1
|
Wang M, Liu Z, Liu C, He W, Qin D, You M. DNAzyme-based ultrasensitive immunoassay: Recent advances and emerging trends. Biosens Bioelectron 2024; 251:116122. [PMID: 38382271 DOI: 10.1016/j.bios.2024.116122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/03/2024] [Accepted: 02/08/2024] [Indexed: 02/23/2024]
Abstract
Immunoassay, as the most commonly used method for protein detection, is simple to operate and highly specific. Sensitivity improvement is always the thrust of immunoassays, especially for the detection of trace quantities. The emergence of artificial enzyme, i.e., DNAzyme, provides a novel approach to improve the detection sensitivity of immunoassay. Simultaneously, its advantages of simple synthesis and high stability enable low cost, broad applicability and long shelf life for immunoassay. In this review, we summarized the recent advances in DNAzyme-based immunoassay. First, we summarized the existing different DNAzymes based on their catalytic activities. Next, the common signal amplification strategies used for DNAzyme-based immunoassays were reviewed to cater to diverse detection requirements. Following, the wide applications in disease diagnosis, environmental monitoring and food safety were discussed. Finally, the current challenges and perspectives on the future development of DNAzyme-based immunoassays were also provided.
Collapse
Affiliation(s)
- Meng Wang
- Department of Biomedical Engineering, School of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing, 400065, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, PR China
| | - Zhe Liu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, PR China; Department of Rehabilitation Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China
| | - Chang Liu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, PR China
| | - Wanghong He
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, PR China; Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, 100050, PR China
| | - Dui Qin
- Department of Biomedical Engineering, School of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing, 400065, PR China.
| | - Minli You
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, PR China.
| |
Collapse
|
2
|
Cho HS, Noh MS, Kim YH, Namgung J, Yoo K, Shin MS, Yang CH, Kim YJ, Yu SJ, Chang H, Rho WY, Jun BH. Recent Studies on Metal-Embedded Silica Nanoparticles for Biological Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:268. [PMID: 38334538 PMCID: PMC10856399 DOI: 10.3390/nano14030268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/18/2024] [Accepted: 01/23/2024] [Indexed: 02/10/2024]
Abstract
Recently, silica nanoparticles (NPs) have attracted considerable attention as biocompatible and stable templates for embedding noble metals. Noble-metal-embedded silica NPs utilize the exceptional optical properties of novel metals while overcoming the limitations of individual novel metal NPs. In addition, the structure of metal-embedded silica NPs decorated with small metal NPs around the silica core results in strong signal enhancement in localized surface plasmon resonance and surface-enhanced Raman scattering. This review summarizes recent studies on metal-embedded silica NPs, focusing on their unique designs and applications. The characteristics of the metal-embedded silica NPs depend on the type and structure of the embedded metals. Based on this progress, metal-embedded silica NPs are currently utilized in various spectroscopic applications, serving as nanozymes, detection and imaging probes, drug carriers, photothermal inducers, and bioactivation molecule screening identifiers. Owing to their versatile roles, metal-embedded silica NPs are expected to be applied in various fields, such as biology and medicine, in the future.
Collapse
Affiliation(s)
- Hye-Seong Cho
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea; (H.-S.C.); (Y.-H.K.); (J.N.); (K.Y.); (M.-S.S.); (C.-H.Y.); (Y.J.K.)
| | - Mi Suk Noh
- Bio & Medical Research Center, Bio Business Division, Korea Testing Certification, Gunpo 15809, Gyeonggi-do, Republic of Korea;
| | - Yoon-Hee Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea; (H.-S.C.); (Y.-H.K.); (J.N.); (K.Y.); (M.-S.S.); (C.-H.Y.); (Y.J.K.)
| | - Jayoung Namgung
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea; (H.-S.C.); (Y.-H.K.); (J.N.); (K.Y.); (M.-S.S.); (C.-H.Y.); (Y.J.K.)
| | - Kwanghee Yoo
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea; (H.-S.C.); (Y.-H.K.); (J.N.); (K.Y.); (M.-S.S.); (C.-H.Y.); (Y.J.K.)
| | - Min-Sup Shin
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea; (H.-S.C.); (Y.-H.K.); (J.N.); (K.Y.); (M.-S.S.); (C.-H.Y.); (Y.J.K.)
| | - Cho-Hee Yang
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea; (H.-S.C.); (Y.-H.K.); (J.N.); (K.Y.); (M.-S.S.); (C.-H.Y.); (Y.J.K.)
| | - Young Jun Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea; (H.-S.C.); (Y.-H.K.); (J.N.); (K.Y.); (M.-S.S.); (C.-H.Y.); (Y.J.K.)
| | - Seung-Ju Yu
- Graduate School of Integrated Energy-AI, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si 54896, Jeollabuk-do, Republic of Korea;
| | - Hyejin Chang
- Division of Science Education, Kangwon National University, Chuncheon 24341, Republic of Korea;
| | - Won Yeop Rho
- Graduate School of Integrated Energy-AI, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si 54896, Jeollabuk-do, Republic of Korea;
| | - Bong-Hyun Jun
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea; (H.-S.C.); (Y.-H.K.); (J.N.); (K.Y.); (M.-S.S.); (C.-H.Y.); (Y.J.K.)
| |
Collapse
|
3
|
Liu L, Chang Y, Lou J, Zhang S, Yi X. Overview on the Development of Alkaline-Phosphatase-Linked Optical Immunoassays. Molecules 2023; 28:6565. [PMID: 37764341 PMCID: PMC10536125 DOI: 10.3390/molecules28186565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/05/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
The drive to achieve ultrasensitive target detection with exceptional efficiency and accuracy requires the advancement of immunoassays. Optical immunoassays have demonstrated significant potential in clinical diagnosis, food safety, environmental protection, and other fields. Through the innovative and feasible combination of enzyme catalysis and optical immunoassays, notable progress has been made in enhancing analytical performances. Among the kinds of reporter enzymes, alkaline phosphatase (ALP) stands out due to its high catalytic activity, elevated turnover number, and broad substrate specificity, rendering it an excellent candidate for the development of various immunoassays. This review provides a systematic evaluation of the advancements in optical immunoassays by employing ALP as the signal label, encompassing fluorescence, colorimetry, chemiluminescence, and surface-enhanced Raman scattering. Particular emphasis is placed on the fundamental signal amplification strategies employed in ALP-linked immunoassays. Furthermore, this work briefly discusses the proposed solutions and challenges that need to be addressed to further enhance the performances of ALP-linked immunoassays.
