1
|
Vanamamalai VK, Priyanka E, Kannaki TR, Sharma S. Breed and timepoint-based analysis of chicken harderian gland transcriptome during Newcastle disease virus challenge. Front Mol Biosci 2024; 11:1365888. [PMID: 38915939 PMCID: PMC11194529 DOI: 10.3389/fmolb.2024.1365888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 05/07/2024] [Indexed: 06/26/2024] Open
Abstract
Introduction: Newcastle disease is a highly infectious disease caused by the Newcastle Disease Virus (NDV) and has a devastating financial impact on the global chicken industry. It was previously established that Leghorn and Fayoumi breeds of chicken exhibit variable resistance against NDV infection. The harderian gland is the less studied tissue of the chicken, known to play an essential role in the immune response. Methods: Our previous study, we reported differential gene expression and long noncoding RNAs (lncRNAs) between challenged and non-challenged chickens in the Harderian gland transcriptomic data. Now, we report the analysis of the same data studying the differential expression patterns between Leghorn and Fayoumi and between different timepoints during disease. First, the pipeline FHSpipe was used for identification of lncRNAs, followed by differential expression analysis by edgeR (GLM), functional annotation by OmicsBox, co-expression analysis using WGCNA and finally validation of selected lncRNAs and co-expressing genes using qRT-PCR. Results: Here, we observed that Leghorn showed a higher number of upregulated immune-related genes than Fayoumi in timepoint-based analysis, especially during the initial stages. Surprisingly, Fayoumi, being comparatively resistant, showed little difference between challenged and non-challenged conditions and different time points of the challenge. The breed-based analysis, which compared Leghorn with Fayoumi in both challenged and non-challenged conditions separately, identified several immune-related genes and positive co-expressing cis lncRNAs to be upregulated in Fayoumi when compared to Leghorn in both challenged and non-challenged conditions. Discussion: The current study shows that Leghorn, being comparatively more susceptible to NDV than Fayoumi, showed several immune-related genes and positive co-expressing cis lncRNAs upregulated in challenged Leghorn when compared to non-challenged Leghorn and also in different timepoints during challenge. While, breed-based analysis showed that there were more upregulated immune genes and positive cis-lncRNAs in Fayoumi than Leghorn. This result clearly shows that the differences in the expression of genes annotated with immune-related GO terms and pathways, i.e., immune-related genes and the co-expressing cis-lncRNAs between Leghorn and Fayoumi, and their role in the presence of differences in the resistance of Leghorn and Fayoumi chicken against NDV. Conclusion: These immune-genes and cis-lncRNAs could play a role in Fayoumi being comparatively more resistant to NDV than Leghorn. Our study elucidated the importance of lncRNAs during the host defense against NDV infection, paving the way for future research on the mechanisms governing the genetic improvement of chicken breeds.
Collapse
Affiliation(s)
- Venkata Krishna Vanamamalai
- National Institute of Animal Biotechnology (NIAB), Hyderabad, Telangana, India
- Regional Centre for Biotechnology, Faridabad, Haryana, India
| | - E. Priyanka
- ICAR-Directorate of Poultry Research, Hyderabad, Telangana, India
| | - T. R. Kannaki
- ICAR-Directorate of Poultry Research, Hyderabad, Telangana, India
| | - Shailesh Sharma
- National Institute of Animal Biotechnology (NIAB), Hyderabad, Telangana, India
- Regional Centre for Biotechnology, Faridabad, Haryana, India
| |
Collapse
|
2
|
Lopes TSB, Nankemann J, Breedlove C, Pietruska A, Espejo R, Cuadrado C, Hauck R. Changes in the Transcriptome Profile in Young Chickens after Infection with LaSota Newcastle Disease Virus. Vaccines (Basel) 2024; 12:592. [PMID: 38932321 PMCID: PMC11209074 DOI: 10.3390/vaccines12060592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/16/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024] Open
Abstract
Understanding gene expression changes in chicks after vaccination against Newcastle Disease (ND) can reveal vaccine biomarkers. There are limited data on chicks' early immune response after ND vaccination. Two trials focused on this knowledge gap. In experiment one, 42 13-day-old specific-pathogen-free (SPF) chicks were used. Harderian glands (Hgs) and tracheas (Tcs) from five birds per group were sampled at 12, 24, and 48 h post-vaccination (hpv) to evaluate the gene transcription levels by RNA sequencing (RNA-seq) and RT-qPCR. The results of RNA-seq were compared by glmFTest, while results of RT-qPCR were compared by t-test. With RNA-seq, a significant up-regulation of interferon-related genes along with JAK-STAT signaling pathway regulation was observed in the Hgs at 24 hpv. None of the differentially expressed genes (DEGs) identified by RNA-seq were positive for RT-qPCR. Experiment 2 used 112 SPF and commercial chickens that were 1 day old and 14 days old. Only the commercial birds had maternal antibodies for Newcastle Disease virus (NDV). By RNA-seq, 20 core DEGs associated with innate immunity and viral genome replication inhibition were identified. Genes previously unlinked to NDV response, such as USP41, were identified. This research present genes with potential as immunity biomarkers for vaccines, yet further investigation is needed to correlate the core gene expression with viral shedding post-vaccination.
Collapse
Affiliation(s)
- Taina S. B. Lopes
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA; (T.S.B.L.)
| | - Jannis Nankemann
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA; (T.S.B.L.)
| | - Cassandra Breedlove
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA; (T.S.B.L.)
| | - Andrea Pietruska
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA; (T.S.B.L.)
| | - Raimundo Espejo
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA; (T.S.B.L.)
| | - Camila Cuadrado
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA; (T.S.B.L.)
| | - Ruediger Hauck
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA; (T.S.B.L.)
- Department of Poultry Science, College of Agriculture, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
3
|
Vanamamalai VK, E P, T R K, Sharma S. Integrated analysis of genes and long non-coding RNAs in trachea transcriptome to decipher the host response during Newcastle disease challenge in different breeds of chicken. Int J Biol Macromol 2023; 253:127183. [PMID: 37793531 DOI: 10.1016/j.ijbiomac.2023.127183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/30/2023] [Accepted: 09/24/2023] [Indexed: 10/06/2023]
Abstract
Newcastle disease is a highly infectious economically devastating disease caused by Newcastle disease Virus in Chicken (Gallus gallus). Leghorn and Fayoumi are two breeds which show differential resistance patterns towards NDV. This study aims to identify the differentially expressed genes and lncRNAs during NDV challenge which could play a potential role in this differential resistance pattern. A total of 552 genes and 1580 lncRNAs were found to be differentially expressing. Of them, 52 genes were annotated with both Immune related pathways and Gene ontologies. We found that most of these genes were upregulated in Leghorn between normal and challenged chicken but several were down regulated between different timepoints after NDV challenge, while Fayoumi showed no such downregulation. We also observed that higher number of positively correlating lncRNAs was found to be downregulated along with these genes. This shows that although Leghorn is showing higher number of differentially expressed genes in challenged than in non-challenged, most of them were downregulated during the disease between different timepoints. With this we hypothesize that the downregulation of immune related genes and co-expressing lncRNAs could play a significant role behind the Leghorn being comparatively susceptible breed than Fayoumi. The computational pipeline is available at https://github.com/Venky2804/FHSpipe.
