1
|
Birhanu AG, Riaz T, Støen M, Tønjum T. Differential Abundance of Protein Acylation in Mycobacterium tuberculosis Under Exposure to Nitrosative Stress. Proteomics Clin Appl 2024; 18:e202300212. [PMID: 39082596 DOI: 10.1002/prca.202300212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/05/2024] [Accepted: 07/15/2024] [Indexed: 11/15/2024]
Abstract
BACKGROUND Human macrophages generate antimicrobial reactive nitrogen species in response to infection by Mycobacterium tuberculosis (Mtb). Exposure to these redox-reactive compounds induces stress response in Mtb, which can affect posttranslational modifications (PTM). METHODS Here, we present the global analysis of the PTM acylation of Mtb proteins in response to a sublethal dose of nitrosative stress in the form of nitric oxide (NO) using label free quantification. RESULTS A total of 6437 acylation events were identified on 1496 Mtb proteins, and O-acylation accounted for 92.2% of the events identified, while 7.8% were N-acylation events. About 22% of the sites identified were found to be acylated by more than one acyl-group. Furthermore, the abundance of each acyl-group decreased as their molecular weight increased. Quantitative PTM analysis revealed differential abundance of acylation in proteins involved in stress response, iron ion homeostasis, growth, energy metabolism, and antimicrobial resistance (AMR) induced by nitrosative stress over time. CONCLUSIONS The results reveal a potential role of Mtb protein acylation in the bacterial stress responses and AMR. To our knowledge, this is the first report on global O-acylation profile of Mtb in response to NO. This will significantly improve our understanding of the changes in Mtb acylation under nitrosative stress, highly relevant for global health.
Collapse
Affiliation(s)
- Alemayehu Godana Birhanu
- Institute of Biotechnology, Addis Ababa University, Addis Ababa, Ethiopia
- Department of Microbiology, University of Oslo, Nydalen, Oslo, Norway
| | - Tahira Riaz
- Department of Microbiology, University of Oslo, Nydalen, Oslo, Norway
| | - Mari Støen
- Department of Microbiology, Oslo University Hospital, Nydalen, Oslo, Norway
| | - Tone Tønjum
- Department of Microbiology, University of Oslo, Nydalen, Oslo, Norway
- Department of Microbiology, Oslo University Hospital, Nydalen, Oslo, Norway
| |
Collapse
|
2
|
Han ISM, Thayer KM. Reconnaissance of Allostery via the Restoration of Native p53 DNA-Binding Domain Dynamics in Y220C Mutant p53 Tumor Suppressor Protein. ACS OMEGA 2024; 9:19837-19847. [PMID: 38737036 PMCID: PMC11079909 DOI: 10.1021/acsomega.3c08509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 03/30/2024] [Accepted: 04/03/2024] [Indexed: 05/14/2024]
Abstract
Allosteric regulation of protein dynamics infers a long-range deliberate propagation of information via micro- and macroscale interactions. The Y220C structural mutant is one of the most frequent cancerous p53 mutants. The mutation is distally located from the DNA-binding site of the p53 DNA-binding domain yet causes changes in DNA recognition. This system presents a unique opportunity to examine the allosteric control of mutated proteins under a drug design paradigm. We focus on the key case study of p53 Y220C mutation restoration by a series of new compounds suggested to have Y220C reactivation properties in comparison to our previous findings on the restorative potential of PK11000, a compound studied extensively for reactivation in vitro and in vivo. Previously, we implemented all-atom molecular dynamics (MD) simulations and our lab's techniques of MD-Sectors and MD-Markov state models on the wild type, the Y220C mutant, and Y220C with PK11000 to characterize the effector's restorative properties in terms of conformational dynamics and hydrogen bonding. In this study, we turn to probing the effects made by docking the battery of a new but less well-tested set of aminobenzothiazole derivative compounds reported by Baud et al., which show promise of Y220C rescue. We find that while complete and precise reconstitution of p53 WT molecular dynamics may not be observed as was the case with PK11000, dispersed local reconstitution of loop dynamics provides evidence of rescuing effects by aminobenzothiazole derivative N,2-dihydroxy-3,5-diiodo-4-(1H-pyrrol-1-yl)benzamide, Effector 22, like what we observed for PK11000. Generalizable insights into the mutation and allosteric reactivation of p53 by various effectors by reconstitution of WT dynamics observed in statistical conformational ensemble analysis and network inference are discussed, considering the development of allosteric drug design rooted in first principles.