Collapse
Affiliation(s)
- Lin Liu
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Yong Chang
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Jiaxin Lou
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Shuo Zhang
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Xinyao Yi
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| |
Collapse
|
4
|
Zhang Z, Wang J, Teng H, Liu M, Li Y, Ru S. Highly sensitive lateral flow immunoassays based on Ag@Au nanoflowers with marine medaka (Oryzias melastigm) vitellogenin as a target analyte. MARINE POLLUTION BULLETIN 2023; 194:115248. [PMID: 37572429 DOI: 10.1016/j.marpolbul.2023.115248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 06/02/2023] [Accepted: 06/30/2023] [Indexed: 08/14/2023]
Abstract
In order to improve the sensitivity of lateral flow immunoassays (LFIAs) for the detection of piscine vitellogenin (Vtg), a well-established biomarker for environmental estrogens, Au coated Ag nanoflowers (Ag@Au NFs) were used as labeling probes to develop a LFIA for marine medaka Vtg. The synthesized Ag@Au NFs with good monodispersity had an average diameter of 44.1 nm and absorbance peak of 524 nm. When the concentration of goat anti-mouse IgG and anti-Vtg polyclonal antibody (anti-Vtg PAbs) were 1.3 and 0.4 mg/mL, respectively, the detection range of the LFIA was 0.19-25 ng/mL, and the visual detection limit was 0.1 ng/mL, which was approximately 80 times lower than that of LFIAs based on other nanoparticles (Au NPs, Ag NPs, Au NFs, and FM). After evaluation of its specificity and robustness, the usefulness of Ag@Au NFs labeled LFIA was validated by measuring Vtg induction in the plasma of marine medaka exposed to bisphenol A, a weak estrogenic chemical. This highly sensitive lateral flow immunoassay could detect Vtg biomarker within 15 min without the need of expensive and complicated instruments, and thus offered an ultrasensitive and robust on-site detection method for estrogenic activity in field environment.
Collapse
Affiliation(s)
- Zhenzhong Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Jun Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Hayan Teng
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Minhao Liu
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Yuejiao Li
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Shaoguo Ru
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
5
|
Durairaj K, Than DD, Nguyen ATV, Kim HS, Yeo SJ, Park H. Cysteamine-Gold Coated Carboxylated Fluorescent Nanoparticle Mediated Point-of-Care Dual-Modality Detection of the H5N1 Pathogenic Virus. Int J Mol Sci 2022; 23:ijms23147957. [PMID: 35887315 PMCID: PMC9320457 DOI: 10.3390/ijms23147957] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 07/13/2022] [Accepted: 07/16/2022] [Indexed: 12/10/2022] Open
Abstract
Globally, point-of-care testing (POCT) is the most preferable on-site technique for disease detection and includes a rapid diagnostic test (RDT) and fluorescent immunochromatographic strip test (FICT). The testing kits are generally insufficient in terms of signal enhancement, which is a major drawback of this approach. Sensitive and timely on-site POCT methods with high signal enhancement are therefore essential for the accurate diagnosis of infectious diseases. Herein, we prepare cysteamine-gold coated carboxylated europium chelated nanoparticle (Cys Au-EuNPs)-mediated POCT for the detection of the H5N1 avian influenza virus (AIV). Commercial nanoparticles were used for comparison. The spectral characteristics, surface morphologies, functional groups, surface charge and stability of the Cys AuNPs, EuNPs, and Cys Au-EuNPs were confirmed by UV-visible spectrophotometry, fluorescence spectrometry, transmission electron microscope with Selected area electron diffraction (TEM-SAED), Fourier-transform infrared spectroscopy (FTIR) and zeta potential analysis. The particle size distribution revealed an average size of ~130 ± 0.66 nm for the Cys Au-EuNPs. The Cys Au-EuNP-mediated RDT (colorimetric analysis) and FICT kit revealed a limit of detection (LOD) of 10 HAU/mL and 2.5 HAU/mL, respectively, for H5N1 under different titer conditions. The obtained LOD is eight-fold that of commercial nanoparticle conjugates. The photo luminance (PL) stability of ~3% the Cys Au-EuNPs conjugates that was obtained under UV light irradiation differs considerably from that of the commercial nanoparticle conjugates. Overall, the developed Cys Au-EuNPs-mediated dual-mode POCT kit can be used as an effective nanocomposite for the development of on-site monitoring systems for infectious disease surveillance.
Collapse
Affiliation(s)
- Kaliannan Durairaj
- Zoonosis Research Center, Department of Infection Biology, School of Medicine, Wonkwang University, Iksan 54538, Korea; (K.D.); (D.D.T.); (A.T.V.N.)
| | - Duc Duong Than
- Zoonosis Research Center, Department of Infection Biology, School of Medicine, Wonkwang University, Iksan 54538, Korea; (K.D.); (D.D.T.); (A.T.V.N.)
| | - Anh Thi Viet Nguyen
- Zoonosis Research Center, Department of Infection Biology, School of Medicine, Wonkwang University, Iksan 54538, Korea; (K.D.); (D.D.T.); (A.T.V.N.)
| | - Hak Sung Kim
- College of Pharmacy, Wonkwang University, Iksan 54538, Korea;
| | - Seon-Ju Yeo
- Department of Tropical Medicine and Parasitology, Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul 03080, Korea
- Correspondence: (S.-J.Y.); (H.P.)
| | - Hyun Park
- Zoonosis Research Center, Department of Infection Biology, School of Medicine, Wonkwang University, Iksan 54538, Korea; (K.D.); (D.D.T.); (A.T.V.N.)
