of Pseudomonas aeruginosa inhibition was tested, with over 90% inhibition. Nanohybrids exhibited antioxidant activity with ABTS and DPPH evaluations, confirming the presence of the biomolecule in the inorganic matrix. These results can be used to develop a thymol protection vehicle for applications in food, pharmaceutics, odontology, or biomedical industries.
Collapse
Affiliation(s)
- Carlos Velázquez-Carriles
- Departamento de Farmacobiología, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Blvd. Marcelino García Barragán 1421, Guadalajara 44430, Mexico
| | - María Esther Macías-Rodríguez
- Departamento de Farmacobiología, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Blvd. Marcelino García Barragán 1421, Guadalajara 44430, Mexico
| | - Omar Ramírez-Alvarado
- Departamento de Farmacobiología, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Blvd. Marcelino García Barragán 1421, Guadalajara 44430, Mexico
| | - Rosa Isela Corona-González
- Departamento de Ingeniería Química, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Blvd. Marcelino García Barragán 1421, Guadalajara 44430, Mexico
| | - Adriana Macías-Lamas
- Departamento de Farmacobiología, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Blvd. Marcelino García Barragán 1421, Guadalajara 44430, Mexico
| | - Ismael García-Vera
- Departamento de Farmacobiología, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Blvd. Marcelino García Barragán 1421, Guadalajara 44430, Mexico
| | - Adriana Cavazos-Garduño
- Departamento de Farmacobiología, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Blvd. Marcelino García Barragán 1421, Guadalajara 44430, Mexico
| | - Zuamí Villagrán
- Departamento de Ciencias de la Salud, Centro Universitario de Los Altos, Universidad de Guadalajara, Av. Rafael Casillas Aceves 1200, Tepatitlán de Morelos 47600, Mexico
| | - Jorge Manuel Silva-Jara
- Departamento de Farmacobiología, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Blvd. Marcelino García Barragán 1421, Guadalajara 44430, Mexico
- Correspondence:
| |
Collapse
|
5
|
Arzani FA, Dos Santos JHZ. Biocides and techniques for their encapsulation: a review. SOFT MATTER 2022; 18:5340-5358. [PMID: 35820409 DOI: 10.1039/d1sm01114f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Biocides are compounds that are broadly used to protect products and equipment against microbiological damage. Encapsulation can effectively increase physicochemical stability and allow for controlled release of encapsulated biocides. We categorized microencapsulation into coacervation, sol-gel, and self-assembly methods. The former comprises internal phase separation, interfacial polymerization, and multiple emulsions, and the latter include polymersomes and layer-by-layer techniques. The focus of this review is the description of these categories based on their microencapsulation methods and mechanisms. We discuss the key features and potential applications of each method according to the characteristics of the biocide to be encapsulated, relating the solubility of biocides to the capsule-forming materials, the reactivity between them and the desired release rate. The role of encapsulation in the safety and toxicity of biocide applications is also discussed. Furthermore, future perspectives for biocide applications and encapsulation techniques are presented.
Collapse
Affiliation(s)
- Fernanda A Arzani
- Chemical Engineering Department, Universidade Federal do Rio Grande do Sul, Rua Eng. Luiz Englert s/n, Porto Alegre, 90040-040, Brazil.
| | - João H Z Dos Santos
- Institute of Chemistry, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9500, Porto Alegre, 91500-000, Brazil.