Collapse
Affiliation(s)
- In Sub M. Han
- College of Integrated Sciences, Wesleyan University, Hall-Atwater Laboratories, Middletown, Connecticut 06459-0180, United States
| | - Kelly M. Thayer
- College of Integrated Sciences, Wesleyan University, Hall-Atwater Laboratories, Middletown, Connecticut 06459-0180, United States
| |
Collapse
|
3
|
Chiosis G, Digwal CS, Trepel JB, Neckers L. Structural and functional complexity of HSP90 in cellular homeostasis and disease. Nat Rev Mol Cell Biol 2023; 24:797-815. [PMID: 37524848 PMCID: PMC10592246 DOI: 10.1038/s41580-023-00640-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2023] [Indexed: 08/02/2023]
Abstract
Heat shock protein 90 (HSP90) is a chaperone with vital roles in regulating proteostasis, long recognized for its function in protein folding and maturation. A view is emerging that identifies HSP90 not as one protein that is structurally and functionally homogeneous but, rather, as a protein that is shaped by its environment. In this Review, we discuss evidence of multiple structural forms of HSP90 in health and disease, including homo-oligomers and hetero-oligomers, also termed epichaperomes, and examine the impact of stress, post-translational modifications and co-chaperones on their formation. We describe how these variations influence context-dependent functions of HSP90 as well as its interaction with other chaperones, co-chaperones and proteins, and how this structural complexity of HSP90 impacts and is impacted by its interaction with small molecule modulators. We close by discussing recent developments regarding the use of HSP90 inhibitors in cancer and how our new appreciation of the structural and functional heterogeneity of HSP90 invites a re-evaluation of how we discover and implement HSP90 therapeutics for disease treatment.
Collapse
Affiliation(s)
- Gabriela Chiosis
- Chemical Biology Program, Memorial Sloan Kettering Institute, New York, NY, USA.
- Department of Medicine, Memorial Sloan Kettering Institute, New York, NY, USA.
| | - Chander S Digwal
- Chemical Biology Program, Memorial Sloan Kettering Institute, New York, NY, USA
| | - Jane B Trepel
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Len Neckers
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA.
| |
Collapse
|
4
|
Nussinov R, Liu Y, Zhang W, Jang H. Protein conformational ensembles in function: roles and mechanisms. RSC Chem Biol 2023; 4:850-864. [PMID: 37920394 PMCID: PMC10619138 DOI: 10.1039/d3cb00114h] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/02/2023] [Indexed: 11/04/2023] Open
Abstract
The sequence-structure-function paradigm has dominated twentieth century molecular biology. The paradigm tacitly stipulated that for each sequence there exists a single, well-organized protein structure. Yet, to sustain cell life, function requires (i) that there be more than a single structure, (ii) that there be switching between the structures, and (iii) that the structures be incompletely organized. These fundamental tenets called for an updated sequence-conformational ensemble-function paradigm. The powerful energy landscape idea, which is the foundation of modernized molecular biology, imported the conformational ensemble framework from physics and chemistry. This framework embraces the recognition that proteins are dynamic and are always interconverting between conformational states with varying energies. The more stable the conformation the more populated it is. The changes in the populations of the states are required for cell life. As an example, in vivo, under physiological conditions, wild type kinases commonly populate their more stable "closed", inactive, conformations. However, there are minor populations of the "open", ligand-free states. Upon their stabilization, e.g., by high affinity interactions or mutations, their ensembles shift to occupy the active states. Here we discuss the role of conformational propensities in function. We provide multiple examples of diverse systems, including protein kinases, lipid kinases, and Ras GTPases, discuss diverse conformational mechanisms, and provide a broad outlook on protein ensembles in the cell. We propose that the number of molecules in the active state (inactive for repressors), determine protein function, and that the dynamic, relative conformational propensities, rather than the rigid structures, are the hallmark of cell life.