- Correspondence: (S.-J.Y.); (H.P.)
| |
Collapse
|
6
|
Shao Y, Zhou H, Wu Q, Xiong Y, Wang J, Ding Y. Recent advances in enzyme-enhanced immunosensors. Biotechnol Adv 2021; 53:107867. [PMID: 34774928 DOI: 10.1016/j.biotechadv.2021.107867] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 10/31/2021] [Accepted: 11/05/2021] [Indexed: 12/19/2022]
Abstract
Among the products for rapid detection in different fields, enzyme-based immunosensors have received considerable attention. Recently, great efforts have been devoted to enhancing the output signals of enzymes through different strategies that can significantly improve the sensitivity of enzyme-based immunosensors for the need of practical applications. In this manuscript, the significance of enzyme-based signal transduction patterns in immunoassay and the central role of enzymes in achieving precise control of reaction systems are systematically described. In view of the rapid development of this field, we classify these strategies based on the combination of immune recognition and enzyme amplification into three categories, namely enzyme-based enhancement strategies, combination of the catalytic amplification of enzymes with other signal amplification methods, and substrate-based enhancement strategies. The current focus and future direction of enzyme-based immunoassays are also discussed. This article is not exhaustive, but focuses on the latest advances in different signal generation methods based on enzyme-initiated catalytic reactions and their applications in the detection field, which could provide an accessible introduction of enzyme-based immunosensors for the community with a view to further improving its application efficiency.
Collapse
Affiliation(s)
- Yanna Shao
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; Department of Food Science and Technology, Institute of Food Safety and Nutrition, College of Science & Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Huan Zhou
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; Department of Food Science and Technology, Institute of Food Safety and Nutrition, College of Science & Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Qingping Wu
- Department of Food Science and Technology, Institute of Food Safety and Nutrition, College of Science & Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yonghua Xiong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Juan Wang
- College of Food Science, South China Agricultural University, Guangzhou 510432, China
| | - Yu Ding
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; Department of Food Science and Technology, Institute of Food Safety and Nutrition, College of Science & Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
7
|
Gold and Silver Nanoparticle-Based Colorimetric Sensors: New Trends and Applications. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9110305] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Gold and Silver nanoparticles (AuNPs and AgNPs) are perfect platforms for developing sensing colorimetric devices thanks to their high surface to volume ratio and distinctive optical properties, particularly sensitive to changes in the surrounding environment. These characteristics ensure high sensitivity in colorimetric devices. Au and Ag nanoparticles can be capped with suitable molecules that can act as specific analyte receptors, so highly selective sensors can be obtained. This review aims to highlight the principal strategies developed during the last decade concerning the preparation of Au and Ag nanoparticle-based colorimetric sensors, with particular attention to environmental and health monitoring applications.
Collapse
|
8
|
Nonenzymatic Hydrogen Peroxide Detection Using Surface-Enhanced Raman Scattering of Gold-Silver Core-Shell-Assembled Silica Nanostructures. NANOMATERIALS 2021; 11:nano11102748. [PMID: 34685187 PMCID: PMC8540490 DOI: 10.3390/nano11102748] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 11/23/2022]
Abstract
Hydrogen peroxide (H2O2) plays important roles in cellular signaling and in industry. Thus, the accurate detection of H2O2 is critical for its application. Unfortunately, the direct detection of H2O2 by surface-enhanced Raman spectroscopy (SERS) is not possible because of its low Raman cross section. Therefore, the detection of H2O2 via the presence of an intermediary such as 3,3,5,5-tetramethylbenzidine (TMB) has recently been developed. In this study, the peroxidase-mimicking activity of gold–silver core–shell-assembled silica nanostructures (SiO2@Au@Ag alloy NPs) in the presence of TMB was investigated using SERS for detecting H2O2. In the presence of H2O2, the SiO2@Au@Ag alloy catalyzed the conversion of TMB to oxidized TMB, which was absorbed onto the surface of the SiO2@Au@Ag alloy. The SERS characteristics of the alloy in the TMB–H2O2 mixture were investigated. The evaluation of the SERS band to determine the H2O2 level utilized the SERS intensity of oxidized TMB bands. Moreover, the optimal conditions for H2O2 detection using SiO2@Au@Ag alloy included incubating 20 µg/mL SiO2@Au@Ag alloy NPs with 0.8 mM TMB for 15 min and measuring the Raman signal at 400 µg/mL SiO2@Au@Ag alloy NPs.
Collapse
|
9
|
Zhu F, Ji Y, Li L, Bai X, Liu X, Luo Y, Liu T, Lin B, Lu Y. High-Throughput Single-Cell Extracellular Vesicle Secretion Analysis on a Desktop Scanner without Cell Counting. Anal Chem 2021; 93:13152-13160. [PMID: 34551257 DOI: 10.1021/acs.analchem.1c01446] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Single-cell EV (extracellular vesicle) secretion analysis is emerging for a better understanding of non-genetic cellular heterogeneity regulating human health and diseases through intercellular mediators. However, the requirements of expensive and bulky instrumentations hinder its widespread use. Herein, by combining gold nanoparticle-enhanced silver staining and the Poisson distribution, we reported the use of a home-use scanner to realize high-throughput single-cell EV secretion analysis without cell counting. We applied the platform to analyze the secretions of different EV phenotypes with the human oral squamous cell carcinoma cell line and primary cells from patients, which generated single-cell results comparable with those of the immunofluorescence approach. Notably, we also realized the quantification of the number of EVs secreted from every single cell using their respective titration curves obtained from population samples, making it possible to directly compare different EV phonotypes in regard to their secretion number, secretion rate, and so forth. The technology introduced here is simple, easy to operate, and of low cost, which make it a potential, easily accessible, and affordable tool for widespread use in both basic and clinical research.
