1
|
Song M, Yang X, Zhang X, Li J, Xu Y, Shi J. The Masquelet technique triggers the formation of a network involving LncRNA, circRNA, miRNA, and mRNA during bone repair. Ann Med 2024; 56:2395591. [PMID: 39444146 PMCID: PMC11504341 DOI: 10.1080/07853890.2024.2395591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/26/2024] [Accepted: 03/26/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND The ceRNA network, which is competitive endogenous RNA, uncovers a fresh mechanism of RNA interaction and holds significant importance in diverse biological processes. The aim of this study is to investigate the molecular process of induced membrane (IM) formation in bone defects using the Masquelet's induced membrane technique (MIMT), in order to offer novel insights and a theoretical foundation for enhancing the treatment of bone defects with MIMT. METHODS In this work, we identified differentially expressed mRNAs (DEGs), lncRNAs (DELs), circRNAs (DECs), and miRNAs (DEMs). To explore the primary functions of the shared DEGs, we utilized Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. Next, predictions were made for lncRNA-miRNA and miRNA-mRNA interactions, and the Cytoscape software was utilized to construct the regulatory network for ceRNA. RESULTS By integrating GO and KEGG enrichment analysis, a total of 385 differentially expressed genes (DEGs) were discovered in the samples from the MIMT-treated group. Additionally, after re-annotating the probes and intersecting two sets of differently expressed miRNAs, 1304 differentially expressed lncRNAs (DELs) and 23 differentially expressed circRNAs (DECs) were identified. Furthermore, 13 differentially expressed miRNAs (DEMs) were obtained. Moreover, utilizing the anticipated objectives of DEMs, we acquired 1203 pairs of lncRNA-miRNA-mRNA interactors (comprising 24 lncRNAs, 10 miRNAs, and 115 mRNAs) and 250 pairs of circRNA-miRNA-mRNA interactions (comprising 7 circRNAs, 9 miRNAs, and 115 mRNAs). CEBPA, DGAT2, CDKN1A, PLIN2, and CIDEC were identified as the five hub proteins in the PPI network. LncRNA/circRNA-hsa-miR-671-5p could potentially regulate the primary central protein, CEBPA. CONCLUSIONS In this study, we described the potential regulatory mechanism of the MIMT in treating bone defects. We proposed a new lncRNA-miRNA-mRNA ceRNA network that could help further explore the molecular mechanisms of bone repair.
Collapse
Affiliation(s)
- Muguo Song
- Department of Orthopaedics, 920th Hospital of the Joint Logistics Support Force of the PLA, Kunming City, Yunnan Province, China
| | - Xiaoyong Yang
- Department of Orthopaedics, 920th Hospital of the Joint Logistics Support Force of the PLA, Kunming City, Yunnan Province, China
| | - Xijiao Zhang
- Department of Orthopaedics, 920th Hospital of the Joint Logistics Support Force of the PLA, Kunming City, Yunnan Province, China
| | - Junyi Li
- Department of Orthopaedics, 920th Hospital of the Joint Logistics Support Force of the PLA, Kunming City, Yunnan Province, China
| | - Yongqing Xu
- Department of Orthopaedics, 920th Hospital of the Joint Logistics Support Force of the PLA, Kunming City, Yunnan Province, China
| | - Jian Shi
- Department of Orthopaedics, 920th Hospital of the Joint Logistics Support Force of the PLA, Kunming City, Yunnan Province, China
| |
Collapse
|
2
|
Ye X, Yang C, Xu H, He Q, Sheng L, Lin J, Wang X. Exploring the therapeutic mechanisms of Coptidis Rhizoma in gastric precancerous lesions: a network pharmacology approach. Discov Oncol 2024; 15:211. [PMID: 38837097 PMCID: PMC11153449 DOI: 10.1007/s12672-024-01070-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 05/28/2024] [Indexed: 06/06/2024] Open
Abstract
BACKGROUND Gastric precancerous lesions are a critical stage in the development of gastric cancer or gastric adenocarcinoma, and their outcome plays an important role in the malignant progression of gastric cancer. Coptidis Rhizoma has a good effect on Gastric precancerous lesions. However, the specific mechanisms of its action remain incompletely elucidated. METHODS Network pharmacology and molecular docking techniques were used to explore the active ingredients and molecular mechanism of Coptidis Rhizoma in treating gastric precancerous lesions. The active compounds of Coptidis Rhizoma and their potential gastric precancerous lesions related targets were obtained from TCMSP, GeneCards, and OMIM databases. An interaction network based on protein-protein interactions (PPIs) was constructed to visualize the interactions between hub genes. Analysis of GO enrichment and KEGG pathway were conducted using the DAVID database. An investigation of interactions between active compounds and potential targets was carried out by molecular docking. Finally, animal experiments were conducted to verify the effect and mechanism of Coptidis Rhizoma in treating precancerous lesions of gastric cancer. RESULTS A total of 11 active compounds and 95 anti-gastric precancerous lesions targets of Coptidis Rhizoma were screened for analysis. GO enrichment analysis showed that the mechanism of Coptidis Rhizoma acting on gastric precancerous lesions involves gene expression regulation and apoptosis regulation. KEGG pathway enrichment analysis showed that Coptidis Rhizoma against gastric precancerous lesions involving the AKT /HIF-1α/VEGF signalling pathway. Molecular docking simulations indicated potential interactions between these compounds and core targets involved in anti-gastric precancerous lesions activity. In addition, it was confirmed in vivo that Berberine and Coptidis Rhizoma may reverse atrophy and potential intestinal metaplasia by inhibiting the expression of p-AKT, HIFA, and VEGF. CONCLUSION Bioactive compounds in Coptidis Rhizoma have the potential to prevent atrophy and intestinal metaplasia. These compounds function by regulating the proteins implicated in AKT /HIF-1α/VEGF signalling pathways that are crucial in gastric epithelial cell differentiation, proliferation and maturation.