Collapse
Affiliation(s)
- Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research Frederick MD 21702 USA
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University Tel Aviv 69978 Israel
- Cancer Innovation Laboratory, National Cancer Institute Frederick MD 21702 USA
| | - Yonglan Liu
- Cancer Innovation Laboratory, National Cancer Institute Frederick MD 21702 USA
| | - Wengang Zhang
- Cancer Innovation Laboratory, National Cancer Institute Frederick MD 21702 USA
| | - Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research Frederick MD 21702 USA
- Cancer Innovation Laboratory, National Cancer Institute Frederick MD 21702 USA
| |
Collapse
|
5
|
Xiao S, Alshahrani M, Gupta G, Tao P, Verkhivker G. Markov State Models and Perturbation-Based Approaches Reveal Distinct Dynamic Signatures and Hidden Allosteric Pockets in the Emerging SARS-Cov-2 Spike Omicron Variant Complexes with the Host Receptor: The Interplay of Dynamics and Convergent Evolution Modulates Allostery and Functional Mechanisms. J Chem Inf Model 2023; 63:5272-5296. [PMID: 37549201 PMCID: PMC11162552 DOI: 10.1021/acs.jcim.3c00778] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
The new generation of SARS-CoV-2 Omicron variants displayed a significant growth advantage and increased viral fitness by acquiring convergent mutations, suggesting that the immune pressure can promote convergent evolution leading to the sudden acceleration of SARS-CoV-2 evolution. In the current study, we combined structural modeling, microsecond molecular dynamics simulations, and Markov state models to characterize conformational landscapes and identify specific dynamic signatures of the SARS-CoV-2 spike complexes with the host receptor ACE2 for the recently emerged highly transmissible XBB.1, XBB.1.5, BQ.1, and BQ.1.1 Omicron variants. Microsecond simulations and Markovian modeling provided a detailed characterization of the functional conformational states and revealed the increased thermodynamic stabilization of the XBB.1.5 subvariant, which can be contrasted to more dynamic BQ.1 and BQ.1.1 subvariants. Despite considerable structural similarities, Omicron mutations can induce unique dynamic signatures and specific distributions of the conformational states. The results suggested that variant-specific changes of the conformational mobility in the functional interfacial loops of the receptor-binding domain in the SARS-CoV-2 spike protein can be fine-tuned through crosstalk between convergent mutations which could provide an evolutionary path for modulation of immune escape. By combining atomistic simulations and Markovian modeling analysis with perturbation-based approaches, we determined important complementary roles of convergent mutation sites as effectors and receivers of allosteric signaling involved in modulation of conformational plasticity and regulation of allosteric communications. This study also revealed hidden allosteric pockets and suggested that convergent mutation sites could control evolution and distribution of allosteric pockets through modulation of conformational plasticity in the flexible adaptable regions.
Collapse
Affiliation(s)
- Sian Xiao
- Department of Chemistry, Center for Research Computing, Center for Drug Discovery, Design, and Delivery (CD4), Southern Methodist University, Dallas, Texas 75275, United States
| | - Mohammed Alshahrani
- Keck Center for Science and Engineering, Schmid College of Science and Technology, Chapman University, Orange, California 92866, United States
| | - Grace Gupta
- Keck Center for Science and Engineering, Schmid College of Science and Technology, Chapman University, Orange, California 92866, United States
| | - Peng Tao
- Department of Chemistry, Center for Research Computing, Center for Drug Discovery, Design, and Delivery (CD4), Southern Methodist University, Dallas, Texas 75275, United States
| | - Gennady Verkhivker
- Keck Center for Science and Engineering, Schmid College of Science and Technology, Chapman University, Orange, California 92866, United States
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California 92618, United States
| |
Collapse
|
6
|
Alao JP, Obaseki I, Amankwah YS, Nguyen Q, Sugoor M, Unruh E, Popoola HO, Tehver R, Kravats AN. Insight into the Nucleotide Based Modulation of the Grp94 Molecular Chaperone Using Multiscale Dynamics. J Phys Chem B 2023; 127:5389-5409. [PMID: 37294929 PMCID: PMC10292203 DOI: 10.1021/acs.jpcb.3c00260] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 05/17/2023] [Indexed: 06/11/2023]
Abstract