Collapse
Affiliation(s)
- Fengjiao Zhu
- Department of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yahui Ji
- Department of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Linmei Li
- Department of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xue Bai
- Department of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xianming Liu
- Department of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yong Luo
- State Key Laboratory of Fine Chemicals, Department of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Tingjiao Liu
- College of Stomatology, Dalian Medical University, Dalian 116044, China
| | - Bingcheng Lin
- Department of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yao Lu
- Department of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
10
|
Pham XH, Park SM, Ham KM, Kyeong S, Son BS, Kim J, Hahm E, Kim YH, Bock S, Kim W, Jung S, Oh S, Lee SH, Hwang DW, Jun BH. Synthesis and Application of Silica-Coated Quantum Dots in Biomedicine. Int J Mol Sci 2021; 22:10116. [PMID: 34576279 PMCID: PMC8468474 DOI: 10.3390/ijms221810116] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/12/2021] [Accepted: 09/13/2021] [Indexed: 11/17/2022] Open
Abstract
Quantum dots (QDs) are semiconductor nanoparticles with outstanding optoelectronic properties. More specifically, QDs are highly bright and exhibit wide absorption spectra, narrow light bands, and excellent photovoltaic stability, which make them useful in bioscience and medicine, particularly for sensing, optical imaging, cell separation, and diagnosis. In general, QDs are stabilized using a hydrophobic ligand during synthesis, and thus their hydrophobic surfaces must undergo hydrophilic modification if the QDs are to be used in bioapplications. Silica-coating is one of the most effective methods for overcoming the disadvantages of QDs, owing to silica's physicochemical stability, nontoxicity, and excellent bioavailability. This review highlights recent progress in the design, preparation, and application of silica-coated QDs and presents an overview of the major challenges and prospects of their application.
Collapse
Affiliation(s)
- Xuan-Hung Pham
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea; (X.-H.P.); (K.-M.H.); (B.S.S.); (J.K.); (E.H.); (Y.-H.K.); (S.B.); (W.K.); (S.J.)
| | - Seung-Min Park
- Department of Urology, School of Medicine, Stanford University, Stanford, CA 94305, USA;
| | - Kyeong-Min Ham
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea; (X.-H.P.); (K.-M.H.); (B.S.S.); (J.K.); (E.H.); (Y.-H.K.); (S.B.); (W.K.); (S.J.)
| | - San Kyeong
- School of Chemical and Biological Engineering, Seoul National University, Seoul 03080, Korea;
| | - Byung Sung Son
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea; (X.-H.P.); (K.-M.H.); (B.S.S.); (J.K.); (E.H.); (Y.-H.K.); (S.B.); (W.K.); (S.J.)
| | - Jaehi Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea; (X.-H.P.); (K.-M.H.); (B.S.S.); (J.K.); (E.H.); (Y.-H.K.); (S.B.); (W.K.); (S.J.)
| | - Eunil Hahm
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea; (X.-H.P.); (K.-M.H.); (B.S.S.); (J.K.); (E.H.); (Y.-H.K.); (S.B.); (W.K.); (S.J.)
| | - Yoon-Hee Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea; (X.-H.P.); (K.-M.H.); (B.S.S.); (J.K.); (E.H.); (Y.-H.K.); (S.B.); (W.K.); (S.J.)
| | - Sungje Bock
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea; (X.-H.P.); (K.-M.H.); (B.S.S.); (J.K.); (E.H.); (Y.-H.K.); (S.B.); (W.K.); (S.J.)
| | - Wooyeon Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea; (X.-H.P.); (K.-M.H.); (B.S.S.); (J.K.); (E.H.); (Y.-H.K.); (S.B.); (W.K.); (S.J.)
| | - Seunho Jung
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea; (X.-H.P.); (K.-M.H.); (B.S.S.); (J.K.); (E.H.); (Y.-H.K.); (S.B.); (W.K.); (S.J.)
| | - Sangtaek Oh
- Department of Bio and Fermentation Convergence Technology, Kookmin University, Seoul 02707, Korea;
| | - Sang Hun Lee
- Department of Chemical and Biological Engineering, Hanbat National University, Daejeon 34158, Korea
| | - Do Won Hwang
- Department of Nuclear Medicine, College of Medicine, Seoul National University, Seoul 03080, Korea
- THERABEST, Co., Ltd., Seocho-daero 40-gil, Seoul 06657, Korea
| | - Bong-Hyun Jun
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea; (X.-H.P.); (K.-M.H.); (B.S.S.); (J.K.); (E.H.); (Y.-H.K.); (S.B.); (W.K.); (S.J.)
| |
Collapse
|
11
|
Glucose Detection of 4-Mercaptophenylboronic Acid-Immobilized Gold-Silver Core-Shell Assembled Silica Nanostructure by Surface Enhanced Raman Scattering. NANOMATERIALS 2021; 11:nano11040948. [PMID: 33917868 PMCID: PMC8068217 DOI: 10.3390/nano11040948] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/02/2021] [Accepted: 04/04/2021] [Indexed: 11/25/2022]
Abstract
The importance of glucose in many biological processes continues to garner increasing research interest in the design and development of efficient biotechnology for the sensitive and selective monitoring of glucose. Here we report on a surface-enhanced Raman scattering (SERS) detection of 4-mercaptophenyl boronic acid (4-MPBA)-immobilized gold-silver core-shell assembled silica nanostructure (SiO2@Au@Ag@4-MPBA) for quantitative, selective detection of glucose in physiologically relevant concentration. This work confirmed that 4-MPBA converted to 4-mercaptophenol (4-MPhOH) in the presence of H2O2. In addition, a calibration curve for H2O2 detection of 0.3 µg/mL was successfully detected in the range of 1.0 to 1000 µg/mL. Moreover, the SiO2@Au@Ag@4-MPBA for glucose detection was developed in the presence of glucose oxidase (GOx) at the optimized condition of 100 µg/mL GOx with 1-h incubation time using 20 µg/mL SiO2@Au@Ag@4-MPBA and measuring Raman signal at 67 µg/mL SiO2@Au@Ag. At the optimized condition, the calibration curve in the range of 0.5 to 8.0 mM was successfully developed with an LOD of 0.15 mM. Based on those strategies, the SERS detection of glucose can be achieved in the physiologically relevant concentration range and opened a great promise to develop a SERS-based biosensor for a variety of biomedicine applications.