| |
Collapse
|
6
|
Liu Y, Huang Y, Liu J, Liu J. A temperature-responsive selenium nanohydrogel for strawberry grey mould management. J Mater Chem B 2022; 10:5231-5241. [PMID: 35748407 DOI: 10.1039/d2tb00345g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Grey mould is a fungal disease caused by Botrytis cinerea (B. cinerea), which can cause serious damage to a variety of crops. Herein, we developed iprodione (Ipr) reagent-loaded mesoporous selenium nanoparticles (MSe NPs), combined them with low-melting agarose (LA), and obtained a temperature-responsive selenium particle nanogel (Ipr@MSe@LA NPs) using a simple method. Importantly, Ipr@MSe@LA could capture B. cinerea and quickly be softened to realize the controlled release of Ipr, and effectively inhibit and kill B. cinerea. Plate-based antibacterial tests showed that the colony area of the Ipr@MSe@LA NPs was 4.27 cm-2, which was much smaller than that of the control (25 cm-2). In addition, the Ipr@MSe@LA NPs showed good biocompatibility, and they could improve the photosynthetic efficiency of plants and promote plant growth. Measurement of the fluorescence parameters showed that the maximum photochemical efficiency (Fv/Fm) of the plant leaves of the inoculated group (B. cinerea) is 0.58, but the Fv/Fm value of the Ipr@MSe@LA group is higher than 0.8. In particular, Ipr@MSe@LA NPs could prolong the storage time of strawberries, thereby preserving their freshness. Overall, Ipr@MSe@LA NPs exhibit excellent effects in terms of controlling strawberry gray mould and prolonging the fruit storage time, and this is expected to become a promising strategy for developing intelligent pesticide formulations.
Collapse
Affiliation(s)
- Yanan Liu
- Shenzhen Longhua Maternity and Child Healthcare Hospital, Shenzhen, 518110, China.
| | - Yuqin Huang
- Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou, 511436, China.
| | - Jiawei Liu
- Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou, 511436, China.
| | - Jie Liu
- Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou, 511436, China.
| |
Collapse
|
7
|
Controlled Release of Volatile Antimicrobial Compounds from Mesoporous Silica Nanocarriers for Active Food Packaging Applications. Int J Mol Sci 2022; 23:ijms23137032. [PMID: 35806038 PMCID: PMC9266657 DOI: 10.3390/ijms23137032] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 02/01/2023] Open
Abstract
Essential oils and their active components have been extensively reported in the literature for their efficient antimicrobial, antioxidant and antifungal properties. However, the sensitivity of these volatile compounds towards heat, oxygen and light limits their usage in real food packaging applications. The encapsulation of these compounds into inorganic nanocarriers, such as nanoclays, has been shown to prolong the release and protect the compounds from harsh processing conditions. Nevertheless, these systems have limited shelf stability, and the release is of limited control. Thus, this study presents a mesoporous silica nanocarrier with a high surface area and well-ordered protective pore structure for loading large amounts of natural active compounds (up to 500 mg/g). The presented loaded nanocarriers are shelf-stable with a very slow initial release which levels out at 50% retention of the encapsulated compounds after 2 months. By the addition of simulated drip-loss from chicken, the release of the compounds is activated and gives an antimicrobial effect, which is demonstrated on the foodborne spoilage bacteria Brochothrixthermosphacta and the potentially pathogenic bacteria Escherichia coli. When the release of the active compounds is activated, a ≥4-log reduction in the growth of B. thermosphacta and a 2-log reduction of E. coli is obtained, after only one hour of incubation. During the same one-hour incubation period the dry nanocarriers gave a negligible inhibitory effect. By using the proposed nanocarrier system, which is activated by the food product itself, increased availability of the natural antimicrobial compounds is expected, with a subsequent controlled antimicrobial effect.
