1
|
Hancock GRA, Grayshon L, Burrell R, Cuthill I, Hoodless A, Troscianko J. Habitat geometry rather than visual acuity limits the visibility of a ground-nesting bird's clutch to terrestrial predators. Ecol Evol 2023; 13:e10471. [PMID: 37720061 PMCID: PMC10501817 DOI: 10.1002/ece3.10471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/10/2023] [Accepted: 08/18/2023] [Indexed: 09/19/2023] Open
Abstract
The nests of ground-nesting birds rely heavily on camouflage for their survival, and predation risk, often linked to ecological changes from human activity, is a major source of mortality. Numerous ground-nesting bird populations are in decline, so understanding the effects of camouflage on their nesting behavior is relevant to their conservation concerns. Habitat three-dimensional (3D) geometry, together with predator visual abilities, viewing distance, and viewing angle, determine whether a nest is either visible, occluded, or too far away to detect. While this link is intuitive, few studies have investigated how fine-scale geometry is likely to help defend nests from different predator guilds. We quantified nest visibility based on 3D occlusion, camouflage, and predator visual modeling in northern lapwings, Vanellus vanellus, on different land management regimes. Lapwings selected local backgrounds that had a higher 3D complexity at a spatial scale greater than their entire clutches compared to local control sites. Importantly, our findings show that habitat geometry-rather than predator visual acuity-restricts nest visibility for terrestrial predators and that their field habitats, perceived by humans as open, are functionally closed with respect to a terrestrial predator searching for nests on the ground. Taken together with lapwings' careful nest site selection, our findings highlight the importance of considering habitat geometry for understanding the evolutionary ecology and management of conservation sites for ground-nesting birds.
Collapse
Affiliation(s)
| | | | - Ryan Burrell
- Faculty of Science and TechnologyBournemouth UniversityDorsetUK
| | - Innes Cuthill
- School of Biological SciencesUniversity of BristolBristolUK
| | | | | |
Collapse
|
2
|
King J, Hemmi JM, Kelley JL. Camouflage using three-dimensional surface disruption. Biol Lett 2023; 19:20220596. [PMID: 37528728 PMCID: PMC10394419 DOI: 10.1098/rsbl.2022.0596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 07/17/2023] [Indexed: 08/03/2023] Open
Abstract
Disruptive markings are common in animal patterns and can provide camouflage benefits by concealing the body's true edges and/or by breaking the surface of the body into multiple depth planes. Disruptive patterns that are accentuated by high contrast borders are most likely to provide false depth cues to enhance camouflage, but studies to date have used visual detection models or humans as predators. We presented three-dimensional-printed moth-like targets to wild bird predators to determine whether: (1) three-dimensional prey with disrupted body surfaces have higher survival than three-dimensional prey with continuous surfaces, (2) two-dimensional prey with disruptive patterns or enhanced edge markings have higher survival than non-patterned two-dimensional prey. We found a survival benefit for three-dimensional prey with disrupted surfaces, and a significant effect of mean wing luminance. There was no evidence that false depth cues provided the same protective benefits as physical surface disruption in three-dimensional prey, perhaps because our treatments did not mimic the complexity of patterns found in natural animal markings. Our findings indicate that disruption of surface continuity is an important strategy for concealing a three-dimensional body shape.