Collapse
Affiliation(s)
- Venkata Krishna Vanamamalai
- National Institute of Animal Biotechnology (NIAB), Opp. Journalist Colony, Near Gowlidoddi Extended Q City Road, Gachibowli, Hyderabad 500032, Telangana, India; Regional Centre for Biotechnology, Faridabad-Gurgaon Expressway, Faridabad Rd, Faridabad 121001, Haryana, India
| | - Priyanka E
- ICAR-Directorate of Poultry Research, Pillar No. 216, Dairy Farm Chowrastha, Rajendra Nagar Road, Rajendranagar mandal, Hyderabad 500030, Telangana, India
| | - Kannaki T R
- ICAR-Directorate of Poultry Research, Pillar No. 216, Dairy Farm Chowrastha, Rajendra Nagar Road, Rajendranagar mandal, Hyderabad 500030, Telangana, India
| | - Shailesh Sharma
- National Institute of Animal Biotechnology (NIAB), Opp. Journalist Colony, Near Gowlidoddi Extended Q City Road, Gachibowli, Hyderabad 500032, Telangana, India; Regional Centre for Biotechnology, Faridabad-Gurgaon Expressway, Faridabad Rd, Faridabad 121001, Haryana, India.
| |
Collapse
|
4
|
Liu W, Xu Z, Qiu Y, Qiu X, Tan L, Song C, Sun Y, Liao Y, Liu X, Ding C. Single-Cell Transcriptome Atlas of Newcastle Disease Virus in Chickens Both In Vitro and In Vivo. Microbiol Spectr 2023; 11:e0512122. [PMID: 37191506 PMCID: PMC10269786 DOI: 10.1128/spectrum.05121-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 03/28/2023] [Indexed: 05/17/2023] Open
Abstract
Newcastle disease virus (NDV) is an avian paramyxovirus that causes major economic losses to the poultry industry around the world, with NDV pathogenicity varying due to strain virulence differences. However, the impacts of intracellular viral replication and the heterogeneity of host responses among cell types are unknown. Here, we investigated the heterogeneity of lung tissue cells in response to NDV infection in vivo and that of the chicken embryo fibroblast cell line DF-1 in response to NDV infection in vitro using single-cell RNA sequencing. We characterized the NDV target cell types in the chicken lung at the single-cell transcriptome level and classified cells into five known and two unknown cell types. The five known cell types are the targets of NDV in the lungs with virus RNA detected. Different paths of infection in the putative trajectories of NDV infection were distinguished between in vivo and in vitro, or between virulent Herts/33 strain and nonvirulent LaSota strain. Gene expression patterns and the interferon (IFN) response in different putative trajectories were demonstrated. IFN responses were elevated in vivo, especially in myeloid and endothelial cells. We distinguished the virus-infected and non-infected cells, and the Toll-like receptor signaling pathway was the main pathway after virus infection. Cell-cell communication analysis revealed the potential cell surface receptor-ligand of NDV. Our data provide a rich resource for understanding NDV pathogenesis and open the way to interventions specifically targeting infected cells. IMPORTANCE Newcastle disease virus (NDV) is an avian paramyxovirus that causes major economic losses to the poultry industry around the world, with NDV pathogenicity varying due to strain virulence differences. However, the impacts of intracellular viral replication and the heterogeneity of host responses among cell types are unknown. Here, we investigated the heterogeneity of lung tissue cells in response to NDV infection in vivo and that of the chicken embryo fibroblast cell line DF-1 in response to NDV infection in vitro using single-cell RNA sequencing. Our results open the way to interventions specifically targeting infected cells, suggest principles of virus-host interactions applicable to NDV and other similar pathogens, and highlight the potential for simultaneous single-cell measurements of both host and viral transcriptomes for delineating a comprehensive map of infection in vitro and in vivo. Therefore, this study can be a useful resource for the further investigation and understanding of NDV.
Collapse
Affiliation(s)
- Weiwei Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Zejun Xu
- School of Food and Bioengineering, Wuhu Institute of Technology, Wuhu, China
| | - Yafeng Qiu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Xusheng Qiu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Lei Tan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Cuiping Song
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Yingjie Sun
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Ying Liao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Xiufan Liu
- School of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Chan Ding
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| |
Collapse
|
5
|
The study of selection signature and its applications on identification of candidate genes using whole genome sequencing data in chicken - a review. Poult Sci 2023; 102:102657. [PMID: 37054499 PMCID: PMC10123265 DOI: 10.1016/j.psj.2023.102657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023] Open
Abstract
Chicken is a major source of protein for the increasing human population and is useful for research purposes. There are almost 1,600 distinct regional breeds of chicken across the globe, among which a large body of genetic and phenotypic variations has been accumulated due to extensive natural and artificial selection. Moreover, natural selection is a crucial force for animal domestication. Several approaches have been adopted to detect selection signatures in different breeds of chicken using whole genome sequencing (WGS) data including integrated haplotype score (iHS), cross-populated extend haplotype homozygosity test (XP-EHH), fixation index (FST), cross-population composite likelihood ratio (XP-CLR), nucleotide diversity (Pi), and others. In addition, gene enrichment analyses are utilized to determine KEGG pathways and gene ontology (GO) terms related to traits of interest in chicken. Herein, we review different studies that have adopted diverse approaches to detect selection signatures in different breeds of chicken. This review systematically summarizes different findings on selection signatures and related candidate genes in chickens. Future studies could combine different selection signatures approaches to strengthen the quality of the results thereby providing more affirmative inference. This would further aid in deciphering the importance of selection in chicken conservation for the increasing human population.