Collapse
Affiliation(s)
- Xuxing Ye
- Department of Traditional Chinese Medicine, Jinhua Municipal Central Hospital, 351 Mingyue Street, Wucheng District, Jinhua, 321000, Zhejiang, China
| | - Chao Yang
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou, 310000, China
| | - Hanzhi Xu
- Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Qin He
- Department of Traditional Chinese Medicine, Jinhua Municipal Central Hospital, 351 Mingyue Street, Wucheng District, Jinhua, 321000, Zhejiang, China
| | - Lin Sheng
- Department of Pulmonary and Critical Care Medicine, Jinhua Municipal Central Hospital, Jinhua, 321000, Zhejiang, China
| | - Junmei Lin
- Department of Traditional Chinese Medicine, Jinhua Municipal Central Hospital, 351 Mingyue Street, Wucheng District, Jinhua, 321000, Zhejiang, China.
| | - Xiaobo Wang
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou, 310000, China.
| |
Collapse
|
3
|
Gebauer J, Hodkovicova N, Tosnerova K, Skoupa K, Batik A, Bartejsova I, Charvatova M, Leva L, Jarosova R, Sladek Z, Faldyna M, Stastny K. Anabolic steroids induced changes at the level of protein expression: Effects of prolonged administration of testosterone and nandrolone to pigs. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 107:104422. [PMID: 38521435 DOI: 10.1016/j.etap.2024.104422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/16/2024] [Accepted: 03/19/2024] [Indexed: 03/25/2024]
Abstract
Synthetic derivatives of steroid hormones, specifically anabolic-androgenic steroids (AAS), have gained prominence due to their observed benefits in enhancing meat quality. The study replicated the administration of banned AAS and investigated their impacts on pigs to contribute to the understanding of animal biochemistry and to explore the feasibility of detecting AAS administration by employing a non-targeted analysis. The effects were corroborated by evaluating changes in the expression of selected proteins, as well as examining haematological and biochemical profiles and histological alterations. Exposure to AAS influenced the expression of proteins related to drug-metabolizing enzymes, muscle and lipid metabolism, kidney function, reproductive processes, immune system functions, and carcinogenic changes. The effects of AAS appear intricate and contingent on factors such as the specific drug used, dosage, and duration of administration. The results underscore that protein expression analysis holds promise as a valuable tool for detecting illicit AAS use in the fattening process.
Collapse
Affiliation(s)
- Jan Gebauer
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Brno, Czech Republic
| | - Nikola Hodkovicova
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Brno, Czech Republic.
| | - Kristina Tosnerova
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Brno, Czech Republic
| | - Kristyna Skoupa
- Department of Animal Morphology, Physiology and Genetics, Faculty of AgrSciences, Mendel University in Brno, Brno, Czech Republic
| | - Andrej Batik
- Department of Animal Morphology, Physiology and Genetics, Faculty of AgrSciences, Mendel University in Brno, Brno, Czech Republic
| | - Iva Bartejsova
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Brno, Czech Republic
| | - Michaela Charvatova
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Brno, Czech Republic
| | - Lenka Leva
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Brno, Czech Republic
| | - Rea Jarosova
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Brno, Czech Republic
| | - Zbysek Sladek
- Department of Animal Morphology, Physiology and Genetics, Faculty of AgrSciences, Mendel University in Brno, Brno, Czech Republic
| | - Martin Faldyna
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Brno, Czech Republic
| | - Kamil Stastny
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Brno, Czech Republic
| |
Collapse
|
4
|
Peng S, Liang W, Liu Z, Ye S, Peng Z, Zhong Z, Ye Q. Hypothermic machine perfusion reduces donation after circulatory death liver ischemia-reperfusion injury through the SERPINA3-mediated PI3Kδ/Akt pathway. Hum Cell 2024; 37:420-434. [PMID: 38133876 DOI: 10.1007/s13577-023-01012-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 11/16/2023] [Indexed: 12/23/2023]
Abstract
Hypothermic machine perfusion (HMP) has been demonstrated to be more effective in mitigating ischemia-reperfusion injury (IRI) of donation after circulatory death (DCD) organs than cold storage (CS), yet the underlying mechanism remains obscure. We aimed to propose a novel therapeutic approach to ameliorate IRI in DCD liver transplantation. Twelve clinical liver samples were randomly assigned to HMP or CS treatment and subsequent transcriptomics analysis was performed. By combining in vivo HMP models, we discovered that HMP attenuated inflammation, oxidative stress, and apoptosis in DCD liver through a SEPRINA3-mediated PI3Kδ/AKT signaling cascade. Moreover, in the hypoxia/reoxygenation (H/R) model of BRL-3A, overexpression of SERPINA3 mitigated H/R-induced apoptosis, while SERPINA3 knockdown exacerbated cell injury. Idelalisib (IDE) treatment also reversed the protective effect of SERPINA3 overexpression. Overall, our research provided new insights into therapeutic strategies and identified potential novel molecular targets for therapeutic intervention against DCD liver.
Collapse
Affiliation(s)
- Sheng Peng
- Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-Based Medical Materials, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Wenjin Liang
- Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-Based Medical Materials, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
| | - Zhongzhong Liu
- Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-Based Medical Materials, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
| | - Shaojun Ye
- Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-Based Medical Materials, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
| | - Zhiyong Peng
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
| | - Zibiao Zhong
- Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-Based Medical Materials, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China.
| | - Qifa Ye
- Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-Based Medical Materials, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China.
- Research Center of National Health Ministry on Transplantation Medicine Engineering and Technology, The 3rd Xiangya Hospital of Central South University, Changsha, 410013, China.
| |
Collapse
|
5
|
Mizuno H, Murakami N. Multi-omics Approach in Kidney Transplant: Lessons Learned from COVID-19 Pandemic. CURRENT TRANSPLANTATION REPORTS 2023; 10:173-187. [PMID: 38152593 PMCID: PMC10751044 DOI: 10.1007/s40472-023-00410-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2023] [Indexed: 12/29/2023]
Abstract
Purpose of Review Multi-omics approach has advanced our knowledge on transplantation-associated clinical outcomes, such as acute rejection and infection, and emerging omics data are becoming available in kidney transplant and COVID-19. Herein, we discuss updated findings of multi-omics data on kidney transplant outcomes, as well as COVID-19 and kidney transplant. Recent Findings Transcriptomics, proteomics, and metabolomics revealed various inflammation pathways associated with kidney transplantation-related outcomes and COVID-19. Although multi-omics data on kidney transplant and COVID-19 is limited, activation of innate immune pathways and suppression of adaptive immune pathways were observed in the active phase of COVID-19 in kidney transplant recipients. Summary Multi-omics analysis has led us to a deeper exploration and a more comprehensive understanding of key biological pathways in complex clinical settings, such as kidney transplantation and COVID-19. Future multi-omics analysis leveraging multi-center biobank collaborative will further advance our knowledge on the precise immunological responses to allograft and emerging pathogens.