Grp94, an ER-localized molecular chaperone, is required for the folding and activation of many membrane and secretory proteins. Client activation by Grp94 is mediated by nucleotide and conformational changes. In this work, we aim to understand how microscopic changes from nucleotide hydrolysis can potentiate large-scale conformational changes of Grp94. We performed all-atom molecular dynamics simulations on the ATP-hydrolysis competent state of the Grp94 dimer in four different nucleotide bound states. We found that Grp94 was the most rigid when ATP was bound. ATP hydrolysis or nucleotide removal enhanced mobility of the N-terminal domain and ATP lid, resulting in suppression of interdomain communication. In an asymmetric conformation with one hydrolyzed nucleotide, we identified a more compact state, similar to experimental observations. We also identified a potential regulatory role of the flexible linker, as it formed electrostatic interactions with the Grp94 M-domain helix near the region where BiP is known to bind. These studies were complemented with normal-mode analysis of an elastic network model to investigate Grp94's large-scale conformational changes. SPM analysis identified residues that are important in signaling conformational change, many of which have known functional relevance in ATP coordination and catalysis, client binding, and BiP binding. Our findings suggest that ATP hydrolysis in Grp94 alters allosteric wiring and facilitates conformational changes.
Collapse
Affiliation(s)
- John Paul Alao
- Department
of Chemistry & Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Ikponwmosa Obaseki
- Department
of Chemistry & Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Yaa Sarfowah Amankwah
- Department
of Chemistry & Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Quinn Nguyen
- Department
of Chemistry & Biochemistry, Miami University, Oxford, Ohio 45056, United States
- Department
of Chemistry, University of California,
Irvine, Irvine, California 92697, United States
| | - Meghana Sugoor
- Department
of Chemistry & Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Erin Unruh
- Department
of Chemistry & Biochemistry, Miami University, Oxford, Ohio 45056, United States
- Cell,
Molecular, and Structural Biology Program, Department of Chemistry
& Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | | | - Riina Tehver
- Department
of Physics, Denison University, Granville, Ohio 43023, United States
| | - Andrea N. Kravats
- Department
of Chemistry & Biochemistry, Miami University, Oxford, Ohio 45056, United States
- Cell,
Molecular, and Structural Biology Program, Department of Chemistry
& Biochemistry, Miami University, Oxford, Ohio 45056, United States
| |
Collapse
|
7
|
Xiao S, Alshahrani M, Gupta G, Tao P, Verkhivker G. Markov State Models and Perturbation-Based Approaches Reveal Distinct Dynamic Signatures and Hidden Allosteric Pockets in the Emerging SARS-Cov-2 Spike Omicron Variants Complexes with the Host Receptor: The Interplay of Dynamics and Convergent Evolution Modulates Allostery and Functional Mechanisms. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.20.541592. [PMID: 37292827 PMCID: PMC10245745 DOI: 10.1101/2023.05.20.541592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The new generation of SARS-CoV-2 Omicron variants displayed a significant growth advantage and the increased viral fitness by acquiring convergent mutations, suggesting that the immune pressure can promote convergent evolution leading to the sudden acceleration of SARS-CoV-2 evolution. In the current study, we combined structural modeling, extensive microsecond MD simulations and Markov state models to characterize conformational landscapes and identify specific dynamic signatures of the SARS-CoV-2 spike complexes with the host receptor ACE2 for the recently emerged highly transmissible XBB.1, XBB.1.5, BQ.1, and BQ.1.1 Omicron variants. Microsecond simulations and Markovian modeling provided a detailed characterization of the conformational landscapes and revealed the increased thermodynamic stabilization of the XBB.1.5 subvariant which is contrasted to more dynamic BQ.1 and BQ.1.1 subvariants. Despite considerable structural similarities, Omicron mutations can induce unique dynamic signatures and specific distributions of conformational states. The results suggested that variant-specific changes of conformational mobility in the functional interfacial loops of the spike receptor binding domain can be fine-tuned through cross-talk between convergent mutations thereby providing an evolutionary path for modulation of immune escape. By combining atomistic simulations and Markovian modeling analysis with perturbation-based approaches, we