Collapse
|
8
|
Goetten de Lima G, Wilke Sivek T, Matos M, Lundgren Thá E, de Oliveira KMG, Rodrigues de Souza I, de Morais de Lima TA, Cestari MM, Esteves Magalhães WL, Hansel FA, Morais Leme D. A biocide delivery system composed of nanosilica loaded with neem oil is effective in reducing plant toxicity of this biocide. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 294:118660. [PMID: 34896221 DOI: 10.1016/j.envpol.2021.118660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/08/2021] [Accepted: 12/07/2021] [Indexed: 06/14/2023]
Abstract
One possible way to reduce the environmental impacts of pesticides is by nanostructuring biocides in nanocarriers because this promotes high and localized biocidal activity and can avoid toxicity to non-target organisms. Neem oil (NO) is a natural pesticide with toxicity concerns to plants, fish, and other organisms. Thus, loading NO in a safe nanocarrier can contribute to minimizing its toxicity. For this study, we have characterized the integrity of a nanosilica-neem oil-based biocide delivery system (SiO2NP#NO BDS) and evaluated its effectiveness in reducing NO toxicity by the Allium cepa test. NO, mainly consisted of unsaturated fatty acids, was well binded to the SiO2NP with BTCA crosslinker. Overall, this material presented all of its pores filled with the NO with fatty acid groups at both the surface and bulk level of the nanoparticle. The thermal stability of NO was enhanced after synthesis, and the NO was released as zero-order model with a total of 20 days without burst release. The SiO2NP#NO BDS was effective in reducing the individual toxicity of NO to the plant system. NO in single form inhibited the seed germination of A. cepa (EC50 of 0.38 g L-1), and the effect was no longer observed at the BDS condition. Contrarily to the literature, the tested NO did not present cyto- and geno-toxic effects in A. cepa, which may relate to the concentration level and composition.
Collapse
Affiliation(s)
- Gabriel Goetten de Lima
- Graduate Program in Engineering and Science of Materials - PIPE, Federal University of Paraná - UFPR, 81.531-990, Curitiba, PR, Brazil; Materials Research Institute, Athlone Institute of Technology, Athlone, Ireland
| | - Tainá Wilke Sivek
- Department of Genetics, Federal University of Paraná, Curitiba, PR, Brazil
| | - Mailson Matos
- Graduate Program in Engineering and Science of Materials - PIPE, Federal University of Paraná - UFPR, 81.531-990, Curitiba, PR, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Otoni CG, Azeredo HMC, Mattos BD, Beaumont M, Correa DS, Rojas OJ. The Food-Materials Nexus: Next Generation Bioplastics and Advanced Materials from Agri-Food Residues. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2102520. [PMID: 34510571 PMCID: PMC11468898 DOI: 10.1002/adma.202102520] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/14/2021] [Indexed: 06/13/2023]
Abstract
The most recent strategies available for upcycling agri-food losses and waste (FLW) into functional bioplastics and advanced materials are reviewed and the valorization of food residuals are put in perspective, adding to the water-food-energy nexus. Low value or underutilized biomass, biocolloids, water-soluble biopolymers, polymerizable monomers, and nutrients are introduced as feasible building blocks for biotechnological conversion into bioplastics. The latter are demonstrated for their incorporation in multifunctional packaging, biomedical devices, sensors, actuators, and energy conversion and storage devices, contributing to the valorization efforts within the future circular bioeconomy. Strategies are introduced to effectively synthesize, deconstruct and reassemble or engineer FLW-derived monomeric, polymeric, and colloidal building blocks. Multifunctional bioplastics are introduced considering the structural, chemical, physical as well as the accessibility of FLW precursors. Processing techniques are analyzed within the fields of polymer chemistry and physics. The prospects of FLW streams and biomass surplus, considering their availability, interactions with water and thermal stability, are critically discussed in a near-future scenario that is expected to lead to next-generation bioplastics and advanced materials.