Collapse
|
6
|
Ul-Rahman A, Rabani M, Shabbir MZ. A comparative evaluation of transcriptome changes in lung and spleen tissues of chickens infected with velogenic and mesogenic Avian Orthoavulavirus 1. Microb Pathog 2023; 174:105956. [PMID: 36572195 DOI: 10.1016/j.micpath.2022.105956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
Newcastle disease is an acute, highly contagious disease responsible for severe economic losses to the poultry industry worldwide. Clinical assessment of different pathotypes of AOaV-1 strains is well-elucidated in chickens. However, a paucity of data exists for a comparative assessment of avian innate immune responses in birds after infection with two different pathotypes of AOaV-1. We compared early immune responses in chickens infected with a duck-originated velogenic strain (high virulent: genotype VII) and a pigeon-originated mesogenic stain (moderate virulent; genotype VI). Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) identified 4737 differentially expressed genes (DEGs) in the transcriptional profiles of lung and spleen tissues of chickens infected with both pathotypes. More DEGs were expressed in spleen tissue infected with velogenic strain compared to spleen or lung exposed to mesogenic strain. An enriched expression was observed for genes involved in metabolic processes and cellular components, including innate immune-associated signaling pathways. Most DEGs were involved in RIG-I, Toll-like, NF-Kappa B, and MAPK signaling pathways to activate interferon-stimulated genes (ISGs). This study provided a comparative insight into complicated molecular mechanisms and associated DEGs involved in early immune responses of birds to two different AOaV-1 strains.
Collapse
Affiliation(s)
- Aziz Ul-Rahman
- Department of Pathobiology, Faculty of Veterinary and Animal Sciences, MNS University of Agriculture, Multan, 66000, Pakistan
| | - Masood Rabani
- Institute of Microbiology, University of Veterinary and Animal Sciences Lahore, 54600, Pakistan
| | - Muhammad Zubair Shabbir
- Institute of Microbiology, University of Veterinary and Animal Sciences Lahore, 54600, Pakistan.
| |
Collapse
|
7
|
Doan PTK, Low WY, Ren Y, Tearle R, Hemmatzadeh F. Newcastle disease virus genotype VII gene expression in experimentally infected birds. Sci Rep 2022; 12:5249. [PMID: 35347193 PMCID: PMC8960812 DOI: 10.1038/s41598-022-09257-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 03/07/2022] [Indexed: 11/23/2022] Open
Abstract
Newcastle disease virus genotype VII (NDV-GVII) is a highly contagious pathogen responsible for pandemics that have caused devastating economic losses in the poultry industry. Several features in the transcription of NDV mRNA, including differentially expressed genes across the viral genome, are shared with that for other single, non-segmented, negative-strand viruses. Previous studies measuring viral gene expression using northern blotting indicated that the NDV transcription produced non-equimolar levels of viral mRNAs. However, deep high-throughput sequencing of virus-infected tissues can provide a better insight into the patterns of viral transcription. In this report, the transcription pattern of virulent NDV-GVII was analysed using RNA-seq and qRT-PCR. This study revealed the transcriptional profiling of these highly pathogenic NDV-GVII genes: NP:P:M:F:HN:L, in which there was a slight attenuation at the NP:P and HN:L gene boundaries. Our result also provides a fully comprehensive qPCR protocol for measuring viral transcript abundance that may be more convenient for laboratories where accessing RNA-seq is not feasible.
Collapse
Affiliation(s)
- Phuong Thi Kim Doan
- School of Animal and Veterinary Sciences, The University of Adelaide, Adelaide, Australia.
- Faculty of Animal and Veterinary Sciences, Tay Nguyen University, Dak Lak, Vietnam.
| | - Wai Yee Low
- Davies Research Centre, School of Animal and Veterinary Sciences, The University of Adelaide, Adelaide, Australia
| | - Yan Ren
- Davies Research Centre, School of Animal and Veterinary Sciences, The University of Adelaide, Adelaide, Australia
| | - Rick Tearle
- Davies Research Centre, School of Animal and Veterinary Sciences, The University of Adelaide, Adelaide, Australia
| | - Farhid Hemmatzadeh
- School of Animal and Veterinary Sciences, The University of Adelaide, Adelaide, Australia
- Davies Research Centre, School of Animal and Veterinary Sciences, The University of Adelaide, Adelaide, Australia
| |
Collapse
|
8
|
Chrzastek K, Leng J, Zakaria MK, Bialy D, La Ragione R, Shelton H. Low pathogenic avian influenza virus infection retards colon microbiota diversification in two different chicken lines. Anim Microbiome 2021; 3:64. [PMID: 34583770 PMCID: PMC8479891 DOI: 10.1186/s42523-021-00128-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 09/10/2021] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND A commensal microbiota regulates and is in turn regulated by viruses during host infection which can influence virus infectivity. In this study, analysis of colon microbiota population changes following a low pathogenicity avian influenza virus (AIV) of the H9N2 subtype infection of two different chicken breeds was conducted. METHODS Colon samples were taken from control and infected groups at various timepoints post infection. 16S rRNA sequencing on an Illumina MiSeq platform was performed on the samples and the data mapped to operational taxonomic units of bacterial using a QIIME based pipeline. Microbial community structure was then analysed in each sample by number of observed species and phylogenetic diversity of the population. RESULTS We found reduced microbiota alpha diversity in the acute period of AIV infection (day 2-3) in both Rhode Island Red and VALO chicken lines. From day 4 post infection a gradual increase in diversity of the colon microbiota was observed, but the diversity did not reach the same level as in uninfected chickens by day 10 post infection, suggesting that AIV infection retards the natural accumulation of colon microbiota diversity, which may further influence chicken health following recovery from infection. Beta diversity analysis indicated a bacterial species diversity difference between the chicken lines during and following acute influenza infection but at phylum and bacterial order level the colon microbiota dysbiosis was similar in the two different chicken breeds. CONCLUSION Our data suggest that H9N2 influenza A virus impacts the chicken colon microbiota in a predictable way that could be targeted via intervention to protect or mitigate disease.
Collapse
Affiliation(s)
| | - Joy Leng
- Department of Pathology and Infectious Disease, School of Veterinary Medicine, University of Surrey, Guildford, UK
| | - Mohammad Khalid Zakaria
- The Pirbright Institute, Pirbright, Woking, Surrey, UK
- University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Dagmara Bialy
- The Pirbright Institute, Pirbright, Woking, Surrey, UK
| | - Roberto La Ragione
- Department of Pathology and Infectious Disease, School of Veterinary Medicine, University of Surrey, Guildford, UK
| | - Holly Shelton
- The Pirbright Institute, Pirbright, Woking, Surrey, UK.