Collapse
Affiliation(s)
- Jemma King
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley 6009, Perth, Australia
| | - Jan M. Hemmi
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley 6009, Perth, Australia
- UWA Oceans Institute, The University of Western Australia, 35 Stirling Highway, Crawley 6009, Perth, Australia
| | - Jennifer L. Kelley
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley 6009, Perth, Australia
- UWA Oceans Institute, The University of Western Australia, 35 Stirling Highway, Crawley 6009, Perth, Australia
| |
Collapse
|
3
|
Děchtěrenko F, Jakubková D, Lukavský J, Howard CJ. Tracking multiple fish. PeerJ 2022; 10:e13031. [PMID: 35261822 PMCID: PMC8898553 DOI: 10.7717/peerj.13031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 02/08/2022] [Indexed: 01/11/2023] Open
Abstract
Although the Multiple Object Tracking (MOT) task is a widely used experimental method for studying divided attention, tracking objects in the real world usually looks different. For example, in the real world, objects are usually clearly distinguishable from each other and also possess different movement patterns. One such case is tracking groups of creatures, such as tracking fish in an aquarium. We used movies of fish in an aquarium and measured general tracking performance in this task (Experiment 1). In Experiment 2, we compared tracking accuracy within-subjects in fish tracking, tracking typical MOT stimuli, and in a third condition using standard MOT uniform objects which possessed movement patterns similar to the real fish. This third condition was added to further examine the impact of different motion characteristics on tracking performance. Results within a Bayesian framework showed that tracking real fish shares similarities with tracking simple objects in a typical laboratory MOT task. Furthermore, we observed a close relationship between performance in both laboratory MOT tasks (typical and fish-like) and real fish tracking, suggesting that the commonly used laboratory MOT task possesses a good level of ecological validity.
Collapse
Affiliation(s)
- Filip Děchtěrenko
- Institute of Psychology, Czech Academy of Sciences, Prague, Czech Republic
| | - Daniela Jakubková
- Institute of Psychology, Czech Academy of Sciences, Prague, Czech Republic
| | - Jiří Lukavský
- Institute of Psychology, Czech Academy of Sciences, Prague, Czech Republic
| | | |
Collapse
|
4
|
Boyes D, Holland PW. The genome sequence of the lime hawk-moth, Mimas tiliae (Linnaeus, 1758). Wellcome Open Res 2021; 6:357. [PMID: 35224212 PMCID: PMC8844536 DOI: 10.12688/wellcomeopenres.17485.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2021] [Indexed: 11/20/2022] Open
Abstract
We present a genome assembly from an individual male Mimas tiliae (the lime hawk-moth; Arthropoda; Insecta; Lepidoptera; Sphingidae). The genome sequence is 478 megabases in span. The complete assembly is scaffolded into 29 chromosomal pseudomolecules, with the Z sex chromosome assembled.
Collapse
Affiliation(s)
- Douglas Boyes
- UK Centre for Ecology and Hydrology, Wallingford, Oxfordshire, UK
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Bu R, Xiao F, Lovell PG, Ye Z, Shi H. Structural and colored disruption as camouflage strategies in two sympatric Asian box turtle species (Cuora spp.). Glob Ecol Conserv 2020. [DOI: 10.1016/j.gecco.2020.e01361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
6
|
Galloway JAM, Green SD, Stevens M, Kelley LA. Finding a signal hidden among noise: how can predators overcome camouflage strategies? Philos Trans R Soc Lond B Biol Sci 2020; 375:20190478. [PMID: 32420842 PMCID: PMC7331011 DOI: 10.1098/rstb.2019.0478] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Substantial progress has been made in the past 15 years regarding how prey use a variety of visual camouflage types to exploit both predator visual processing and cognition, including background matching, disruptive coloration, countershading and masquerade. By contrast, much less attention has been paid to how predators might overcome these defences. Such strategies include the evolution of more acute senses, the co-opting of other senses not targeted by camouflage, changes in cognition such as forming search images, and using behaviours that change the relationship between the cryptic individual and the environment or disturb prey and cause movement. Here, we evaluate the methods through which visual camouflage prevents detection and recognition, and discuss if and how predators might evolve, develop or learn counter-adaptations to overcome these. This article is part of the theme issue ‘Signal detection theory in recognition systems: from evolving models to experimental tests'.