Collapse
Affiliation(s)
- Caio G. Otoni
- Department of Materials Engineering (DEMa)Federal University of São Carlos (UFSCar)Rod. Washington Luiz, km 235São CarlosSP13565‐905Brazil
| | - Henriette M. C. Azeredo
- Embrapa Agroindústria TropicalRua Dra. Sara Mesquita 2270FortalezaCE60511‐110Brazil
- Nanotechnology National Laboratory for Agriculture (LNNA)Embrapa InstrumentaçãoRua XV de Novembro 1452São CarlosSP13560‐970Brazil
| | - Bruno D. Mattos
- Department of Bioproducts and BiosystemsSchool of Chemical EngineeringAalto UniversityP.O. Box 16300, AaltoEspooFIN‐00076Finland
| | - Marco Beaumont
- Department of ChemistryUniversity of Natural Resources and Life SciencesVienna (BOKU), Konrad‐Lorenz‐Str. 24TullnA‐3430Austria
| | - Daniel S. Correa
- Nanotechnology National Laboratory for Agriculture (LNNA)Embrapa InstrumentaçãoRua XV de Novembro 1452São CarlosSP13560‐970Brazil
| | - Orlando J. Rojas
- Department of Bioproducts and BiosystemsSchool of Chemical EngineeringAalto UniversityP.O. Box 16300, AaltoEspooFIN‐00076Finland
- Bioproducts InstituteDepartments of Chemical & Biological Engineering, Chemistry and Wood ScienceThe University of British Columbia2360 East MallVancouverBCV6T 1Z3Canada
| |
Collapse
|
10
|
Kong XP, Zhang BH, Wang J. Multiple Roles of Mesoporous Silica in Safe Pesticide Application by Nanotechnology: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:6735-6754. [PMID: 34110151 DOI: 10.1021/acs.jafc.1c01091] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Pollution related to pesticides has become a global problem due to their low utilization and non-targeting application, and nanotechnology has shown great potential in promoting sustainable agriculture. Nowadays, mesoporous silica-based nanomaterials have garnered immense attention for improving the efficacy and safety of pesticides due to their distinctive advantages of low toxicity, high thermal and chemical stability, and particularly size tunability and versatile functionality. Based on the introduction of the structure and synthesis of different types of mesoporous silica nanoparticles (MSNs), the multiple roles of mesoporous silica in safe pesticide application using nanotechnology are discussed in this Review: (i) as nanocarrier for sustained/controlled delivery of pesticides, (ii) as adsorbent for enrichment or removal of pesticides in aqueous media, (iii) as support of catalysts for degradation of pesticide contaminants, and (iv) as support of sensors for detection of pesticides. Several scientific issues, strategies, and mechanisms regarding the application of MSNs in the pesticide field are presented, with their future directions discussed in terms of their environmental risk assessment, in-depth mechanism exploration, and cost-benefit consideration for their continuous development. This Review will provide critical information to related researchers and may open up their minds to develop new advances in pesticide application.
Collapse
Affiliation(s)
- Xiang-Ping Kong
- College of Chemistry and Pharmacy, Qingdao Agricultural University, Qingdao 266109, Shandong, P. R. China
| | - Bao-Hua Zhang
- College of Chemistry and Pharmacy, Qingdao Agricultural University, Qingdao 266109, Shandong, P. R. China
| | - Juan Wang
- College of Chemistry and Pharmacy, Qingdao Agricultural University, Qingdao 266109, Shandong, P. R. China
| |
Collapse
|
11
|
Pereira IB, Carvalho EHDS, Rodrigues LDB, Mattos BD, Magalhães WLE, Leme DM, Krawczyk-Santos AP, Taveira SF, de Oliveira GAR. Thymol-Loaded Biogenic Silica Nanoparticles in an Aquatic Environment: The Impact of Particle Aggregation on Ecotoxicity. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:333-341. [PMID: 33210755 DOI: 10.1002/etc.4938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/17/2020] [Accepted: 11/16/2020] [Indexed: 06/11/2023]
Abstract
Thymol, a monoterpene phenol, is used as a natural biocide. To circumvent its chemical instability, we propose use of thymol-loaded biogenic silica nanoparticles (BSiO2 #THY NPs); however, the toxicity of this system for aquatic organisms is unknown. Thus, the present study aimed to evaluate the toxicogenetic effects induced by thymol, BSiO2 NP, and BSiO2 #THY on Artemia salina and zebrafish (Danio rerio) early life stages. We also investigated the impact of BSiO2 aggregation in different exposure media (saline and freshwater). Based on the median lethal concentration at 48 h (LC5048h ), BSiO2 #THY (LC5048h = 1.06 mg/L) presented similar toxic potential as thymol (LC5048h = 1.03 mg/L) for A. salina, showing that BSiO2 had no influence on BSiO2 #THY toxicity. Because BSiO2 aggregated and sedimented faster in A. salina aqueous medium than in the other medium, this NP had lower interaction with this microcrustacean. Thus, BSiO2 #THY toxicity for A. salina is probably due to the intrinsic toxicity of thymol. For zebrafish early life stages, BSiO2 #THY (LC5096h = 13.13 mg/L) was more toxic than free thymol (LC5096h = 25.60 mg/L); however, BSiO2 NP has no toxicity for zebrafish early life stages. The lower aggregation of BSiO2 in the freshwater medium compared to the saline medium may have enhanced thymol's availability for this aquatic organism. Also, BSiO2 #THY significantly induced sublethal effects as thymol, and both were genotoxic for zebrafish. In conclusion, although BSiO2 #THY still needs improvements to ensure its safety for freshwater ecosystems, BSiO2 NP seems to be a safe nanocarrier for agriculture. Environ Toxicol Chem 2021;40:333-341. © 2020 SETAC.