| |
Collapse
|
9
|
Indicators of the molecular pathogenesis of virulent Newcastle disease virus in chickens revealed by transcriptomic profiling of spleen. Sci Rep 2021; 11:17570. [PMID: 34475461 PMCID: PMC8413450 DOI: 10.1038/s41598-021-96929-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 08/18/2021] [Indexed: 02/07/2023] Open
Abstract
Newcastle disease virus (NDV) has caused significant outbreaks in South-East Asia, particularly in Indonesia in recent years. Recently emerged genotype VII NDVs (NDV-GVII) have shifted their tropism from gastrointestinal/respiratory tropism to a lymphotropic virus, invading lymphoid organs including spleen and bursa of Fabricius to cause profound lymphoid depletion. In this study, we aimed to identify candidate genes and biological pathways that contribute to the disease caused by this velogenic NDV-GVII. A transcriptomic analysis based on RNA-Seq of spleen was performed in chickens challenged with NDV-GVII and a control group. In total, 6361 genes were differentially expressed that included 3506 up-regulated genes and 2855 down-regulated genes. Real-Time PCR of ten selected genes validated the RNA-Seq results as the correlation between them is 0.98. Functional and network analysis of Differentially Expressed Genes (DEGs) showed altered regulation of ElF2 signalling, mTOR signalling, proliferation of cells of the lymphoid system, signalling by Rho family GTPases and synaptogenesis signalling in spleen. We have also identified modified expression of IFIT5, PI3K, AGT and PLP1 genes in NDV-GVII infected chickens. Our findings in activation of autophagy-mediated cell death, lymphotropic and synaptogenesis signalling pathways provide new insights into the molecular pathogenesis of this newly emerged NDV-GVII.
Collapse
|
10
|
Vanamamalai VK, Garg P, Kolluri G, Gandham RK, Jali I, Sharma S. Transcriptomic analysis to infer key molecular players involved during host response to NDV challenge in Gallus gallus (Leghorn & Fayoumi). Sci Rep 2021; 11:8486. [PMID: 33875770 PMCID: PMC8055681 DOI: 10.1038/s41598-021-88029-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 03/22/2021] [Indexed: 11/09/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are the transcripts of length longer than 200 nucleotides. They are involved in the regulation of various biological activities. Leghorn and Fayoumi breeds of Gallus gallus were known to be having differential resistance against Newcastle Disease Virus (NDV) infection. Differentially expressed genes which were thought to be involved in this pattern of resistance were already studied. Here we report the analysis of the transcriptomic data of Harderian gland of Gallus gallus for studying the lncRNAs involved in regulation of these genes. Using bioinformatics approaches, a total of 37,411 lncRNAs were extracted and 359 lncRNAs were differentially expressing. Functional annotation using co-expression analysis revealed the involvement of lncRNAs in the regulation of various pathways. We also identified 1232 quantitative trait loci (QTLs) associated with the genes interacting with lncRNA. Additionally, we identified the role of lncRNAs as putative micro RNA precursors, and the interaction of differentially expressed Genes with transcription factors and micro RNAs. Our study revealed the role of lncRNAs during host response against NDV infection which would facilitate future experiments in unravelling regulatory mechanisms of development in the genetic improvement of the susceptible breeds of Gallus gallus.
Collapse
Affiliation(s)
- Venkata Krishna Vanamamalai
- National Institute of Animal Biotechnology (NIAB), Opposite Journalist Colony, Near Gowlidoddi Extended Q City Road, Gachibowli, Hyderabad, Telangana, 500032, India
| | - Priyanka Garg
- National Institute of Animal Biotechnology (NIAB), Opposite Journalist Colony, Near Gowlidoddi Extended Q City Road, Gachibowli, Hyderabad, Telangana, 500032, India
| | - Gautham Kolluri
- ICAR-Central Avian Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India
| | - Ravi Kumar Gandham
- National Institute of Animal Biotechnology (NIAB), Opposite Journalist Colony, Near Gowlidoddi Extended Q City Road, Gachibowli, Hyderabad, Telangana, 500032, India
| | - Itishree Jali
- National Institute of Animal Biotechnology (NIAB), Opposite Journalist Colony, Near Gowlidoddi Extended Q City Road, Gachibowli, Hyderabad, Telangana, 500032, India
| | - Shailesh Sharma
- National Institute of Animal Biotechnology (NIAB), Opposite Journalist Colony, Near Gowlidoddi Extended Q City Road, Gachibowli, Hyderabad, Telangana, 500032, India.
| |
Collapse
|
11
|
Del Vesco AP, Jang HJ, Monson MS, Lamont SJ. Role of the chicken oligoadenylate synthase-like gene during in vitro Newcastle disease virus infection. Poult Sci 2021; 100:101067. [PMID: 33752069 PMCID: PMC8005822 DOI: 10.1016/j.psj.2021.101067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 01/19/2021] [Accepted: 02/11/2021] [Indexed: 01/21/2023] Open
Abstract
The enzyme 2′-5′ oligoadenylate synthase (OAS) is one of the key interferon-induced antiviral factors that act through inhibition of viral replication. In chickens, there is a single well-characterized OAS gene, oligoadenylate synthase-like (OASL) that has been shown to be upregulated after infection with various viruses. However, a deeper understanding of how chicken OASL acts against viral infection is still necessary. In this study, we tested the hypothesis that OASL short interfering RNA (siRNA)–mediated knockdown would decrease the host gene expression response to the Newcastle disease virus (NDV) by impacting antiviral pathways. To assess our hypothesis, a chicken fibroblast cell line (DF-1) was infected with the NDV (LaSota strain) and OASL expression was knocked down using a specific siRNA. The level of NDV viral RNA in the cells and the expression of interferon response- and apoptosis-related genes were evaluated by quantitative PCR at 4, 8, and 24 h postinfection (hpi). Knockdown of OASL increased the level of NDV viral RNA at 4, 8, and 24 hpi (P < 0.05) and eliminated the difference between NDV-infected and noninfected cells for expression of interferon response- and apoptosis-related genes (P > 0.05). The lack of differential expression suggests that knockdown of OASL resulted in a decreased response to NDV infection. Within NDV-infected cells, OASL knockdown reduced expression of signal transducer and activator of transcription 1, interferon alfa receptor subunit 1, eukaryotic translation initiation factor 2 alpha kinase 2, ribonuclease L, caspase 8 (CASP8) and caspase 9 (CASP9) at 4 hpi, CASP9 at 8 hpi, and caspase 3, CASP8, and CASP9 at 24 hpi (P < 0.05). We suggest that the increased NDV viral load in DF-1 cells after OASL knockdown was the result of a complex interaction between OASL and interferon response- and apoptosis-related genes that decreased host response to the NDV. Our results provide comprehensive information on the role played by OASL during NDV infection in vitro. Targeting this mechanism could aid in future prophylactic and therapeutic treatments for Newcastle disease in poultry.