Collapse
|
12
|
Kim HM, Kim J, An J, Bock S, Pham XH, Huynh KH, Choi Y, Hahm E, Song H, Kim JW, Rho WY, Jeong DH, Lee HY, Lee S, Jun BH. Au-Ag assembled on silica nanoprobes for visual semiquantitative detection of prostate-specific antigen. J Nanobiotechnology 2021; 19:73. [PMID: 33712008 PMCID: PMC7953718 DOI: 10.1186/s12951-021-00817-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 02/26/2021] [Indexed: 01/04/2023] Open
Abstract
Background Blood prostate-specific antigen (PSA) levels are widely used as diagnostic biomarkers for prostate cancer. Lateral-flow immunoassay (LFIA)-based PSA detection can overcome the limitations associated with other methods. LFIAbased PSA detection in clinical samples enables prognosis and early diagnosis owing to the use of high-performance signal reporters. Results Here, a semiquantitative LFIA platform for PSA detection in blood was developed using Au–Ag nanoparticles (NPs) assembled on silica NPs (SiO2@Au–Ag NPs) that served as signal reporters. Synthesized SiO2@Au–Ag NPs exhibited a high absorbance at a wide wavelength range (400–800 nm), with a high scattering on nitrocellulose membrane test strips. In LFIA, the color intensity of the test line on the test strip differed depending on the PSA concentration (0.30–10.00 ng/mL), and bands for the test line on the test strip could be used as a standard. When clinical samples were assessed using this LFIA, a visual test line with particular color intensity observed on the test strip enabled the early diagnosis and prognosis of patients with prostate cancer based on PSA detection. In addition, the relative standard deviation of reproducibility was 1.41%, indicating high reproducibility, and the signal reporter showed good stability for 10 days. Conclusion These characteristics of the signal reporter demonstrated the reliability of the LFIA platform for PSA detection, suggesting potential applications in clinical sample analysis. Supplementary Information The online version contains supplementary material available at 10.1186/s12951-021-00817-4.
Collapse
Affiliation(s)
- Hyung-Mo Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, Korea
| | - Jaehi Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, Korea
| | - Jaehyun An
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, Korea
| | - Sungje Bock
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, Korea
| | - Xuan-Hung Pham
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, Korea
| | - Kim-Hung Huynh
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, Korea
| | - Yoonsik Choi
- Department of Chemistry Education, Seoul National University, Seoul, Korea
| | - Eunil Hahm
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, Korea
| | | | | | - Won-Yeop Rho
- School of International Engineering and Science, Jeonbuk National University, Jeonju, Korea
| | - Dae Hong Jeong
- Department of Chemistry Education, Seoul National University, Seoul, Korea
| | - Ho-Young Lee
- Department of Nuclear Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Sangchul Lee
- Department of Urology, Seoul National University Bundang Hospital, Seongnam, Korea.
| | - Bong-Hyun Jun
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, Korea.
| |
Collapse
|
13
|
Seong B, Bock S, Hahm E, Huynh KH, Kim J, Lee SH, Pham XH, Jun BH. Synthesis of Densely Immobilized Gold-Assembled Silica Nanostructures. Int J Mol Sci 2021; 22:ijms22052543. [PMID: 33802614 PMCID: PMC7961356 DOI: 10.3390/ijms22052543] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 02/06/2023] Open
Abstract
In this study, dense gold-assembled SiO2 nanostructure (SiO2@Au) was successfully developed using the Au seed-mediated growth. First, SiO2 (150 nm) was prepared, modified by amino groups, and incubated by gold nanoparticles (ca. 3 nm Au metal nanoparticles (NPs)) to immobilize Au NPs to SiO2 surface. Then, Au NPs were grown on the prepared SiO2@Au seed by reducing chloroauric acid (HAuCl4) by ascorbic acid (AA) in the presence of polyvinylpyrrolidone (PVP). The presence of bigger (ca. 20 nm) Au NPs on the SiO2 surface was confirmed by transmittance electronic microscopy (TEM) images, color changes to dark blue, and UV-vis spectra broadening in the range of 450 to 750 nm. The SiO2@Au nanostructure showed several advantages compared to the hydrofluoric acid (HF)-treated SiO2@Au, such as easy separation, surface modification stability by 11-mercaptopundecanoic acid (R-COOH), 11-mercapto-1-undecanol (R-OH), and 1-undecanethiol (R-CH3), and a better peroxidase-like catalysis activity for 5,5'-Tetramethylbenzidine (TMB) and hydrogen peroxide (H2O2) reaction. The catalytic activity of SiO2@Au was two times better than that of HF-treated SiO2@Au. When SiO2@Au nanostructure was used as a surface enhanced Raman scattering (SERS) substrate, the signal of 4-aminophenol (4-ATP) on the surface of SiO2@Au was also stronger than that of HF-treated SiO2@Au. This study provides a potential method for nanoparticle preparation which can be replaced for Au NPs in further research and development.
Collapse
Affiliation(s)
- Bomi Seong
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 143-701, Korea; (B.S.); (S.B.); (E.H.); (K.-H.H.); (J.K.); (B.-H.J.)
| | - Sungje Bock
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 143-701, Korea; (B.S.); (S.B.); (E.H.); (K.-H.H.); (J.K.); (B.-H.J.)
| | - Eunil Hahm
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 143-701, Korea; (B.S.); (S.B.); (E.H.); (K.-H.H.); (J.K.); (B.-H.J.)
| | - Kim-Hung Huynh
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 143-701, Korea; (B.S.); (S.B.); (E.H.); (K.-H.H.); (J.K.); (B.-H.J.)
| | - Jaehi Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 143-701, Korea; (B.S.); (S.B.); (E.H.); (K.-H.H.); (J.K.); (B.-H.J.)
| | - Sang Hun Lee
- Department of Chemical and Biological Engineering, Hanbat National University, Daejeon 34158, Korea;
| | - Xuan-Hung Pham
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 143-701, Korea; (B.S.); (S.B.); (E.H.); (K.-H.H.); (J.K.); (B.-H.J.)