Collapse
Affiliation(s)
- Iúri Barbosa Pereira
- Environmental Toxicology Research Laboratory, Faculty of Pharmacy, Federal University of Goiás, Goiânia, Goiás, Brazil
| | | | - Laís de Brito Rodrigues
- Environmental Toxicology Research Laboratory, Faculty of Pharmacy, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Bruno Dufau Mattos
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Aalto, Finland
- Embrapa Florestas, Colombo, Paraná, Brazil
| | | | - Daniela Morais Leme
- Department of Genetics, Federal University of Paraná, Curitiba, Paraná, Brazil
- National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives, Institute of Chemistry, São Paulo State University, Araraquara, São Paulo, Brazil
| | - Anna Paula Krawczyk-Santos
- Laboratory of Nanosystems and Drug Delivery Systems, Faculty of Pharmacy, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Stephânia Fleury Taveira
- Laboratory of Nanosystems and Drug Delivery Systems, Faculty of Pharmacy, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Gisele Augusto Rodrigues de Oliveira
- Environmental Toxicology Research Laboratory, Faculty of Pharmacy, Federal University of Goiás, Goiânia, Goiás, Brazil
- National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives, Institute of Chemistry, São Paulo State University, Araraquara, São Paulo, Brazil
| |
Collapse
|
12
|
Alam SS, Seo Y, Lapitsky Y. Highly Sustained Release of Bactericides from Complex Coacervates. ACS APPLIED BIO MATERIALS 2020; 3:8427-8437. [DOI: 10.1021/acsabm.0c00763] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Sabrina S. Alam
- Department of Chemical Engineering, University of Toledo, Toledo, Ohio 43606, United States
| | - Youngwoo Seo
- Department of Chemical Engineering, University of Toledo, Toledo, Ohio 43606, United States
- Department of Civil and Environmental Engineering, University of Toledo, Toledo, Ohio 43606, United States
| | - Yakov Lapitsky
- Department of Chemical Engineering, University of Toledo, Toledo, Ohio 43606, United States
| |
Collapse
|
13
|
Coumarin-Containing Light-Responsive Carboxymethyl Chitosan Micelles as Nanocarriers for Controlled Release of Pesticide. Polymers (Basel) 2020; 12:polym12102268. [PMID: 33019778 PMCID: PMC7601645 DOI: 10.3390/polym12102268] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/22/2020] [Accepted: 09/29/2020] [Indexed: 12/20/2022] Open
Abstract
Currently, controlled release formulations (CRFs) of pesticides in response to biotic and/or abiotic stimuli have shown great potential for providing “on-demand” smart release of loaded active ingredients. In this study, amphiphilic biopolymers were prepared by introducing hydrophobic (7-diethylaminocoumarin-4-yl)methyl succinate (DEACMS) onto the main chain of hydrophilic carboxymethylchitosan (CMCS) via the formation of amide bonds which were able to self-assemble into spherical micelles in aqueous media and were utilized as light-responsive nanocarriers for the controlled release of pesticides. FTIR