Collapse
Affiliation(s)
- Ana Paula Del Vesco
- Department of Animal Science, Iowa State University, 50011-3150 Ames, USA; Department of Animal Science, Universidade Federal de Sergipe, 49100-000 São Cristóvão, Sergipe, Brazil
| | - Hyun Jun Jang
- Department of Animal Science, Iowa State University, 50011-3150 Ames, USA; Department of Animal Biotechnology, Jeonbuk National University, Jeonju-si, Jeollabuk-do 54896, Republic of Korea; Center for Industrialization of Agricultural and Livestock Microorganisms, Jeongeup-si, Jeollabuk-do 56212, Republic of Korea
| | - Melissa S Monson
- Department of Animal Science, Iowa State University, 50011-3150 Ames, USA
| | - Susan J Lamont
- Department of Animal Science, Iowa State University, 50011-3150 Ames, USA.
| |
Collapse
|
12
|
Mao S, Ou X, Wang M, Sun D, Yang Q, Wu Y, Jia R, Zhu D, Zhao X, Chen S, Liu M, Zhang S, Huang J, Gao Q, Liu Y, Yu Y, Zhang L, Tian B, Pan L, Chen X, Cheng A. Duck hepatitis A virus 1 has lymphoid tissue tropism altering the organic immune responses of mature ducks. Transbound Emerg Dis 2020; 68:3588-3600. [PMID: 33369177 DOI: 10.1111/tbed.13966] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 12/17/2020] [Accepted: 12/23/2020] [Indexed: 12/18/2022]
Abstract
Duck hepatitis A virus 1 (DHAV-1) is a highly prevalent pathogen within adult ducks causing acute as well as chronic hepatitis which closely emulates the progression of human hepatitis. However, the underlying mechanisms of DHAV-1 persistence and the pathogenesis of chronic liver disease are not well defined. The association between hematopoietic reservoirs of virus and persistent infection is increasingly concerning. Here, we explored the ability of lymphoid replication of DHAV-1 and the effect on immunity. We found that DHAV-1 was able to infect and replicate productively in the lymphoid organs of model ducks, persisting over 6 months. Moreover, a significant correlation of viral loads between these organs and blood was found, documenting a major contribution of lymphoid replication to DHAV-1 viraemia. Along with viral replication, the mRNA of PRRs and immune-related cytokines was up-regulated in these organs during the early phase of infection, showing tissue-dependent expression patterns but all inclining towards Th2 responses due to the consistently higher level of IL-4 than IL-2 and IFN-γ. Additionally, the expression of CCL19, CCL21, MHC-I and MHC-II, which are involved in T cell homing to the periphery and priming, was dysmodulated. Our data indicate that DHAV-1 possesses lymphoid tissue tropism, contributing to persistent infection and chronic hepatitis via altering the early endogenous transcription of immune-related genes and thereby perturbing organic immunity. These results may be useful to develop novel strategies to treat chronic viral hepatitis based on stimulation of the early innate system and regulation of T-cell trafficking.
Collapse
Affiliation(s)
- Sai Mao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Xumin Ou
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Di Sun
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Dekang Zhu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Xinxin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Shaqiu Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Juan Huang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Qun Gao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Yunya Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Yanling Yu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Ling Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Bin Tian
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Leichang Pan
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Xiaoyue Chen
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| |
Collapse
|
13
|
Induction of Chicken Host Defense Peptides within Disease-Resistant and -Susceptible Lines. Genes (Basel) 2020; 11:genes11101195. [PMID: 33066561 PMCID: PMC7602260 DOI: 10.3390/genes11101195] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/06/2020] [Accepted: 10/12/2020] [Indexed: 11/17/2022] Open
Abstract
Host defense peptides (HDPs) are multifunctional immune molecules that respond to bacterial and viral pathogens. In the present study, bone marrow-derived cells (BMCs) and chicken embryonic fibroblasts (CEFs) were cultured from a Leghorn line (Ghs6) and Fayoumi line (M15.2), which are inbred chicken lines relatively susceptible and resistant to various diseases, respectively. The cells were treated by lipopolysaccharide (LPS) or polyinosinic-polycytidylic acid (poly(I:C)) and, subsequently, mRNA expression of 20 chicken HDPs was analyzed before and after the stimulation. At homeostasis, many genes differed between the chicken lines, with the Fayoumi line having significantly higher expression (p < 0.05) than the Leghorn line: AvBD1, 2, 3, 4, 6, and 7 in BMCs; CATH1, CATH3, and GNLY in CEFs; and AvDB5, 8, 9, 10, 11, 12, 13 in both BMCs and CEFs. After LPS treatment, the expression of AvBD1, 2, 3, 4, 5, 9, 12, CATH1, and CATHB1 was significantly upregulated in BMCs, but no genes changed expression in CEFs. After poly(I:C) treatment, AvBD2, 11, 12, 13, CATHB1 and LEAP2 increased in both cell types; CATH2 only increased in BMCs; and AvBD3, 6, 9, 14, CATH1, CATH3, and GNLY only increased in CEFs. In addition, AvBD7, AvBD14, CATH1, CATH2, GNLY, and LEAP2 showed line-specific expression dependent upon cell type (BMC and CEF) and stimulant (LPS and poly(I:C)). The characterization of mRNA expression patterns of chicken HDPs in the present study suggests that their functions may be associated with multiple types of disease resistance in chickens.
Collapse
|
14
|
Transcriptome Analysis Reveals Inhibitory Effects of Lentogenic Newcastle Disease Virus on Cell Survival and Immune Function in Spleen of Commercial Layer Chicks. Genes (Basel) 2020; 11:genes11091003. [PMID: 32859030 PMCID: PMC7565929 DOI: 10.3390/genes11091003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 08/19/2020] [Accepted: 08/25/2020] [Indexed: 01/05/2023] Open
Abstract
As a major infectious disease in chickens, Newcastle disease virus (NDV) causes considerable economic losses in the poultry industry, especially in developing countries where there is limited access to effective vaccination. Therefore, enhancing resistance to the virus in commercial chickens through breeding is a promising way to promote poultry production. In this study, we investigated gene expression changes at 2 and 6 days post inoculation (dpi) at day 21 with a lentogenic NDV in a commercial egg-laying chicken hybrid using RNA sequencing analysis. By comparing NDV-challenged and non-challenged groups, 526 differentially expressed genes (DEGs) (false discovery rate (FDR) < 0.05) were identified at 2 dpi, and only 36 at 6 dpi. For the DEGs at 2 dpi, Ingenuity Pathway Analysis predicted inhibition of multiple signaling pathways in response to NDV that regulate immune cell development and activity, neurogenesis, and angiogenesis. Up-regulation of interferon induced protein with tetratricopeptide repeats 5 (IFIT5) in response to NDV was consistent between the current and most previous studies. Sprouty RTK signaling antagonist 1 (SPRY1), a DEG in the current study, is in a significant quantitative trait locus associated with virus load at 6 dpi in the same population. These identified pathways and DEGs provide potential targets to further study breeding strategy to enhance NDV resistance in chickens.