- Correspondence: ; Tel.: +82-2-450-0521
| | - Bong-Hyun Jun
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 143-701, Korea; (B.S.); (S.B.); (E.H.); (K.-H.H.); (J.K.); (B.-H.J.)
| |
Collapse
|
14
|
Lee SH, Rho WY, Chang H, Lee JH, Kim J, Lee SH, Jun BH. Carbon Nanomaterials for Biomedical Application. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1309:257-276. [PMID: 33782876 DOI: 10.1007/978-981-33-6158-4_11] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The use of carbon-based nanomaterials (CNs) with outstanding properties has been rising in many scientific and industrial application fields. These CNs represent a tunable alternative for applications with biomolecules, which allow interactions in either covalent or noncovalent way. Diverse carbon-derived nanomaterial family exhibits unique features and has been widely exploited in various biomedical applications, including biosensing, diagnosis, cancer therapy, drug delivery, and tissue engineering. In this chapter, we aim to present an overview of CNs with a particular interest in intrinsic structural, electronic, and chemical properties. In particular, the detailed properties and features of CNs and its derivatives, including carbon nanotube (CNT), graphene, graphene oxide (GO), and reduced GO (rGO) are summarized. The interesting biomedical applications are also reviewed in order to offer an overview of the possible fields for scientific and industrial applications of CNs.
Collapse
Affiliation(s)
- Sang Hun Lee
- Department of Chemical and Biological Engineering, Hanbat National University, Daejeon, Republic of Korea
| | - Won-Yeop Rho
- School of International Engineering and Science, Jeonbuk National University, Jeonju, Republic of Korea
| | - Hyejin Chang
- Division of Science Education, Kangwon National University, Chuncheon, Republic of Korea
| | - Jong Hun Lee
- Department of Food Science and Biotechnology, Gachon University, Seongnam, Republic of Korea
| | - Jaehi Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, South Korea
| | - Seung Hwan Lee
- Department of Bionano Engineering, Hanyang University, Ansan, Republic of Korea
| | - Bong-Hyun Jun
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, South Korea.
| |
Collapse
|
15
|
He H, Sun T, Liu W, Xu Z, Han Z, Zhao L, Wu X, Ning B, Bai J. Highly sensitive detection of salbutamol by ALP-mediated plasmonic ELISA based on controlled growth of AgNPs. Microchem J 2020. [DOI: 10.1016/j.microc.2020.104804] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
16
|
Pham XH, Kim J, Jun BH. Silver Nano/Microparticles: Modification and Applications 2.0. Int J Mol Sci 2020; 21:E4395. [PMID: 32575707 PMCID: PMC7349777 DOI: 10.3390/ijms21124395] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 06/19/2020] [Indexed: 01/18/2023] Open
Abstract
Currently, nano/microparticles are widely used in various fields [...].
Collapse
Affiliation(s)
| | | | - Bong-Hyun Jun
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 143-701, Korea; (X.-H.P.); (J.K.)
| |
Collapse
|
17
|
Huynh KH, Pham XH, Hahm E, An J, Kim HM, Jo A, Seong B, Kim YH, Son BS, Kim J, Rho WY, Jun BH. Facile Histamine Detection by Surface-Enhanced Raman Scattering using SiO 2@Au@Ag Alloy Nanoparticles. Int J Mol Sci 2020; 21:E4048. [PMID: 32516981 PMCID: PMC7311956 DOI: 10.3390/ijms21114048] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/28/2020] [Accepted: 06/03/2020] [Indexed: 12/22/2022] Open
Abstract
Histamine intoxication associated with seafood consumption represents a global health problem. The consumption of high concentrations of histamine can cause illnesses ranging from light symptoms, such as a prickling sensation, to death. In this study, gold-silver alloy-embedded silica (SiO2@Au@Ag) nanoparticles were created to detect histamine using surface-enhanced Raman scattering (SERS). The optimal histamine SERS signal was measured following incubation with 125 μg/mL of SiO2@Au@Ag for 2 h, with a material-to-histamine solution volume ratio of 1:5 and a phosphate-buffered saline-Tween 20 (PBS-T) solvent at pH 7. The SERS intensity of the histamine increased proportionally with the increase in histamine concentration in the range 0.1-0.8 mM, with a limit of detection of 3.698 ppm. Our findings demonstrate the applicability of SERS using nanomaterials for histamine detection. In addition, this study demonstrates that nanoalloys could have a broad application in the future.
Collapse
Affiliation(s)
- Kim-Hung Huynh
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 143-701, Korea; (K.-H.H.); (X.-H.P.); (E.H.); (J.A.); (H.-M.K.); (A.J.); (B.S.); (Y.-H.K.); (B.S.S.); (J.K.)
| | - Xuan-Hung Pham
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 143-701, Korea; (K.-H.H.); (X.-H.P.); (E.H.); (J.A.); (H.-M.K.); (A.J.); (B.S.); (Y.-H.K.); (B.S.S.); (J.K.)
| | - Eunil Hahm
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 143-701, Korea; (K.-H.H.); (X.-H.P.); (E.H.); (J.A.); (H.-M.K.); (A.J.); (B.S.); (Y.-H.K.); (B.S.S.); (J.K.)
| | - Jaehyun An
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 143-701, Korea; (K.-H.H.); (X.-H.P.); (E.H.); (J.A.); (H.-M.K.); (A.J.); (B.S.); (Y.-H.K.); (B.S.S.); (J.K.)