and NMR characterizations confirmed the successful synthesis of the CMCS-DEACMS conjugate. The critical micelle concentration (CMC) decreased with the increase in the substitution of DEACMS on CMCS, which ranged from 0.013 to 0.042 mg/mL. Upon irradiation under simulated sunlight, the hydrodynamic diameter, morphology, photophysical properties and photolysis were researched by means of dynamic light scattering (DLS), transmission electron microscopy (TEM), UV-vis absorption spectroscopy and fluorescence spectroscopy. Moreover, 2,4-dichlorophenoxyacetic acid (2,4-D) was used as a model pesticide and encapsulated into the CMCS-DEACMS micelles. In these micelle formulations, the release of 2,4-D was promoted upon simulated sunlight irradiation, during which the coumarin moieties were cleaved from the CMCS backbone, resulting in a shift of the hydrophilic–hydrophobic balance and destabilization of the micelles. Additionally, bioassay studies suggested that this 2,4-D contained which micelles showed good bioactivity on the target plant without harming the nontarget plant. Thereby, the light-responsive CMCS-DEACMS micelles bearing photocleavable coumarin moieties provide a smart delivery platform for agrochemicals.
Collapse
|
14
|
Rajiv P, Chen X, Li H, Rehaman S, Vanathi P, Abd-Elsalam KA, Li X. Silica-based nanosystems: Their role in sustainable agriculture. MULTIFUNCTIONAL HYBRID NANOMATERIALS FOR SUSTAINABLE AGRI-FOOD AND ECOSYSTEMS 2020:437-459. [DOI: 10.1016/b978-0-12-821354-4.00018-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
15
|
Camara MC, Campos EVR, Monteiro RA, do Espirito Santo Pereira A, de Freitas Proença PL, Fraceto LF. Development of stimuli-responsive nano-based pesticides: emerging opportunities for agriculture. J Nanobiotechnology 2019; 17:100. [PMID: 31542052 PMCID: PMC6754856 DOI: 10.1186/s12951-019-0533-8] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 09/14/2019] [Indexed: 01/23/2023] Open
Abstract
Pesticides and fertilizers are widely used to enhance agriculture yields, although the fraction of the pesticides applied in the field that reaches the targets is less than 0.1%. Such indiscriminate use of chemical pesticides is disadvantageous due to the cost implications and increasing human health and environmental concerns. In recent years, the utilization of nanotechnology to create novel formulations has shown great potential for diminishing the indiscriminate use of pesticides and providing environmentally safer alternatives. Smart nano-based pesticides are designed to efficiently delivery sufficient amounts of active ingredients in response to biotic and/or abiotic stressors that act as triggers, employing targeted and controlled release mechanisms. This review discusses the current status of stimuli-responsive release systems with potential to be used in agriculture, highlighting the challenges and drawbacks that need to be overcome in order to accelerate the global commercialization of smart nanopesticides.