Collapse
|
15
|
Li D, Sun G, Zhang M, Cao Y, Zhang C, Fu Y, Li F, Li G, Jiang R, Han R, Li Z, Wang Y, Tian Y, Liu X, Li W, Kang X. Breeding history and candidate genes responsible for black skin of Xichuan black-bone chicken. BMC Genomics 2020; 21:511. [PMID: 32703156 PMCID: PMC7376702 DOI: 10.1186/s12864-020-06900-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 07/09/2020] [Indexed: 12/21/2022] Open
Abstract
Background Domesticated chickens have a wide variety of phenotypes, in contrast with their wild progenitors. Unlike other chicken breeds, Xichuan black-bone chickens have blue-shelled eggs, and black meat, beaks, skin, bones, and legs. The breeding history and the economically important traits of this breed have not yet been explored at the genomic level. We therefore used whole genome resequencing to analyze the breeding history of the Xichuan black-bone chickens and to identify genes responsible for its unique phenotype. Results Principal component and population structure analysis showed that Xichuan black-bone chicken is in a distinct clade apart from eight other breeds. Linkage disequilibrium analysis showed that the selection intensity of Xichuan black-bone chickens is higher than for other chicken breeds. The estimated time of divergence between the Xichuan black-bone chickens and other breeds is 2.89 ka years ago. Fst analysis identified a selective sweep that contains genes related to melanogenesis. This region is probably associated with the black skin of the Xichuan black-bone chickens and may be the product of long-term artificial selection. A combined analysis of genomic and transcriptomic data suggests that the candidate gene related to the black-bone trait, EDN3, might interact with the upstream ncRNA LOC101747896 to generate black skin color during melanogenesis. Conclusions These findings help explain the unique genetic and phenotypic characteristics of Xichuan black-bone chickens, and provide basic research data for studying melanin deposition in animals.
Collapse
Affiliation(s)
- Donghua Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - Guirong Sun
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China.,Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, 450046, China
| | - Meng Zhang
- The First Hospital, Jilin University, Changchun, 130062, Jilin, China
| | - Yanfang Cao
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - Chenxi Zhang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - Yawei Fu
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - Fang Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - Guoxi Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China.,Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, 450046, China
| | - Ruirui Jiang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China.,Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, 450046, China
| | - Ruili Han
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China.,Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, 450046, China
| | - Zhuanjian Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China.,Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, 450046, China
| | - Yanbin Wang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China.,Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, 450046, China
| | - Yadong Tian
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China.,Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, 450046, China
| | - Xiaojun Liu
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - Wenting Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China.
| | - Xiangtao Kang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China. .,Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, 450046, China.
| |
Collapse
|
16
|
Del Vesco AP, Kaiser MG, Monson MS, Zhou H, Lamont SJ. Genetic responses of inbred chicken lines illustrate importance of eIF2 family and immune-related genes in resistance to Newcastle disease virus. Sci Rep 2020; 10:6155. [PMID: 32273535 PMCID: PMC7145804 DOI: 10.1038/s41598-020-63074-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 03/17/2020] [Indexed: 12/12/2022] Open
Abstract
Newcastle disease virus (NDV) replication depends on the translation machinery of the host cell; therefore, the eukaryotic translation initiation factor 2 (eIF2) gene family is a likely candidate for control of viral replication. We hypothesized that differential expression of host genes related to translation and innate immune response could contribute to differential resistance to NDV in inbred Fayoumi and Leghorn lines. The expression of twenty-one genes related to the interferon signaling pathway and the eIF2 family was evaluated at two- and six-days post infection (dpi) in the spleen from both lines, either challenged by NDV or nonchallenged. Higher expression of OASL in NDV challenged versus nonchallenged spleen was observed in Leghorns at 2 dpi. Lower expression of EIF2B5 was found in NDV challenged than nonchallenged Fayoumis and Leghorns at 2 dpi. At 2 dpi, NDV challenged Fayoumis had lower expression of EIF2B5 and EIF2S3 than NDV challenged Leghorns. At 6 dpi, NDV challenged Fayoumis had lower expression of EIF2S3 and EIF2B4 than NDV challenged Leghorns. The genetic line differences in expression of eIF2-related genes may contribute to their differential resistance to NDV and also to understanding the interaction between protein synthesis shut-off and virus control in chickens.
Collapse
Affiliation(s)
- Ana Paula Del Vesco
- Department of Animal Science, Iowa State University, Ames, IA, USA
- Department of Animal Science, Universidade Federal de Sergipe, São Cristóvão, SE, Brazil
| | - Michael G Kaiser
- Department of Animal Science, Iowa State University, Ames, IA, USA
| | - Melissa S Monson
- Department of Animal Science, Iowa State University, Ames, IA, USA
| | - Huaijun Zhou
- Department of Animal Science, University of California, Davis, CA, USA
| | - Susan J Lamont
- Department of Animal Science, Iowa State University, Ames, IA, USA.
| |
Collapse
|
17
|
Deist MS, Gallardo RA, Dekkers JCM, Zhou H, Lamont SJ. Novel Combined Tissue Transcriptome Analysis After Lentogenic Newcastle Disease Virus Challenge in Inbred Chicken Lines of Differential Resistance. Front Genet 2020; 11:11. [PMID: 32117434 PMCID: PMC7013128 DOI: 10.3389/fgene.2020.00011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 01/06/2020] [Indexed: 12/15/2022] Open
Abstract
Disease has large negative impacts on poultry production. A more comprehensive understanding of host-pathogen interaction can lead to new and improved strategies to maintain health. In particular, host genetic factors can lead to a more effective response to pathogens, hereafter termed resistance. Fayoumi and Leghorn chicken lines have demonstrated relative resistance and susceptibility, respectively, to the Newcastle disease virus (NDV) vaccine strain and many other pathogens. This biological model was used to better understand the host response to a vaccine strain of NDV across three tissues and time points, using RNA-seq. Analyzing the Harderian gland, trachea, and lung tissues together using weighted gene co-expression network analysis (WGCNA) identified important genes that were co-expressed and associated with parameters including: genetic line, days post-infection (dpi), challenge status, sex, and tissue. Pathways and driver genes, such as EIF2AK2, MPEG1, and TNFSF13B, associated with challenge status, dpi, and genetic line were of particular interest as candidates for disease resistance. Overall, by jointly analyzing the three tissues, this study identified genes and gene networks that led to a more comprehensive understanding of the whole animal response to lentogenic NDV than that obtained by analyzing the tissues individually.