Collapse
Affiliation(s)
- Hiroki Mizuno
- Transplant Research Center, Division of Renal Medicine, Brigham and Women’s Hospital, Harvard Medical School, 221 Longwood Ave. EBRC 305, Boston, MA 02115, USA
- Dvision of Nephrology and Rheumatology, Toranomon Hospital, Tokyo, Japan
| | - Naoka Murakami
- Transplant Research Center, Division of Renal Medicine, Brigham and Women’s Hospital, Harvard Medical School, 221 Longwood Ave. EBRC 305, Boston, MA 02115, USA
| |
Collapse
|
6
|
Lun Y, Chen J, Lu P, Yuan H, Ma P, Wang W, Liang R, Li S, Gao W, Ding X, Wang Z, Guo J, Lu L. Predictive value of serum proteomic biomarkers for noise-induced hearing loss. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:96827-96839. [PMID: 37582891 DOI: 10.1007/s11356-023-29294-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 08/08/2023] [Indexed: 08/17/2023]
Abstract
Early detection of noise-induced hearing loss (NIHL) in patients with long-term noise exposure is vital for improving public health and reducing social burden. However, at present, the diagnosis of NIHL mainly depends on audiometric testing, and the primary test is pure-tone audiometry. Moreover, testing requires professional operators and complex equipment; thus, NIHL is often diagnosed at a later disease stage. Using a liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based proteomic approach, we identified 9 differentially expressed proteins (DEPs), namely, 6 upregulated serum proteins and 3 downregulated serum proteins, in samples from 50 ground crew personnel working at an air force station. Then, according to the results, we predicted that caldesmon (CALD1), myocilin (MYOC), zyxin (ZYX), creatine kinase M-type (CKM), insulin-like growth factor-binding protein 2 (IGFBP2), complement factor H-related protein 4 (CFHR4), prenylcysteine oxidase 1 (PCYOX1), heat shock cognate 71 kDa protein (HSPA8), and immunoglobulin lambda variable 3-21 (IGLV3-21) were associated with NIHL. We selected these DEPs as variables to perform logistic regression. Finally, a logistic regression model was constructed based on IGFBP2, ZYX, CKM, and CFHR4. The area under the curve was 0.894 (95% CI = 0.812 to 0.977). These findings suggested that IGFBP2, ZYX, CKM, and CFHR4 in serum are differentially expressed in NIHL patients and have the potential to be biomarkers for predicting the risk for NIHL. Further experiments in mice showed that ZYX and IGFBP2 in the cochlear were increased after noise exposure. ZYX and IGFBP2 may be involved in the occurrence and development of NIHL.
Collapse
Affiliation(s)
- Yuqiang Lun
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Jiawei Chen
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Peiheng Lu
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Hao Yuan
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Pengwei Ma
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Weilong Wang
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Rui Liang
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Siyu Li
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Wei Gao
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Xuerui Ding
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Zi Wang
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Jianing Guo
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Lianjun Lu
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
7
|
Gouin C, Vu Manh TP, Jouneau L, Bevilacqua C, De Wolf J, Glorion M, Hannouche L, Urien C, Estephan J, Roux A, Magnan A, Le Guen M, Da Costa B, Chevalier C, Descamps D, Schwartz-Cornil I, Dalod M, Sage E. Cell type- and time-dependent biological responses in ex vivo perfused lung grafts. Front Immunol 2023; 14:1142228. [PMID: 37465668 PMCID: PMC10351384 DOI: 10.3389/fimmu.2023.1142228] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 06/13/2023] [Indexed: 07/20/2023] Open
Abstract
In response to the increasing demand for lung transplantation, ex vivo lung perfusion (EVLP) has extended the number of suitable donor lungs by rehabilitating marginal organs. However despite an expanding use in clinical practice, the responses of the different lung cell types to EVLP are not known. In order to advance our mechanistic understanding and establish a refine tool for improvement of EVLP, we conducted a pioneer study involving single cell RNA-seq on human lungs declined for transplantation. Functional enrichment analyses were performed upon integration of data sets generated at 4 h (clinical duration) and 10 h (prolonged duration) from two human lungs processed to EVLP. Pathways related to inflammation were predicted activated in epithelial and blood endothelial cells, in monocyte-derived macrophages and temporally at 4 h in alveolar macrophages. Pathways related to cytoskeleton signaling/organization were predicted reduced in most cell types mainly at 10 h. We identified a division of labor between cell types for the selected expression of cytokine and chemokine genes that varied according to time. Immune cells including CD4+ and CD8+ T cells, NK cells, mast cells and conventional dendritic cells displayed gene expression patterns indicating blunted activation, already at 4 h in several instances and further more at 10 h. Therefore despite inducing inflammatory responses, EVLP appears to dampen the activation of major lung immune cell types, what may be beneficial to the outcome of transplantation. Our results also support that therapeutics approaches aiming at reducing inflammation upon EVLP should target both the alveolar and vascular compartments.
Collapse
Affiliation(s)
- Carla Gouin
- Université Paris-Saclay, INRAE, UVSQ, VIM, 78350, Jouy-en-Josas, France
| | - Thien-Phong Vu Manh
- Aix-Marseille University, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Turing Center for Living Systems, Marseille, France
| | - Luc Jouneau
- Université Paris-Saclay, INRAE, UVSQ, VIM, 78350, Jouy-en-Josas, France
- Université Paris-Saclay, INRAE, UVSQ, BREED, 78350, Jouy-en-Josas, France
| | - Claudia Bevilacqua
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| | - Julien De Wolf
- Université Paris-Saclay, INRAE, UVSQ, VIM, 78350, Jouy-en-Josas, France
- Department of Thoracic Surgery and Lung Transplantation, Foch Hospital, Suresnes, France
| | - Matthieu Glorion
- Université Paris-Saclay, INRAE, UVSQ, VIM, 78350, Jouy-en-Josas, France
- Department of Thoracic Surgery and Lung Transplantation, Foch Hospital, Suresnes, France
| | - Laurent Hannouche
- Université Paris-Saclay, INRAE, UVSQ, VIM, 78350, Jouy-en-Josas, France
- Aix-Marseille University, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Turing Center for Living Systems, Marseille, France
| | - Céline Urien
- Université Paris-Saclay, INRAE, UVSQ, VIM, 78350, Jouy-en-Josas, France
| | - Jérôme Estephan
- Université Paris-Saclay, INRAE, UVSQ, VIM, 78350, Jouy-en-Josas, France
| | - Antoine Roux
- Université Paris-Saclay, INRAE, UVSQ, VIM, 78350, Jouy-en-Josas, France
- Department of Pulmonology, Foch Hospital, Suresnes, France
| | - Antoine Magnan
- Université Paris-Saclay, INRAE, UVSQ, VIM, 78350, Jouy-en-Josas, France
- Department of Pulmonology, Foch Hospital, Suresnes, France
| | - Morgan Le Guen
- Université Paris-Saclay, INRAE, UVSQ, VIM, 78350, Jouy-en-Josas, France
- Department of Anesthesiology, Foch Hospital, Suresnes, France
| | - Bruno Da Costa
- Université Paris-Saclay, INRAE, UVSQ, VIM, 78350, Jouy-en-Josas, France
| | | | - Delphyne Descamps
- Université Paris-Saclay, INRAE, UVSQ, VIM, 78350, Jouy-en-Josas, France
| | | | - Marc Dalod
- Aix-Marseille University, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Turing Center for Living Systems, Marseille, France
| | - Edouard Sage
- Université Paris-Saclay, INRAE, UVSQ, VIM, 78350, Jouy-en-Josas, France
- Department of Thoracic Surgery and Lung Transplantation, Foch Hospital, Suresnes, France
| |
Collapse
|
8
|
Lepoittevin M, Giraud S, Kerforne T, Allain G, Thuillier R, Hauet T. How to improve results after DCD (donation after circulation death). Presse Med 2022; 51:104143. [PMID: 36216034 DOI: 10.1016/j.lpm.2022.104143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 09/29/2022] [Indexed: 11/09/2022] Open
Abstract
The shortage of organs for transplantation has led health professionals to look for alternative sources of donors. One of the avenues concerns donors who have died after circulatory arrest. This is a special situation because the organs from these donors are exposed to warm ischaemia-reperfusion lesions that are unavoidable during the journey of the organs from the donor to the moment of transplantation in the recipient. We will address and discuss the key issues from the perspective of team organization, legislation and its evolution, and the ethical framework. In a second part, the avenues to improve the quality of organs will be presented following the itinerary of the organs between the donor and the recipient. The important moments from the point of view of therapeutic strategy will be put into perspective. New connections between key players involved in pathophysiological mechanisms and implications for innate immunity and injury processes are among the avenues to explore. Technological developments to improve the quality of organs from these recipients will be analyzed, such as perfusion techniques with new modalities of temperatures and oxygenation. New molecules are being investigated for their potential role in protecting these organs and an analysis of potential prospects will be proposed. Finally, the important perspectives that seem to be favored will be discussed in order to reposition the use of deceased donors after circulatory arrest. The use of these organs has become a routine procedure and improving their quality and providing the means for their evaluation is absolutely inevitable.