Collapse
Affiliation(s)
- Marcela Candido Camara
- São Paulo State University - UNESP, Institute of Science and Technology, Sorocaba, SP, Brazil
| | - Estefânia Vangelie Ramos Campos
- São Paulo State University - UNESP, Institute of Science and Technology, Sorocaba, SP, Brazil
- Human and Natural Sciences Center, Federal University of ABC, Santo André, SP, Brazil
| | | | | | | | | |
Collapse
|
16
|
Karimi E, Abbasi S, Abbasi N. Thymol polymeric nanoparticle synthesis and its effects on the toxicity of high glucose on OEC cells: involvement of growth factors and integrin-linked kinase. DRUG DESIGN DEVELOPMENT AND THERAPY 2019; 13:2513-2532. [PMID: 31440034 PMCID: PMC6664260 DOI: 10.2147/dddt.s214454] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Accepted: 07/03/2019] [Indexed: 11/25/2022]
Abstract
Background Nowadays, the drug delivery system is important in the treatment of diseases. Purpose A polymeric nanoparticle modified by oleic acid (NPMO) as a Thymol (Thy) drug release system was synthesized from Thymbra spicata and its neurotrophic and angiogenic effects on rat’s olfactory ensheathing cells (OECs) in normal (NG) and high glucose (HG) conditions were studied. Methods The NPMO was characterized by using different spectroscopy methods, such as infrared, HNMR, CNMR, gel permeation chromatography, dynamic light scattering, and atomic force microscopy. Load and releasing were investigated by HPLC. The toxicity against OECs diet-induced by MTT assay. ROS and generation of nitric oxide (NO) were evaluated using dichloro-dihydro-fluorescein and Griess method, respectively. The expression of protein integrin-linked kinase (ILK), vascular endothelial growth factor (VEGF), brain-derived neurotrophic factor (BDNF), and nerve growth factor (NGF) were evaluated by Western blotting. Results ThyNPMO is desirable for transferring drug as a carrier. The amount of Thy and extract (E) loaded on NPMO estimated at 43±2.5% and 41±1.8%, respectively. Then, 65% and 63% of the drug load were released, respectively. Thy, ThyNPMO, E, and ENPMO prevented HG-induced OECs cell death (EC50 33±1.5, 22±0.9, 35±1.8, and 25±1.1 μM, respectively). Incubation with Thy, ThyNPMO, E ,and ENPMO at high concentrations increased cell death with LC50 105±3.5, 82±2.8, 109±4.3, and 86±3.4 μM, respectively in HG states. Conclusion OECs were protected by ThyNPMO and ENPMO in protective concentrations by reducing the amount of ROS and NO, maintaining ILK, reducing VEGF, and increasing BDNF and NGF. The mentioned mechanisms were totally reversed at high concentrations.
Collapse
Affiliation(s)
- Elahe Karimi
- Department of Chemistry, Ilam Branch, Islamic Azad University, Ilam, Iran.,Biotechnology and Medicinal Plants Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Shahryar Abbasi
- Department of Chemistry, Ilam Branch, Islamic Azad University, Ilam, Iran.,Department of Chemistry, Faculty of Science, Ilam University, Ilam, Iran
| | - Naser Abbasi
- Biotechnology and Medicinal Plants Research Center, Ilam University of Medical Sciences, Ilam, Iran.,Department of Pharmacology, Medical School, Ilam University of Medical Sciences, Ilam, Iran
| |
Collapse
|
17
|
Mattos BD, da Silva LR, de Souza IR, Magalhães WLE, Leme DM. Slow delivery of biocide from nanostructured, microscaled, particles reduces its phytoxicity: A model investigation. JOURNAL OF HAZARDOUS MATERIALS 2019; 367:513-519. [PMID: 30641421 DOI: 10.1016/j.jhazmat.2018.12.117] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 12/30/2018] [Accepted: 12/31/2018] [Indexed: 06/09/2023]
Abstract
Nano-engineered delivery systems have emerged as possible solutions for more efficient pest management in agriculture. Likewise for nanostructured drug delivery systems (DDS) in medicine, the use of biocide delivery systems (BDS) brought concerns on their toxicology on non-targeted organisms. Plants, for instance, are the foundation of the ecosystem, acting as primary actor in the food chain and is associated with the whole biodiversity, being strictly related to human health. This is a very important consideration to fully understand the benefits of using delivery systems for crop protection and production. Herein, a biocide delivery system was prepared by loading nanostructured, microscaled, biogenic silica particles with thymol, a known phytotoxicant. The resulting system contains 120 mg of thymol per gram of silica and displays slow release features. The Allium cepa bioassay was chosen to demonstrate how the toxicity and cellular damages induced by thymol can be significantly reduced through a slow, controlled, release strategy. The lower mobility of the reference particles associated with slow-delivery features reduced the toxicity and cellular damages caused by thymol in the plant genetic model.
