Seo YI, Choi WJ, Kimura SI, Kwon YS. Evidence for a preformed Cooper pair model in the pseudogap spectra of a Ca
10(Pt
4As
8)(Fe
2As
2)
5 single crystal with a nodal superconducting gap.
Sci Rep 2019;
9:3987. [PMID:
30850717 PMCID:
PMC6408529 DOI:
10.1038/s41598-019-40528-3]
[Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 02/14/2019] [Indexed: 11/28/2022] Open
Abstract
For high-Tc superconductors, clarifying the role and origin of the pseudogap is essential for understanding the pairing mechanism. Among the various models describing the pseudogap, the preformed Cooper pair model is a potential candidate. Therefore, we present experimental evidence for the preformed Cooper pair model by studying the pseudogap spectrum observed in the optical conductivity of a Ca10(Pt4As8)(Fe2As2)5 (Tc = 34.6 K) single crystal. We observed a clear pseudogap structure in the optical conductivity and observed its temperature dependence. In the superconducting (SC) state, one SC gap with a gap size of Δ = 26 cm−1, a scattering rate of 1/τ = 360 cm−1 and a low-frequency extra Drude component were observed. Spectral weight analysis revealed that the SC gap and pseudogap are formed from the same Drude band. This means that the pseudogap is a gap structure observed as a result of a continuous temperature evolution of the SC gap observed below Tc. This provides clear experimental evidence for the preformed Cooper pair model.
Collapse