Collapse
Affiliation(s)
- Maryne Lepoittevin
- Unité UMR U1082, F-86000 Poitiers, France; Faculté de Médecine et de Pharmacie, Université de Poitiers, F-86000 Poitiers, France
| | - Sébastien Giraud
- Unité UMR U1082, F-86000 Poitiers, France; Service de Biochimie, Pôle Biospharm, Centre Hospitalier Universitaire, 2 rue de la Milétrie, CS 90577, 86021 Poitiers Cedex, France
| | - Thomas Kerforne
- Unité UMR U1082, F-86000 Poitiers, France; Faculté de Médecine et de Pharmacie, Université de Poitiers, F-86000 Poitiers, France; CHU Poitiers, Service de Réanimation Chirurgie Cardio-Thoracique et Vasculaire, Coordination des P.M.O., F-86021 Poitiers, France
| | - Géraldine Allain
- Unité UMR U1082, F-86000 Poitiers, France; Faculté de Médecine et de Pharmacie, Université de Poitiers, F-86000 Poitiers, France; CHU Poitiers, Service de Chirurgie Cardiothoracique et Vasculaire, F-86021 Poitiers, France
| | - Raphaël Thuillier
- Unité UMR U1082, F-86000 Poitiers, France; Faculté de Médecine et de Pharmacie, Université de Poitiers, F-86000 Poitiers, France; Service de Biochimie, Pôle Biospharm, Centre Hospitalier Universitaire, 2 rue de la Milétrie, CS 90577, 86021 Poitiers Cedex, France
| | - Thierry Hauet
- Unité UMR U1082, F-86000 Poitiers, France; Faculté de Médecine et de Pharmacie, Université de Poitiers, F-86000 Poitiers, France; Fédération Hospitalo-Universitaire « Survival Optimization in Organ Transplantation », CHU de Poitiers, 2 rue de la Milétrie - CS 90577, 86021 Poitiers Cedex, France.
| |
Collapse
|
9
|
A Review of Current and Emerging Trends in Donor Graft-Quality Assessment Techniques. J Clin Med 2022; 11:jcm11030487. [PMID: 35159939 PMCID: PMC8836899 DOI: 10.3390/jcm11030487] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 02/07/2023] Open
Abstract
The number of patients placed on kidney transplant waiting lists is rapidly increasing, resulting in a growing gap between organ demand and the availability of kidneys for transplantation. This organ shortage has forced medical professionals to utilize marginal kidneys from expanded criteria donors (ECD) to broaden the donor pool and shorten wait times for patients with end-stage renal disease. However, recipients of ECD kidney grafts tend to have worse outcomes compared to those receiving organs from standard criteria donors (SCD), specifically increased risks of delayed graft function (DGF) and primary nonfunction incidence. Thus, representative methods for graft-quality assessment are strongly needed, especially for ECDs. Currently, graft-quality evaluation is limited to interpreting the donor’s recent laboratory tests, clinical risk scores, the visual evaluation of the organ, and, in some cases, a biopsy and perfusion parameters. The last few years have seen the emergence of many new technologies designed to examine organ function, including new imaging techniques, transcriptomics, genomics, proteomics, metabolomics, lipidomics, and new solutions in organ perfusion, which has enabled a deeper understanding of the complex mechanisms associated with ischemia-reperfusion injury (IRI), inflammatory process, and graft rejection. This review summarizes and assesses the strengths and weaknesses of current conventional diagnostic methods and a wide range of new potential strategies (from the last five years) with respect to donor graft-quality assessment, the identification of IRI, perfusion control, and the prediction of DGF.
Collapse
|
10
|
Urbanellis P, McEvoy CM, Škrtić M, Kaths JM, Kollmann D, Linares I, Ganesh S, Oquendo F, Sharma M, Mazilescu L, Goto T, Noguchi Y, John R, Mucsi I, Ghanekar A, Bagli D, Konvalinka A, Selzner M, Robinson LA. Transcriptome Analysis of Kidney Grafts Subjected to Normothermic Ex Vivo Perfusion Demonstrates an Enrichment of Mitochondrial Metabolism Genes. Transplant Direct 2021; 7:e719. [PMID: 34258386 PMCID: PMC8270593 DOI: 10.1097/txd.0000000000001157] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/18/2021] [Accepted: 03/20/2021] [Indexed: 12/28/2022] Open
Abstract
Normothermic ex vivo kidney perfusion (NEVKP) has demonstrated superior outcomes for donation-after-cardiovascular death grafts compared with static cold storage (SCS). To determine the mechanisms responsible for this, we performed an unbiased genome-wide microarray analysis. METHODS Kidneys from 30-kg Yorkshire pigs were subjected to 30 min of warm ischemia followed by 8 h of NEVKP or SCS, or no storage, before autotransplantation. mRNA expression was analyzed on renal biopsies on postoperative day 3. Gene set enrichment analysis was performed using hallmark gene sets, Gene Ontology, and pathway analysis. RESULTS The gene expression profile of NEVKP-stored grafts closely resembled no storage kidneys. Gene set enrichment analysis demonstrated enrichment of fatty acid metabolism and oxidative phosphorylation following NEVKP, whereas SCS-enriched gene sets were related to mitosis, cell cycle checkpoint, and reactive oxygen species (q < 0.05). Pathway analysis demonstrated enrichment of lipid oxidation/metabolism, the Krebs cycle, and pyruvate metabolism in NEVKP compared with SCS (q < 0.05). Comparison of our findings with external data sets of renal ischemia-reperfusion injury revealed that SCS-stored grafts demonstrated similar gene expression profiles to ischemia-reperfusion injury, whereas the profile of NEVKP-stored grafts resembled recovered kidneys. CONCLUSIONS Increased transcripts of key mitochondrial metabolic pathways following NEVKP storage may account for improved donation-after-cardiovascular death graft function, compared with SCS, which promoted expression of genes typically perturbed during IRI.