Collapse
Affiliation(s)
- Melissa S Deist
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | - Rodrigo A Gallardo
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Jack C M Dekkers
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | - Huaijun Zhou
- Department of Animal Science, University of California, Davis, Davis, CA, United States
| | - Susan J Lamont
- Department of Animal Science, Iowa State University, Ames, IA, United States
| |
Collapse
|
18
|
Schilling MA, Memari S, Cattadori IM, Katani R, Muhairwa AP, Buza JJ, Kapur V. Innate Immune Genes Associated With Newcastle Disease Virus Load in Chick Embryos From Inbred and Outbred Lines. Front Microbiol 2019; 10:1432. [PMID: 31281305 PMCID: PMC6596324 DOI: 10.3389/fmicb.2019.01432] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 06/06/2019] [Indexed: 12/21/2022] Open
Abstract
Newcastle disease virus (NDV) causes substantial economic losses to smallholder farmers in low- and middle-income countries with high levels of morbidity and mortality in poultry flocks. Previous investigations have suggested differing levels of susceptibility to NDV between specific inbred lines and amongst breeds of chickens, however, the mechanisms contributing to this remain poorly understood. Studies have shown that some of these differences in levels of susceptibility to NDV infection may be accounted for by variability in the innate immune response amongst various breeds of poultry to NDV infection. Recent studies, in inbred Fayoumi and Leghorn lines, uncovered conserved, breed-dependent, and subline-dependent responses. To better understand the role of innate immune genes in engendering a protective immune response, we assessed the transcriptional responses to NDV of three highly outbred Tanzanian local chicken ecotypes, the Kuchi, the Morogoro Medium, and the Ching’wekwe. Hierarchical clustering and principal coordinate analysis of the gene expression profiles of 21-day old chick embryos infected with NDV clustered in an ecotype-dependent manner and was consistent with the relative viral loads for each of the three ecotypes. The Kuchi and Morogoro Medium exhibit significantly higher viral loads than the Ching’wekwe. The results show that the outbred ecotypes with increased levels of expression of CCL4, NOS2, and SOCS1 also had higher viral loads. The higher expression of SOCS1 is inconsistent with the expression in inbred lines. These differences may uncover new mechanisms or pathways in these populations that may have otherwise been overlooked when examining the response in highly inbred lines. Taken together, our findings provide insights on the specific conserved and differentially expressed innate immune-related genes involved the response of highly outbred chicken lines to NDV. This also suggests that several of the specific innate immunity related genes identified in the current investigation may serve as markers for the selection of chickens with reduced susceptibility to NDV.
Collapse
Affiliation(s)
- Megan A Schilling
- Animal Science Department, Pennsylvania State University, University Park, PA, United States.,Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, United States.,School of Life Sciences and Bioengineering, The Nelson Mandela African Institution of Science and Technology, Arusha, TZ, United States
| | - Sahar Memari
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, United States
| | - Isabella M Cattadori
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, United States.,Applied Biological and Biosecurity Research Laboratory, Pennsylvania State University, University Park, PA, United States.,Department of Biology, Pennsylvania State University, University Park, PA, United States
| | - Robab Katani
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, United States.,Applied Biological and Biosecurity Research Laboratory, Pennsylvania State University, University Park, PA, United States
| | - Amandus P Muhairwa
- Department of Veterinary Medicine and Public Health, Sokoine University of Agriculture, Morogoro, TZ, United States
| | - Joram J Buza
- School of Life Sciences and Bioengineering, The Nelson Mandela African Institution of Science and Technology, Arusha, TZ, United States
| | - Vivek Kapur
- Animal Science Department, Pennsylvania State University, University Park, PA, United States.,Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, United States.,School of Life Sciences and Bioengineering, The Nelson Mandela African Institution of Science and Technology, Arusha, TZ, United States.,Applied Biological and Biosecurity Research Laboratory, Pennsylvania State University, University Park, PA, United States
| |
Collapse
|
19
|
Schilling MA, Memari S, Cavanaugh M, Katani R, Deist MS, Radzio-Basu J, Lamont SJ, Buza JJ, Kapur V. Conserved, breed-dependent, and subline-dependent innate immune responses of Fayoumi and Leghorn chicken embryos to Newcastle disease virus infection. Sci Rep 2019; 9:7209. [PMID: 31076577 PMCID: PMC6510893 DOI: 10.1038/s41598-019-43483-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 04/24/2019] [Indexed: 11/13/2022] Open
Abstract
Newcastle disease virus (NDV) is a threat to the global poultry industry, but particularly for smallholder farmers in low- and middle-income countries. Previous reports suggest that some breeds of chickens are less susceptible to NDV infection, however, the mechanisms contributing to this are unknown. We here examined the comparative transcriptional responses of innate immune genes to NDV infection in inbred sublines of the Fayoumi and Leghorn breeds known to differ in their relative susceptibility to infection as well as at the microchromosome bearing the major histocompatability complex (MHC) locus. The analysis identified a set of five core genes, Mx1, IRF1, IRF7, STAT1, and SOCS1, that are up-regulated regardless of subline. Several genes were differentially expressed in a breed- or subline-dependent manner. The breed-dependent response involved TLR3, NOS2, LITAF, and IFIH1 in the Fayoumi versus IL8, CAMP, and CCL4 in the Leghorn. Further analysis identified subline-dependent differences in the pro-inflammatory response within the Fayoumi breed that are likely influenced by the MHC. These results have identified conserved, breed-dependent, and subline-dependent innate immune responses to NDV infection in chickens, and provide a strong framework for the future characterization of the specific roles of genes and pathways that influence the susceptibility of chickens to NDV infection.
Collapse
Affiliation(s)
- Megan A Schilling
- The Pennsylvania State University, Huck Institutes of the Life Sciences, University Park, PA, 16802, USA.,The Pennsylvania State University, Animal Science Department, University Park, PA, 16802, USA.,The Nelson Mandela African Institution of Science and Technology, School of Life Science and Bioengineering, Arusha, Tanzania
| | - Sahar Memari
- The Pennsylvania State University, Huck Institutes of the Life Sciences, University Park, PA, 16802, USA.,The Pennsylvania State University, Animal Science Department, University Park, PA, 16802, USA
| | - Meredith Cavanaugh
- The Pennsylvania State University, Huck Institutes of the Life Sciences, University Park, PA, 16802, USA.,The Pennsylvania State University, Animal Science Department, University Park, PA, 16802, USA
| | - Robab Katani
- The Pennsylvania State University, Huck Institutes of the Life Sciences, University Park, PA, 16802, USA.,The Pennsylvania State University, Animal Science Department, University Park, PA, 16802, USA.,The Pennsylvania State University, Applied Biological and Biosafety Research Laboratory, University Park, PA, 16802, USA
| | - Melissa S Deist
- The Iowa State University, Department of Animal Science, Ames, IA, 50011, USA
| | - Jessica Radzio-Basu
- The Pennsylvania State University, Huck Institutes of the Life Sciences, University Park, PA, 16802, USA.,The Pennsylvania State University, Applied Biological and Biosafety Research Laboratory, University Park, PA, 16802, USA
| | - Susan J Lamont
- The Iowa State University, Department of Animal Science, Ames, IA, 50011, USA
| | - Joram J Buza
- The Nelson Mandela African Institution of Science and Technology, School of Life Science and Bioengineering, Arusha, Tanzania
| | - Vivek Kapur
- The Pennsylvania State University, Huck Institutes of the Life Sciences, University Park, PA, 16802, USA. .,The Pennsylvania State University, Animal Science Department, University Park, PA, 16802, USA. .,The Nelson Mandela African Institution of Science and Technology, School of Life Science and Bioengineering, Arusha, Tanzania. .,The Pennsylvania State University, Applied Biological and Biosafety Research Laboratory, University Park, PA, 16802, USA.