Collapse
Affiliation(s)
- Bruno Dufau Mattos
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076, Aalto, Finland.
| | - Lucas Rafael da Silva
- Department of Genetics, Federal University of Paraná, Av. Cel. Francisco H. dos Santos s/n, Curitiba, 81531-980, Brazil
| | - Irisdoris Rodrigues de Souza
- Department of Genetics, Federal University of Paraná, Av. Cel. Francisco H. dos Santos s/n, Curitiba, 81531-980, Brazil
| | | | - Daniela Morais Leme
- Department of Genetics, Federal University of Paraná, Av. Cel. Francisco H. dos Santos s/n, Curitiba, 81531-980, Brazil
| |
Collapse
|
18
|
Bai L, Greca LG, Xiang W, Lehtonen J, Huan S, Nugroho RWN, Tardy BL, Rojas OJ. Adsorption and Assembly of Cellulosic and Lignin Colloids at Oil/Water Interfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:571-588. [PMID: 30052451 PMCID: PMC6344914 DOI: 10.1021/acs.langmuir.8b01288] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 07/24/2018] [Indexed: 05/22/2023]
Abstract
The surface chemistry and adsorption behavior of submicrometer cellulosic and lignin particles have drawn wide-ranging interest in the scientific community. Here, we introduce their assembly at fluid/fluid interfaces in Pickering systems and discuss their role in reducing the oil/water interfacial tension, limiting flocculation and coalescence, and endowing given functional properties. We discuss the stabilization of multiphase systems by cellulosic and lignin colloids and the opportunities for their adoption. They can be used alone, as dual components, or in combination with amphiphilic molecules for the design of multiphase systems relevant to household products, paints, coatings, pharmaceutical, foodstuff, and cosmetic formulations. This invited feature article summarizes some of our work and that of colleagues to introduce the readers to this fascinating and topical area.
Collapse
Affiliation(s)
- Long Bai
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Aalto, Finland
| | - Luiz G. Greca
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Aalto, Finland
| | - Wenchao Xiang
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Aalto, Finland
| | - Janika Lehtonen
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Aalto, Finland
| | - Siqi Huan
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Aalto, Finland
| | - Robertus Wahyu N. Nugroho
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Aalto, Finland
| | - Blaise L. Tardy
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Aalto, Finland
| | - Orlando J. Rojas
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Aalto, Finland
- Department
of Applied Physics, School of Science, Aalto
University, FI-00076 Aalto, Finland
| |
Collapse
|
19
|
Mattos BD, Greca LG, Tardy BL, Magalhães WLE, Rojas OJ. Green Formation of Robust Supraparticles for Cargo Protection and Hazards Control in Natural Environments. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1801256. [PMID: 29882301 DOI: 10.1002/smll.201801256] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 04/28/2018] [Indexed: 05/21/2023]
Abstract
In parallel with important technological advances, nanoparticles have brought numerous environmental and toxicological challenges due to their high mobility and nonspecific surface activity. The hazards associated with nanoparticles can be significantly reduced while simultaneously keeping their inherent benefits by superstructuring. In this study, a low-temperature and versatile methodology is employed to structure nanoparticles into controlled morphologies from biogenic silica, used as a main building block, together with cellulose nanofibrils, which promote cohesion. The resultant superstructures are evaluated for cargo loading/unloading of a model, green biomolecule (thymol), and for photo-accessibility and mobility in soil. The bio-based superstructures resist extremely high mechanical loading without catastrophic failure, even after severe chemical and heat treatments. Additionally, the process allows pre and in situ loading, and reutilization, achieving remarkable dynamic payloads as high as 90 mg g-1 . The proposed new and facile methodology is expected to offer a wide range of opportunities for the application of superstructures in sensitive and natural environments.
Collapse
Affiliation(s)
- Bruno D Mattos
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076, Finland
| | - Luiz G Greca
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076, Finland
| | - Blaise L Tardy
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076, Finland
| | | | - Orlando J Rojas
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076, Finland
| |
Collapse
|