| | - Hyung-Mo Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 143-701, Korea; (K.-H.H.); (X.-H.P.); (E.H.); (J.A.); (H.-M.K.); (A.J.); (B.S.); (Y.-H.K.); (B.S.S.); (J.K.)
| | - Ahla Jo
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 143-701, Korea; (K.-H.H.); (X.-H.P.); (E.H.); (J.A.); (H.-M.K.); (A.J.); (B.S.); (Y.-H.K.); (B.S.S.); (J.K.)
| | - Bomi Seong
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 143-701, Korea; (K.-H.H.); (X.-H.P.); (E.H.); (J.A.); (H.-M.K.); (A.J.); (B.S.); (Y.-H.K.); (B.S.S.); (J.K.)
| | - Yoon-Hee Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 143-701, Korea; (K.-H.H.); (X.-H.P.); (E.H.); (J.A.); (H.-M.K.); (A.J.); (B.S.); (Y.-H.K.); (B.S.S.); (J.K.)
| | - Byung Sung Son
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 143-701, Korea; (K.-H.H.); (X.-H.P.); (E.H.); (J.A.); (H.-M.K.); (A.J.); (B.S.); (Y.-H.K.); (B.S.S.); (J.K.)
| | - Jaehi Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 143-701, Korea; (K.-H.H.); (X.-H.P.); (E.H.); (J.A.); (H.-M.K.); (A.J.); (B.S.); (Y.-H.K.); (B.S.S.); (J.K.)
| | - Won-Yeop Rho
- School of International Engineering and Science, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Korea;
| | - Bong-Hyun Jun
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 143-701, Korea; (K.-H.H.); (X.-H.P.); (E.H.); (J.A.); (H.-M.K.); (A.J.); (B.S.); (Y.-H.K.); (B.S.S.); (J.K.)
| |
Collapse
|
18
|
Farzin A, Etesami SA, Quint J, Memic A, Tamayol A. Magnetic Nanoparticles in Cancer Therapy and Diagnosis. Adv Healthc Mater 2020; 9:e1901058. [PMID: 32196144 PMCID: PMC7482193 DOI: 10.1002/adhm.201901058] [Citation(s) in RCA: 223] [Impact Index Per Article: 44.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 01/15/2020] [Indexed: 12/16/2022]
Abstract
There is urgency for the development of nanomaterials that can meet emerging biomedical needs. Magnetic nanoparticles (MNPs) offer high magnetic moments and surface-area-to-volume ratios that make them attractive for hyperthermia therapy of cancer and targeted drug delivery. Additionally, they can function as contrast agents for magnetic resonance imaging (MRI) and can improve the sensitivity of biosensors and diagnostic tools. Recent advancements in nanotechnology have resulted in the realization of the next generation of MNPs suitable for these and other biomedical applications. This review discusses methods utilized for the fabrication and engineering of MNPs. Recent progress in the use of MNPs for hyperthermia therapy, controlling drug release, MRI, and biosensing is also critically reviewed. Finally, challenges in the field and potential opportunities for the use of MNPs toward improving their properties are discussed.
Collapse
Affiliation(s)
- A. Farzin
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02139, USA
| | - S. Alireza Etesami
- Department of Mechanical Engineering, The University of Memphis. Memphis, TN 38152, USA
| | - Jacob Quint
- Department of Mechanical and Materials Engineering, University of Nebraska, Lincoln, Lincoln, NE, 68588, USA
| | - Adnan Memic
- Department of Biomedical Engineering, University of Connecticut, Farmington, CT, 06030, USA
| | - Ali Tamayol
- Division of Engineering in Medicine Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02139, USA
- Department of Mechanical and Materials Engineering, University of Nebraska, Lincoln, Lincoln, NE, 68588, USA
- Department of Biomedical Engineering, University of Connecticut, Farmington, CT, 06030, USA
| |
Collapse
|
19
|
Pham XH, Hahm E, Huynh KH, Kim HM, Son BS, Jeong DH, Jun BH. Sensitive and selective detection of 4-aminophenol in the presence of acetaminophen using gold–silver core–shell nanoparticles embedded in silica nanostructures. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2019.11.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
20
|
Vinotha Alex A, Chandrasekaran N, Mukherjee A. Novel enzymatic synthesis of core/shell AgNP/AuNC bimetallic nanostructure and its catalytic applications. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.112463] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
21
|
Sensitive Colorimetric Detection of Prostate Specific Antigen Using a Peroxidase-Mimicking Anti-PSA Antibody Coated Au Nanoparticle. BIOCHIP JOURNAL 2020. [DOI: 10.1007/s13206-019-4204-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
22
|
Protein Chemical Labeling Using Biomimetic Radical Chemistry. Molecules 2019; 24:molecules24213980. [PMID: 31684188 PMCID: PMC6864698 DOI: 10.3390/molecules24213980] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 10/30/2019] [Accepted: 10/31/2019] [Indexed: 01/17/2023] Open
Abstract
Chemical labeling of proteins with synthetic low-molecular-weight probes is an important technique in chemical biology. To achieve this, it is necessary to use chemical reactions that proceed rapidly under physiological conditions (i.e., aqueous solvent, pH, low concentration, and low temperature) so that protein denaturation does not occur. The radical reaction satisfies such demands of protein labeling, and protein labeling using the biomimetic radical reaction has recently attracted attention. The biomimetic radical reaction enables selective labeling of the C-terminus, tyrosine, and tryptophan, which is difficult to achieve with conventional electrophilic protein labeling. In addition, as the radical reaction proceeds selectively in close proximity to the catalyst, it can be applied to the analysis of protein–protein interactions. In this review, recent trends in protein labeling using biomimetic radical reactions are discussed.