| |
Collapse
|
20
|
Association of Candidate Genes with Response to Heat and Newcastle Disease Virus. Genes (Basel) 2018; 9:genes9110560. [PMID: 30463235 PMCID: PMC6267452 DOI: 10.3390/genes9110560] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 11/12/2018] [Accepted: 11/13/2018] [Indexed: 12/12/2022] Open
Abstract
Newcastle disease is considered the number one disease constraint to poultry production in low and middle-income countries, however poultry that is raised in resource-poor areas often experience multiple environmental challenges. Heat stress has a negative impact on production, and immune response to pathogens can be negatively modulated by heat stress. Candidate genes and regions chosen for this study were based on previously reported associations with response to immune stimulants, pathogens, or heat, including: TLR3, TLR7, MX, MHC-B (major histocompatibility complex, gene complex), IFI27L2, SLC5A1, HSPB1, HSPA2, HSPA8, IFRD1, IL18R1, IL1R1, AP2A2, and TOLLIP. Chickens of a commercial egg-laying line were infected with a lentogenic strain of NDV (Newcastle disease virus); half the birds were maintained at thermoneutral temperature and the other half were exposed to high ambient temperature before the NDV challenge and throughout the remainder of the study. Phenotypic responses to heat, to NDV, or to heat + NDV were measured. Selected SNPs (single nucleotide polymorphisms) within 14 target genes or regions were genotyped; and genotype effects on phenotypic responses to NDV or heat + NDV were tested in each individual treatment group and the combined groups. Seventeen significant haplotype effects, among seven genes and seven phenotypes, were detected for response to NDV or heat or NDV + heat. These findings identify specific genetic variants that are associated with response to heat and/or NDV which may be useful in the genetic improvement of chickens to perform favorably when faced with pathogens and heat stress.
Collapse
|
21
|
Rowland K, Wolc A, Gallardo RA, Kelly T, Zhou H, Dekkers JCM, Lamont SJ. Genetic Analysis of a Commercial Egg Laying Line Challenged With Newcastle Disease Virus. Front Genet 2018; 9:326. [PMID: 30177951 PMCID: PMC6110172 DOI: 10.3389/fgene.2018.00326] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 07/30/2018] [Indexed: 01/17/2023] Open
Abstract
In low income countries, chickens play a vital role in daily life. They provide a critical source of protein through egg production and meat. Newcastle disease, caused by avian paramyxovirus type 1, has been ranked as the most devastating disease for scavenging chickens in Africa and Asia. High mortality among flocks infected with velogenic strains leads to a devastating loss of dietary protein and buying power for rural households. Improving the genetic resistance of chickens to Newcastle Disease virus (NDV), in addition to vaccination, is a practical target for improvement of poultry production in low income countries. Because response to NDV has a component of genetic control, it can be influenced through selective breeding. Adding genomic information to a breeding program can increase the amount of genetic progress per generation. In this study, we challenged a commercial egg-laying line with a lentogenic strain of NDV, measured phenotypic responses, collected genotypes, and associated genotypes with phenotypes. Collected phenotypes included viral load at 2 and 6 days post-infection (dpi), antibody levels pre-challenge and 10 dpi, and growth rates pre- and post-challenge. Six suggestive QTL associated with response to NDV and/or growth were identified, including novel and known QTL confirming previously reported associations with related traits. Additionally, previous RNA-seq analysis provided support for several of the genes located in or near the identified QTL. Considering the trend of negative genetic correlation between antibody and Newcastle Disease tolerance (growth under disease) and estimates of moderate to high heritability, we provide evidence that these NDV response traits can be influenced through selective breeding. Producing chickens that perform favorably in challenging environments will ultimately increase the supply of quality protein for human consumption.
Collapse
Affiliation(s)
- Kaylee Rowland
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | - Anna Wolc
- Department of Animal Science, Iowa State University, Ames, IA, United States.,Hy-Line International, Dallas Center, IA, United States
| | - Rodrigo A Gallardo
- School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Terra Kelly
- School of Veterinary Medicine, University of California, Davis, Davis, CA, United States.,Department of Animal Science, University of California, Davis, Davis, CA, United States
| | - Huaijun Zhou
- Department of Animal Science, University of California, Davis, Davis, CA, United States
| | - Jack C M Dekkers
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | - Susan J Lamont
- Department of Animal Science, Iowa State University, Ames, IA, United States
| |
Collapse
|
22
|
Deist MS, Lamont SJ. What Makes the Harderian Gland Transcriptome Different From Other Chicken Immune Tissues? A Gene Expression Comparative Analysis. Front Physiol 2018; 9:492. [PMID: 29867543 PMCID: PMC5952037 DOI: 10.3389/fphys.2018.00492] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 04/17/2018] [Indexed: 11/13/2022] Open
Abstract
The Harderian gland is a sparsely characterized immune tissue known to play an important role in local immunity. The function of the Harderian gland, however, is not clearly defined. Measuring the expression of all genes using RNA-seq enables the identification of genes, pathways, or networks of interest. Our relative RNA-seq expression analysis compared the chicken Harderian gland transcriptome to other important primary and secondary immune tissues including the bursa of Fabricius, thymus, and spleen of non-challenged birds. A total of 2,386 transcripts were identified as highly expressed in the Harderian gland. Gene set enrichment showed the importance of G-protein coupled receptor signaling and several immune pathways. Among the genes highly expressed in the Harderian gland were 48 miRNAs, a category of genetic elements involved in regulation of gene expression. Several identified miRNAs have immune related functions. This analysis gives insight to the unique immune processes inherent in the Harderian gland.
Collapse
Affiliation(s)
- Melissa S Deist
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | - Susan J Lamont
- Department of Animal Science, Iowa State University, Ames, IA, United States
| |
Collapse
|