Collapse
Affiliation(s)
- James A M Galloway
- Centre for Ecology and Conservation, University of Exeter (Penryn Campus), Cornwall TR10 9FE, UK
| | - Samuel D Green
- Centre for Ecology and Conservation, University of Exeter (Penryn Campus), Cornwall TR10 9FE, UK
| | - Martin Stevens
- Centre for Ecology and Conservation, University of Exeter (Penryn Campus), Cornwall TR10 9FE, UK
| | - Laura A Kelley
- Centre for Ecology and Conservation, University of Exeter (Penryn Campus), Cornwall TR10 9FE, UK
| |
Collapse
|
7
|
Sharman RJ, Lovell PG. Edge-Enhanced Disruptive Camouflage Impairs Shape Discrimination. Iperception 2019; 10:2041669519877435. [PMID: 31555431 PMCID: PMC6749785 DOI: 10.1177/2041669519877435] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 08/27/2019] [Indexed: 11/16/2022] Open
Abstract
Disruptive colouration (DC) is a form of camouflage comprised of areas of pigmentation across a target's surface that form false edges, which are said to impede detection by disguising the outline of the target. In nature, many species with DC also exhibit edge enhancement (EE); light areas have lighter edges and dark areas have darker edges. EE DC has been shown to undermine not only localisation but also identification of targets, even when they are not hidden (Sharman, Moncrieff, & Lovell, 2018). We use a novel task, where participants judge which "snake" is more "wiggly," to measure shape discrimination performance for three colourations (uniform, DC, and EE DC) and two backgrounds (leafy and uniform). We show that EE DC impairs shape discrimination even when targets are not hidden in a textured background. We suggest that this mechanism may contribute to misidentification of EE DC targets.
Collapse
|
8
|
Price N, Green S, Troscianko J, Tregenza T, Stevens M. Background matching and disruptive coloration as habitat-specific strategies for camouflage. Sci Rep 2019; 9:7840. [PMID: 31127182 PMCID: PMC6534618 DOI: 10.1038/s41598-019-44349-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 05/15/2019] [Indexed: 12/31/2022] Open
Abstract
Camouflage is a key defence across taxa and frequently critical to survival. A common strategy is background matching, resembling the colour and pattern of the environment. This approach, however, may be ineffective in complex habitats where matching one patch may lead to increased visibility in other patches. In contrast, disruptive coloration, which disguises body outlines, may be effective against complex backgrounds. These ideas have rarely been tested and previous work focuses on artificial systems. Here, we test the camouflage strategies of the shore crab (Carcinus maenas) in two habitats, being a species that is highly variable, capable of plastic changes in appearance, and lives in multiple environments. Using predator (bird and fish) vision modelling and image analysis, we quantified background matching and disruption in crabs from rock pools and mudflats, predicting that disruption would dominate in visually complex rock pools but background matching in more uniform mudflats. As expected, rock pool individuals had significantly higher edge disruption than mudflat crabs, whereas mudflat crabs more closely matched the substrate than rock pool crabs for colour, luminance, and pattern. Our study demonstrates facultative expression of camouflage strategies dependent on the visual environment, with implications for the evolution and interrelatedness of defensive strategies.
Collapse
Affiliation(s)
- Natasha Price
- Centre for Ecology and Conservation, College of Life and Environmental Sciences, University of Exeter, Penryn Campus, Penryn, TR10 9FE, UK
| | - Samuel Green
- Centre for Ecology and Conservation, College of Life and Environmental Sciences, University of Exeter, Penryn Campus, Penryn, TR10 9FE, UK
| | - Jolyon Troscianko
- Centre for Ecology and Conservation, College of Life and Environmental Sciences, University of Exeter, Penryn Campus, Penryn, TR10 9FE, UK
| | - Tom Tregenza
- Centre for Ecology and Conservation, College of Life and Environmental Sciences, University of Exeter, Penryn Campus, Penryn, TR10 9FE, UK
| | - Martin Stevens
- Centre for Ecology and Conservation, College of Life and Environmental Sciences, University of Exeter, Penryn Campus, Penryn, TR10 9FE, UK.