Collapse
Affiliation(s)
- Peter Urbanellis
- Soham and Shaila Ajmera Family Transplant Centre, Toronto General Hospital, University Health Network, Toronto, ON, Canada
- Canadian Donation and Transplantation Research Program, Edmonton, AB, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Caitriona M. McEvoy
- Soham and Shaila Ajmera Family Transplant Centre, Toronto General Hospital, University Health Network, Toronto, ON, Canada
- Canadian Donation and Transplantation Research Program, Edmonton, AB, Canada
- Division of Nephrology, Department of Medicine, University Health Network, Toronto, ON, Canada
| | - Marko Škrtić
- Division of Nephrology, Department of Medicine, University of Toronto, Toronto, ON, Canada
- Program in Cell Biology, The Hospital for Sick Children Research Institute, Toronto, ON, Canada
| | - J. Moritz Kaths
- Soham and Shaila Ajmera Family Transplant Centre, Toronto General Hospital, University Health Network, Toronto, ON, Canada
- Canadian Donation and Transplantation Research Program, Edmonton, AB, Canada
| | - Dagmar Kollmann
- Soham and Shaila Ajmera Family Transplant Centre, Toronto General Hospital, University Health Network, Toronto, ON, Canada
| | - Ivan Linares
- Soham and Shaila Ajmera Family Transplant Centre, Toronto General Hospital, University Health Network, Toronto, ON, Canada
- Canadian Donation and Transplantation Research Program, Edmonton, AB, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Sujani Ganesh
- Soham and Shaila Ajmera Family Transplant Centre, Toronto General Hospital, University Health Network, Toronto, ON, Canada
| | - Fabiola Oquendo
- Soham and Shaila Ajmera Family Transplant Centre, Toronto General Hospital, University Health Network, Toronto, ON, Canada
| | - Manraj Sharma
- Soham and Shaila Ajmera Family Transplant Centre, Toronto General Hospital, University Health Network, Toronto, ON, Canada
| | - Laura Mazilescu
- Soham and Shaila Ajmera Family Transplant Centre, Toronto General Hospital, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Program in Cell Biology, The Hospital for Sick Children Research Institute, Toronto, ON, Canada
| | - Toru Goto
- Soham and Shaila Ajmera Family Transplant Centre, Toronto General Hospital, University Health Network, Toronto, ON, Canada
| | - Yuki Noguchi
- Soham and Shaila Ajmera Family Transplant Centre, Toronto General Hospital, University Health Network, Toronto, ON, Canada
| | - Rohan John
- Laboratory Medicine and Pathobiology, Toronto General Hospital, University of Toronto, Toronto, ON, Canada
| | - Istvan Mucsi
- Canadian Donation and Transplantation Research Program, Edmonton, AB, Canada
- Division of Nephrology, Department of Medicine, University Health Network, Toronto, ON, Canada
| | - Anand Ghanekar
- Soham and Shaila Ajmera Family Transplant Centre, Toronto General Hospital, University Health Network, Toronto, ON, Canada
| | - Darius Bagli
- Departments of Surgery (Urology) and Physiology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Ana Konvalinka
- Soham and Shaila Ajmera Family Transplant Centre, Toronto General Hospital, University Health Network, Toronto, ON, Canada
- Canadian Donation and Transplantation Research Program, Edmonton, AB, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Division of Nephrology, Department of Medicine, University Health Network, Toronto, ON, Canada
- Laboratory Medicine and Pathobiology, Toronto General Hospital, University of Toronto, Toronto, ON, Canada
| | - Markus Selzner
- Soham and Shaila Ajmera Family Transplant Centre, Toronto General Hospital, University Health Network, Toronto, ON, Canada
- Canadian Donation and Transplantation Research Program, Edmonton, AB, Canada
| | - Lisa A. Robinson
- Program in Cell Biology, The Hospital for Sick Children Research Institute, Toronto, ON, Canada
- Division of Nephrology, The Hospital for Sick Children, Toronto, ON, Canada
| |
Collapse
|
11
|
Transcriptomic Hallmarks of Ischemia-Reperfusion Injury. Cells 2021; 10:cells10071838. [PMID: 34360008 PMCID: PMC8305649 DOI: 10.3390/cells10071838] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/07/2021] [Accepted: 07/09/2021] [Indexed: 12/15/2022] Open
Abstract
Ischemia reperfusion injury (IRI) is associated with a broad array of life-threatening medical conditions including myocardial infarct, cerebral stroke, and organ transplant. Although the pathobiology and clinical manifestations of IRI are well reviewed by previous publications, IRI-related transcriptomic alterations are less studied. This study aimed to reveal a transcriptomic hallmark for IRI by using the RNA-sequencing data provided by several studies on non-human preclinical experimental models. In this regard, we focused on the transcriptional responses of IRI in an acute time-point up to 48 h. We compiled a list of highly reported genes in the current literature that are affected in the context of IRI. We conducted Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses and found many of the up-regulated genes to be involved in cell survival, cell surface signaling, response to oxidative stress, and inflammatory response, while down-regulated genes were predominantly involved in ion transport. Furthermore, by GO analysis, we found that multiple inflammatory and stress response processes were affected after IRI. Tumor necrosis factor alpha (TNF) and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling pathways were also highlighted in the Kyoto Encyclopedia of Genes and Genomes enrichment analysis. In the last section, we discuss the treatment approaches and their efficacy for IRI by comparing RNA sequencing data from therapeutic interventions with the results of our cross-comparison of differentially expressed genes and pathways across IRI.