Collapse
|
23
|
Wang H, Rao H, Luo M, Xue X, Xue Z, Lu X. Noble metal nanoparticles growth-based colorimetric strategies: From monocolorimetric to multicolorimetric sensors. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.06.020] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
24
|
Zhang X, Li G, Wu D, Li X, Hu N, Chen J, Chen G, Wu Y. Recent progress in the design fabrication of metal-organic frameworks-based nanozymes and their applications to sensing and cancer therapy. Biosens Bioelectron 2019; 137:178-198. [DOI: 10.1016/j.bios.2019.04.061] [Citation(s) in RCA: 147] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 04/20/2019] [Accepted: 04/30/2019] [Indexed: 02/06/2023]
|
25
|
Jun BH. Silver Nano/Microparticles: Modification and Applications. Int J Mol Sci 2019; 20:ijms20112609. [PMID: 31141905 PMCID: PMC6600572 DOI: 10.3390/ijms20112609] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 05/24/2019] [Indexed: 02/01/2023] Open
Affiliation(s)
- Bong-Hyun Jun
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 143-701, Korea.
| |
Collapse
|
26
|
Jeon J. Review of Therapeutic Applications of Radiolabeled Functional Nanomaterials. Int J Mol Sci 2019; 20:E2323. [PMID: 31083402 PMCID: PMC6539387 DOI: 10.3390/ijms20092323] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/08/2019] [Accepted: 05/09/2019] [Indexed: 01/10/2023] Open
Abstract
In the last two decades, various nanomaterials have attracted increasing attention in medical science owing to their unique physical and chemical characteristics. Incorporating radionuclides into conventionally used nanomaterials can confer useful additional properties compared to the original material. Therefore, various radionuclides have been used to synthesize functional nanomaterials for biomedical applications. In particular, several α- or β-emitter-labeled organic and inorganic nanoparticles have been extensively investigated for efficient and targeted cancer treatment. This article reviews recent progress in cancer therapy using radiolabeled nanomaterials including inorganic, polymeric, and carbon-based materials and liposomes. We first provide an overview of radiolabeling methods for preparing anticancer agents that have been investigated recently in preclinical studies. Next, we discuss the therapeutic applications and effectiveness of α- or β-emitter-incorporated nanomaterials in animal models and the emerging possibilities of these nanomaterials in cancer therapy.
Collapse
Affiliation(s)
- Jongho Jeon
- Department of Applied Chemistry, School of Applied Chemical Engineering, Kyungpook National University, Daegu 41566, Korea.
| |
Collapse
|
27
|
Sato S, Yoshida M, Hatano K, Matsumura M, Nakamura H. N’-acyl-N-methylphenylenediamine as a novel proximity labeling agent for signal amplification in immunohistochemistry. Bioorg Med Chem 2019; 27:1110-1118. [DOI: 10.1016/j.bmc.2019.01.036] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 01/22/2019] [Accepted: 01/29/2019] [Indexed: 12/13/2022]
|
28
|
Liu L, Hao Y, Deng D, Xia N. Nanomaterials-Based Colorimetric Immunoassays. NANOMATERIALS 2019; 9:nano9030316. [PMID: 30818816 PMCID: PMC6473401 DOI: 10.3390/nano9030316] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 02/14/2019] [Accepted: 02/18/2019] [Indexed: 01/05/2023]
Abstract
Colorimetric immunoassays for tumor marker detection have attracted considerable attention due to their simplicity and high efficiency. With the achievements of nanotechnology and nanoscience, nanomaterials-based colorimetric immunoassays have been demonstrated to be promising alternatives to conventional colorimetric enzyme-linked immunoassays. This review is focused on the progress in colorimetric immunoassays with the signal amplification of nanomaterials, including nanomaterials-based artificial enzymes to catalyze the chromogenic reactions, analyte-induced aggregation or size/morphology change of nanomaterials, nanomaterials as the carriers for loading enzyme labels, and chromogenic reactions induced by the constituent elements released from nanomaterials.
Collapse
Affiliation(s)
- Lin Liu
- Henan Province of Key Laboratory of New Optoelectronic Functional Materials, Anyang Normal University, Anyang 455000, China.
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, China.
| | - Yuanqiang Hao
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, China.
| | - Dehua Deng
- Henan Province of Key Laboratory of New Optoelectronic Functional Materials, Anyang Normal University, Anyang 455000, China.
| | - Ning Xia
- Henan Province of Key Laboratory of New Optoelectronic Functional Materials, Anyang Normal University, Anyang 455000, China.
| |
Collapse
|
29
|
Lee SH, Jun BH. Silver Nanoparticles: Synthesis and Application for Nanomedicine. Int J Mol Sci 2019; 20:ijms20040865. [PMID: 30781560 PMCID: PMC6412188 DOI: 10.3390/ijms20040865] [Citation(s) in RCA: 565] [Impact Index Per Article: 94.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/10/2019] [Accepted: 02/15/2019] [Indexed: 02/07/2023] Open
Abstract
Over the past few decades, metal nanoparticles less than 100 nm in diameter have made a substantial impact across diverse biomedical applications, such as diagnostic and medical devices, for personalized healthcare practice. In particular, silver nanoparticles (AgNPs) have great potential in a broad range of applications as antimicrobial agents, biomedical device coatings, drug-delivery carriers, imaging probes, and diagnostic and optoelectronic platforms, since they have discrete physical and optical properties and biochemical functionality tailored by diverse size- and shape-controlled AgNPs. In this review, we aimed to present major routes of synthesis of AgNPs, including physical, chemical, and biological synthesis processes, along with discrete physiochemical characteristics of AgNPs. We also discuss the underlying intricate molecular mechanisms behind their plasmonic properties on mono/bimetallic structures, potential cellular/microbial cytotoxicity, and optoelectronic property. Lastly, we conclude this review with a summary of current applications of AgNPs in nanoscience and nanomedicine and discuss their future perspectives in these areas.
Collapse
Affiliation(s)
- Sang Hun Lee
- Department of Bioengineering, University of California Berkeley, Berkeley, CA 94720, USA.
| | - Bong-Hyun Jun
- Department of Bioscience and Biotechnology, Konkuk University, 1 Hwayang-dong, Gwanjin-gu, Seoul 143-701, Korea.
| |
Collapse
|