| |
Collapse
|
9
|
Affiliation(s)
- I. C. Cuthill
- School of Biological Sciences University of Bristol Bristol UK
| |
Collapse
|
10
|
Adams WJ, Graf EW, Anderson M. Disruptive coloration and binocular disparity: breaking camouflage. Proc Biol Sci 2019; 286:20182045. [PMID: 30963917 PMCID: PMC6408597 DOI: 10.1098/rspb.2018.2045] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 01/21/2019] [Indexed: 01/16/2023] Open
Abstract
Many species employ camouflage to disguise their true shape and avoid detection or recognition. Disruptive coloration is a form of camouflage in which high-contrast patterns obscure internal features or break up an animal's outline. In particular, edge enhancement creates illusory, or 'fake' depth edges within the animal's body. Disruptive coloration often co-occurs with background matching, and together, these strategies make it difficult for an observer to visually segment an animal from its background. However, stereoscopic vision could provide a critical advantage in the arms race between perception and camouflage: the depth information provided by binocular disparities reveals the true three-dimensional layout of a scene, and might, therefore, help an observer to overcome the effects of disruptive coloration. Human observers located snake targets embedded in leafy backgrounds. We analysed performance (response time) as a function of edge enhancement, illumination conditions and the availability of binocular depth cues. We confirm that edge enhancement contributes to effective camouflage: observers were slower to find snakes whose patterning contains 'fake' depth edges. Importantly, however, this effect disappeared when binocular depth cues were available. Illumination also affected detection: under directional illumination, where both the leaves and snake produced strong cast shadows, snake targets were localized more quickly than in scenes rendered under ambient illumination. In summary, we show that illusory depth edges, created via disruptive coloration, help to conceal targets from human observers. However, cast shadows and binocular depth information improve detection by providing information about the true three-dimensional structure of a scene. Importantly, the strong interaction between disparity and edge enhancement suggests that stereoscopic vision has a critical role in breaking camouflage, enabling the observer to overcome the disruptive effects of edge enhancement.
Collapse
Affiliation(s)
- Wendy J. Adams
- Department of Psychology, University of Southampton, Southampton SO17 1BJ, UK
| | | | | |
Collapse
|
11
|
Troscianko J, Skelhorn J, Stevens M. Camouflage strategies interfere differently with observer search images. Proc Biol Sci 2018; 285:20181386. [PMID: 30185636 PMCID: PMC6158535 DOI: 10.1098/rspb.2018.1386] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 08/13/2018] [Indexed: 11/24/2022] Open
Abstract
Numerous animals rely on camouflage for defence. Substantial past work has identified the presence of multiple strategies for concealment, and tested the mechanisms underpinning how they work. These include background matching, D-RUP coloration to destroy target edges, and distractive markings that may divert attention from key target features. Despite considerable progress, work has focused on how camouflage types prevent initial detection by naive observers. However, predators will often encounter multiple targets over time, providing the opportunity to learn or focus attention through search images. At present, we know almost nothing about how camouflage types facilitate or hinder predator performance over repeated encounters. Here, we use experiments with human subjects searching for targets on touch screens with different camouflage strategies, and control the experience that subjects have with target types. We show that different camouflage strategies affect how subjects improve in detecting targets with repeated encounters, and how performance in detection of one camouflage type depends on experience of other strategies. In particular, disruptive coloration is effective at preventing improvements in camouflage breaking during search image formation, and experience with one camouflage type (distraction) can decrease the ability of subjects to switch to and from search images for new camouflage types (disruption). Our study is, to our knowledge, the first to show how the success of camouflage strategies depends on how they prevent initial and successive detection, and on predator experience of other strategies. This has implications for the evolution of prey phenotypes, how we assess the efficacy of defences, and predator-prey dynamics.
Collapse
Affiliation(s)
- Jolyon Troscianko
- Centre for Ecology and Conservation, College of Life and Environmental Sciences, University of Exeter, Penryn Campus, Penryn, Cornwall TR10 9FE, UK
| | - John Skelhorn
- Centre for Behaviour and Evolution, Institute of Neuroscience, Newcastle University, Henry Wellcome Building, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Martin Stevens
- Centre for Ecology and Conservation, College of Life and Environmental Sciences, University of Exeter, Penryn Campus, Penryn, Cornwall TR10 9FE, UK
| |
Collapse
|