Collapse
|
12
|
McEvoy CM, Clotet-Freixas S, Tokar T, Pastrello C, Reid S, Batruch I, RaoPeters AAE, Kaths JM, Urbanellis P, Farkona S, Van JAD, Urquhart BL, John R, Jurisica I, Robinson LA, Selzner M, Konvalinka A. Normothermic Ex-vivo Kidney Perfusion in a Porcine Auto-Transplantation Model Preserves the Expression of Key Mitochondrial Proteins: An Unbiased Proteomics Analysis. Mol Cell Proteomics 2021; 20:100101. [PMID: 34033948 PMCID: PMC8253910 DOI: 10.1016/j.mcpro.2021.100101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 05/19/2021] [Indexed: 12/17/2022] Open
Abstract
Normothermic ex-vivo kidney perfusion (NEVKP) results in significantly improved graft function in porcine auto-transplant models of donation after circulatory death injury compared with static cold storage (SCS); however, the molecular mechanisms underlying these beneficial effects remain unclear. We performed an unbiased proteomics analysis of 28 kidney biopsies obtained at three time points from pig kidneys subjected to 30 min of warm ischemia, followed by 8 h of NEVKP or SCS, and auto-transplantation. 70/6593 proteins quantified were differentially expressed between NEVKP and SCS groups (false discovery rate < 0.05). Proteins increased in NEVKP mediated key metabolic processes including fatty acid ß-oxidation, the tricarboxylic acid cycle, and oxidative phosphorylation. Comparison of our findings with external datasets of ischemia-reperfusion and other models of kidney injury confirmed that 47 of our proteins represent a common signature of kidney injury reversed or attenuated by NEVKP. We validated key metabolic proteins (electron transfer flavoprotein subunit beta and carnitine O-palmitoyltransferase 2, mitochondrial) by immunoblotting. Transcription factor databases identified members of the peroxisome proliferator-activated receptors (PPAR) family of transcription factors as the upstream regulators of our dataset, and we confirmed increased expression of PPARA, PPARD, and RXRA in NEVKP with reverse transcription polymerase chain reaction. The proteome-level changes observed in NEVKP mediate critical metabolic pathways. These effects may be coordinated by PPAR-family transcription factors and may represent novel therapeutic targets in ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Caitriona M McEvoy
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada; Division of Nephrology, Department of Medicine, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada; Soham and Shaila Ajmera Family Transplant Centre, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada.
| | - Sergi Clotet-Freixas
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Tomas Tokar
- Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
| | - Chiara Pastrello
- Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
| | - Shelby Reid
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Ihor Batruch
- Department of Laboratory Medicine and Pathobiology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Adrien A E RaoPeters
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| | - J Moritz Kaths
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada; Department of General, Visceral, and Transplantation Surgery, University Hospital Essen, University Essen-Duisburg, Essen, Germany
| | - Peter Urbanellis
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Sofia Farkona
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Julie A D Van
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Bradley L Urquhart
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| | - Rohan John
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Igor Jurisica
- Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada; Departments of Medical Biophysics and Computer Science, University of Toronto, Toronto, Ontario, Canada; Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Lisa A Robinson
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Division of Nephrology, The Hospital for Sick Children, Toronto, Ontario, Canada; Program in Cell Biology, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | - Markus Selzner
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada; Soham and Shaila Ajmera Family Transplant Centre, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Ana Konvalinka
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada; Division of Nephrology, Department of Medicine, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada; Soham and Shaila Ajmera Family Transplant Centre, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
13
|
High Throughput Proteomic Exploration of Hypothermic Preservation Reveals Active Processes within the Cell Associated with Cold Ischemia Kinetic. Int J Mol Sci 2021; 22:ijms22052384. [PMID: 33673561 PMCID: PMC7956856 DOI: 10.3390/ijms22052384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/19/2021] [Accepted: 02/23/2021] [Indexed: 12/28/2022] Open
Abstract
The demand for organs to be transplanted increases pressure on procurement centers, to the detriment of organ quality, increasing complications. New preservation protocols are urgently needed, requiring an in-depth understanding of ischemia-reperfusion mechanisms. We performed a proteomic analysis using LC-MS/MS-TOF data analyzed through R software and Cytoscape's ClueGO application, comparing the proteome of kidney endothelial cells, key cell type, subjected to 3, 6, 12, 19, and 24 h of cold ischemia and 6 h reperfusion. Critical pathways such as energy metabolism, cytoskeleton structure/transport system, and gene transcription/translation were modulated. Important time windows were revealed: a-during the first 3 h, central proteins were upregulated within these pathways; b-the majority of these upregulations were maintained until 12 h cold ischemia time (CIT); c-after that time, the overall decrease in protein expression was observed; d-at reperfusion, proteins expressed in response to cold ischemia were all downregulated. This shows that cold ischemia is not a simple slowing down of metabolism, as deep changes take place within the proteome on major pathways. Time-sensitive expression of key protein reveals possible quality biomarkers as well as potential targets for new strategies to maintain or optimize organ quality.
Collapse
|
14
|
Danion J, Thuillier R, Allain G, Bruneval P, Tomasi J, Pinsard M, Hauet T, Kerforne T. Evaluation of Liver Quality after Circulatory Death Versus Brain Death: A Comparative Preclinical Pig Model Study. Int J Mol Sci 2020; 21:ijms21239040. [PMID: 33261172 PMCID: PMC7730280 DOI: 10.3390/ijms21239040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/14/2020] [Accepted: 11/21/2020] [Indexed: 02/07/2023] Open
Abstract
The current organ shortage in hepatic transplantation leads to increased use of marginal livers. New organ sources are needed, and deceased after circulatory death (DCD) donors present an interesting possibility. However, many unknown remains on these donors and their pathophysiology regarding ischemia reperfusion injury (IRI). Our hypothesis was that DCD combined with abdominal normothermic regional recirculation (ANOR) is not inferior to deceased after brain death (DBD) donors. We performed a mechanistic comparison between livers from DBD and DCD donors in a highly reproducible pig model, closely mimicking donor conditions encountered in the clinic. DCD donors were conditioned by ANOR. We determined that from the start of storage, pro-lesion pathways such as oxidative stress and cell death were induced in both donor types, but to a higher extent in DBD organs. Furthermore, pro-survival pathways, such as resistance to hypoxia and regeneration showed activation levels closer to healthy livers in DCD-ANOR rather than in DBD organs. These data highlight critical differences between DBD and DCD-ANOR livers, with an apparent superiority of DCD in terms of quality. This confirms our hypothesis and further confirms previously demonstrated benefits of ANOR. This encourages the expended use of DCD organs, particularly with ANOR preconditioning.
Collapse
Affiliation(s)
- Jérôme Danion
- Inserm U1082, F-86000 Poitiers, France; (J.D.); (R.T.); (G.A.); (T.K.)
- Faculté de Médecine et de Pharmacie, Université de Poitiers, F-86000 Poitiers, France
- CHU de Poitiers, Service de Chirurgie Générale et Endocrinienne, F-86021 Poitiers, France
| | - Raphael Thuillier
- Inserm U1082, F-86000 Poitiers, France; (J.D.); (R.T.); (G.A.); (T.K.)
- Faculté de Médecine et de Pharmacie, Université de Poitiers, F-86000 Poitiers, France
- CHU Poitiers, Service de Biochimie, F-86021 Poitiers, France
| | - Géraldine Allain
- Inserm U1082, F-86000 Poitiers, France; (J.D.); (R.T.); (G.A.); (T.K.)
- Faculté de Médecine et de Pharmacie, Université de Poitiers, F-86000 Poitiers, France
- CHU Poitiers, Service de Chirurgie Cardiothoracique et Vasculaire, F-86021 Poitiers, France;
| | - Patrick Bruneval
- Hôpital Européen Georges Pompidou, Service D’anatomie Pathologique, F-75015 Paris, France;
- Faculté de Médecine, Université Paris-Descartes, F-75006 Paris, France
| | - Jacques Tomasi
- CHU Poitiers, Service de Chirurgie Cardiothoracique et Vasculaire, F-86021 Poitiers, France;
| | - Michel Pinsard
- CHU Poitiers, Service de Réanimation Chirurgie Cardio-Thoracique et Vasculaire, Coordination des P.M.O., F-86021 Poitiers, France;
| | - Thierry Hauet
- Inserm U1082, F-86000 Poitiers, France; (J.D.); (R.T.); (G.A.); (T.K.)
- Faculté de Médecine et de Pharmacie, Université de Poitiers, F-86000 Poitiers, France
- CHU Poitiers, Service de Biochimie, F-86021 Poitiers, France
- Fédération Hospitalo-Universitaire SUPORT, F-86000 Poitiers, France
- IBiSA Plateforme ‘Plate-Forme MOdélisation Préclinique—Innovation Chirurgicale et Technologique (MOPICT)’, Domaine Expérimental du Magneraud, F-17700 Surgères, France
- Pr. Thierry HAUET, INSERM U1082, CHU de Poitiers, 2 rue de la Miletrie, CEDEX BP 577, 86021 Poitiers, France
- Correspondence: ; Tel.: +33-5-49-44-48-29; Fax: +33-5-49-44-38-34
| | - Thomas Kerforne
- Inserm U1082, F-86000 Poitiers, France; (J.D.); (R.T.); (G.A.); (T.K.)
- Faculté de Médecine et de Pharmacie, Université de Poitiers, F-86000 Poitiers, France
- CHU Poitiers, Service de Réanimation Chirurgie Cardio-Thoracique et Vasculaire, Coordination des P.M.O., F-86021 Poitiers, France;
| |
Collapse
|
15
|
Steichen C, Giraud S, Hauet T. Combining Kidney Organoids and Genome Editing Technologies for a Better Understanding of Physiopathological Mechanisms of Renal Diseases: State of the Art. Front Med (Lausanne) 2020; 7:10. [PMID: 32118002 PMCID: PMC7010937 DOI: 10.3389/fmed.2020.00010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 01/13/2020] [Indexed: 12/15/2022] Open
Abstract
Kidney organoids derived from pluripotent stem cells became a real alternative to the use of in vitro cellular models or in vivo animal models. Indeed, the comprehension of the key steps involved during kidney embryonic development led to the establishment of protocols enabling the differentiation of pluripotent stem cells into highly complex and organized structures, composed of various renal cell types. These organoids are linked with one major application based on iPSC technology advantage: the possibility to control iPSC genome, by selecting patients with specific disease or by genome editing tools such as CRISPR/Cas9 system. This allows the generation of kidney organoïds which recapitulate important physiopathological mechanisms such as cyst formation in renal polycystic disease for example. This review will focus on studies combining these both cutting edge technologies i.e., kidney organoid differentiation and genome editing and will describe what are the main advances performed in the comprehension of physiopathological mechanisms of renal diseases, as well as discuss remaining technical barriers and perspectives in the field.
Collapse
Affiliation(s)
- Clara Steichen
- INSERM U1082-IRTOMIT, Poitiers, France.,Université de Poitiers, Faculté de Médecine et de Pharmacie, Poitiers, France
| | - Sébastien Giraud
- INSERM U1082-IRTOMIT, Poitiers, France.,CHU Poitiers, Service de Biochimie, Poitiers, France
| | - Thierry Hauet
- INSERM U1082-IRTOMIT, Poitiers, France.,Université de Poitiers, Faculté de Médecine et de Pharmacie, Poitiers, France.,CHU Poitiers, Service de Biochimie, Poitiers, France
| |
Collapse
|
16
|
Abstract
This review focus on kidney organoids derived from pluripotent stem cells, which become a real alternative to the use of in vitro cellular models or in vivo animals models. The comprehension of the key steps involved during kidney embryonic development led to the establishment of protocols enabling the differentiation of pluripotent stem cells into kidney organoids that are highly complex and organized structures, composed of various renal cell types. These mini-organs are endowed with major applications: the possibility to control iPSC genome (by selecting patients with specific disease or by genome editing) allows the generation of kidney organoïds which recapitulate important physiopathological mechanisms such as cyste formation in renal polycystic disease. Kidney organoids can also be used in high-throughput screening to fasten the screening of nephrotoxic/therapeutic compounds. Finally, kidney organoids have a huge interest in the context of tissue repair, which remains for now a challenging goal linked with technological barriers that need still to be overcome.
Collapse
Affiliation(s)
- Clara Steichen
- Inserm U1082 - IRTOMIT (Ischémie reperfusion en transplantation d'organes mécanismes et innovations thérapeutiques), Poitiers, F-86000, France - Université de Poitiers, Faculté de médecine et de pharmacie, Poitiers, F-86000, France
| | - Sébastien Giraud
- Inserm U1082 - IRTOMIT (Ischémie reperfusion en transplantation d'organes mécanismes et innovations thérapeutiques), Poitiers, F-86000, France - CHU de Poitiers, service de biochimie, Poitiers, F-86000, France
| | - Thierry Hauet
- Inserm U1082 - IRTOMIT (Ischémie reperfusion en transplantation d'organes mécanismes et innovations thérapeutiques), Poitiers, F-86000, France - Université de Poitiers, Faculté de médecine et de pharmacie, Poitiers, F-86000, France - CHU de Poitiers, service de biochimie, Poitiers, F-86000, France
| |
Collapse
|
17
|
Vectisol Formulation Enhances Solubility of Resveratrol and Brings Its Benefits to Kidney Transplantation in a Preclinical Porcine Model. Int J Mol Sci 2019; 20:ijms20092268. [PMID: 31071925 PMCID: PMC6540035 DOI: 10.3390/ijms20092268] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/03/2019] [Accepted: 05/05/2019] [Indexed: 02/07/2023] Open
Abstract
Current organ shortages have led centers to extend the acceptance criteria for organs, increasing the risk for adverse outcomes. Current preservation protocols have not been adapted so as to efficiently protect these organs. Herein, we target oxidative stress, the key mechanism of ischemia reperfusion injury. Vectisol® is a novel antioxidant strategy based on the encapsulation of resveratrol into a cyclodextrin, increasing its bioavailability. We tested this compound as an additive to the most popular static preservation solutions and machine perfusion (LifePort) in a preclinical pig model of kidney autotransplantation. In regard to static preservation, supplementation improved glomerular filtration and proximal tubular function early recovery. Extended follow-up confirmed the higher level of protection, slowing chronic loss of function (creatininemia and proteinuria) and the onset of histological lesions. Regarding machine perfusion, the use of Vectisol® decreased oxidative stress and apoptosis at the onset of reperfusion (30 min post declamping). Improved quality was confirmed with decreased early levels of circulating SOD (Superoxide Dismutase) and ASAT (asparagine amino transferase). Supplementation slowed the onset of chronic loss of function, as well as interstitial fibrosis and tubular atrophy. The simple addition of Vectisol® to the preservation solution significantly improved the performance of organ preservation, with long-term effects on the outcome. This strategy is thus a key player for future multi-drug therapy aimed at ischemia reperfusion in transplantation.
Collapse
|
18
|
Melis N, Thuillier R, Steichen C, Giraud S, Sauvageon Y, Kaminski J, Pelé T, Badet L, Richer JP, Barrera-Chimal J, Jaisser F, Tauc M, Hauet T. Emerging therapeutic strategies for transplantation-induced acute kidney injury: protecting the organelles and the vascular bed. Expert Opin Ther Targets 2019; 23:495-509. [PMID: 31022355 DOI: 10.1080/14728222.2019.1609451] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Renal ischemia-reperfusion injury (IRI) is a significant clinical challenge faced by clinicians in a broad variety of clinical settings such as perioperative and intensive care. Renal IRI induced acute kidney injury (AKI) is a global public health concern associated with high morbidity, mortality, and health-care costs. Areas covered: This paper focuses on the pathophysiology of transplantation-related AKI and recent findings on cellular stress responses at the intersection of 1. The Unfolded protein response; 2. Mitochondrial dysfunction; 3. The benefits of mineralocorticoid receptor antagonists. Lastly, perspectives are offered to the readers. Expert opinion: Renal IRI is caused by a sudden and temporary impairment of blood flow to the organ. Defining the underlying cellular cascades involved in IRI will assist us in the identification of novel interventional targets to attenuate IRI with the potential to improve transplantation outcomes. Targeting mitochondrial function and cellular bioenergetics upstream of cellular damage may offer several advantages compared to targeting downstream inflammatory and fibrosis processes. An improved understanding of the cellular pathophysiological mechanisms leading to kidney injury will hopefully offer improved targeted therapies to prevent and treat the injury in the future.
Collapse
Affiliation(s)
- Nicolas Melis
- a Laboratory of Cellular and Molecular Biology , Center for Cancer Research, National Cancer Institute , Bethesda , MD , USA
| | - Raphael Thuillier
- b IRTOMIT , Inserm U1082 , Poitiers , France.,c Faculté de Médecine et de Pharmacie , Université de Poitiers , Poitiers , France.,d CHU Poitiers , Service de Biochimie , Poitiers , France.,e Fédération Hospitalo-Universitaire SUPORT , Poitiers , France
| | - Clara Steichen
- b IRTOMIT , Inserm U1082 , Poitiers , France.,c Faculté de Médecine et de Pharmacie , Université de Poitiers , Poitiers , France
| | - Sebastien Giraud
- b IRTOMIT , Inserm U1082 , Poitiers , France.,c Faculté de Médecine et de Pharmacie , Université de Poitiers , Poitiers , France.,d CHU Poitiers , Service de Biochimie , Poitiers , France
| | - Yse Sauvageon
- b IRTOMIT , Inserm U1082 , Poitiers , France.,c Faculté de Médecine et de Pharmacie , Université de Poitiers , Poitiers , France
| | - Jacques Kaminski
- b IRTOMIT , Inserm U1082 , Poitiers , France.,c Faculté de Médecine et de Pharmacie , Université de Poitiers , Poitiers , France
| | - Thomas Pelé
- b IRTOMIT , Inserm U1082 , Poitiers , France.,c Faculté de Médecine et de Pharmacie , Université de Poitiers , Poitiers , France
| | - Lionel Badet
- f Faculté de Médecine , Université Claude Bernard Lyon 1 , Villeurbanne , France.,g Hospices Civiles de Lyon , Service d'urologie et de chirurgie de la transplantation , Lyon , France
| | - Jean Pierre Richer
- b IRTOMIT , Inserm U1082 , Poitiers , France.,c Faculté de Médecine et de Pharmacie , Université de Poitiers , Poitiers , France.,h CHU de Poitiers , Service de chirurgie générale et endocrinienne , Poitiers , France.,i Faculté de Médecine et de Pharmacie , ABS Lab (Laboratoire d'Anatomie, Biomécanique et Simulation), Université de Poitiers , Poitiers , France
| | - Jonatan Barrera-Chimal
- j Laboratorio de Fisiología Cardiovascular y Trasplante Renal, Unidad de Medicina Traslacional , Instituto de Investigaciones Biomédicas, UNAM and Instituto Nacional de Cardiología Ignacio Chávez , Mexico City , Mexico
| | - Frédéric Jaisser
- k INSERM, UMRS 1138, Team 1 , Centre de Recherche des Cordeliers, Pierre et Marie Curie University, Paris, Descartes University , Paris , France
| | - Michel Tauc
- l LP2M CNRS-UMR7370, LabEx ICST , Medical Faculty, Université Côte d'Azur , Nice , France
| | - Thierry Hauet
- b IRTOMIT , Inserm U1082 , Poitiers , France.,c Faculté de Médecine et de Pharmacie , Université de Poitiers , Poitiers , France.,d CHU Poitiers , Service de Biochimie , Poitiers , France.,e Fédération Hospitalo-Universitaire SUPORT , Poitiers , France.,i Faculté de Médecine et de Pharmacie , ABS Lab (Laboratoire d'Anatomie, Biomécanique et Simulation), Université de Poitiers , Poitiers , France.,m IBiSA Plateforme 'plate-forme MOdélisation Préclinique - Innovation Chirurgicale et Technologique (MOPICT)', Domaine Expérimental du Magneraud , Surgères , France
| |
Collapse
|