determined important complementary roles of convergent mutation sites as effectors and receivers of allosteric signaling involved in modulating conformational plasticity at the binding interface and regulating allosteric responses. This study also characterized the dynamics-induced evolution of allosteric pockets in the Omicron complexes that revealed hidden allosteric pockets and suggested that convergent mutation sites could control evolution and distribution of allosteric pockets through modulation of conformational plasticity in the flexible adaptable regions. Through integrative computational approaches, this investigation provides a systematic analysis and comparison of the effects of Omicron subvariants on conformational dynamics and allosteric signaling in the complexes with the ACE2 receptor. For Table of Contents Use Only
Collapse
|
8
|
Wordom update 2: A user-friendly program for the analysis of molecular structures and conformational ensembles. Comput Struct Biotechnol J 2023; 21:1390-1402. [PMID: 36817953 PMCID: PMC9929209 DOI: 10.1016/j.csbj.2023.01.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 01/29/2023] Open
Abstract
We present the second update of Wordom, a user-friendly and efficient program for manipulation and analysis of conformational ensembles from molecular simulations. The actual update expands some of the existing modules and adds 21 new modules to the update 1 published in 2011. The new adds can be divided into three sets that: 1) analyze atomic fluctuations and structural communication; 2) explore ion-channel conformational dynamics and ionic translocation; and 3) compute geometrical indices of structural deformation. Set 1 serves to compute correlations of motions, find geometrically stable domains, identify a dynamically invariant core, find changes in domain-domain separation and mutual orientation, perform wavelet analysis of large-scale simulations, process the output of principal component analysis of atomic fluctuations, perform functional mode analysis, infer regions of mechanical rigidity, analyze overall fluctuations, and perform the perturbation response scanning. Set 2 includes modules specific for ion channels, which serve to monitor the pore radius as well as water or ion fluxes, and measure functional collective motions like receptor twisting or tilting angles. Finally, set 3 includes tools to monitor structural deformations by computing angles, perimeter, area, volume, β-sheet curvature, radial distribution function, and center of mass. The ring perception module is also included, helpful to monitor supramolecular self-assemblies. This update places Wordom among the most suitable, complete, user-friendly, and efficient software for the analysis of biomolecular simulations. The source code of Wordom and the relative documentation are available under the GNU general public license at http://wordom.sf.net.
Collapse
|
9
|
Backe SJ, Woodford MR, Ahanin E, Sager RA, Bourboulia D, Mollapour M. Impact of Co-chaperones and Posttranslational Modifications Toward Hsp90 Drug Sensitivity. Subcell Biochem 2023; 101:319-350. [PMID: 36520312 PMCID: PMC10077965 DOI: 10.1007/978-3-031-14740-1_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Posttranslational modifications (PTMs) regulate myriad cellular processes by modulating protein function and protein-protein interaction. Heat shock protein 90 (Hsp90) is an ATP-dependent molecular chaperone whose activity is responsible for the stabilization and maturation of more than 300 client proteins. Hsp90 is a substrate for numerous PTMs, which have diverse effects on Hsp90 function. Interestingly, many Hsp90 clients are enzymes that catalyze PTM, demonstrating one of the several modes of regulation of Hsp90 activity. Approximately 25 co-chaperone regulatory proteins of Hsp90 impact structural rearrangements, ATP hydrolysis, and client interaction, representing a second layer of influence on Hsp90 activity. A growing body of literature has also established that PTM of these co-chaperones fine-tune their activity toward Hsp90; however, many of the identified PTMs remain uncharacterized. Given the critical role of Hsp90 in supporting signaling in cancer, clinical evaluation of Hsp90 inhibitors is an area of great interest. Interestingly, differential PTM and co-chaperone interaction have been shown to impact Hsp90 binding to its inhibitors. Therefore, understanding these layers of Hsp90 regulation will provide a more complete understanding of the chaperone code, facilitating the development of new biomarkers and combination therapies.
Collapse
Affiliation(s)
- Sarah J Backe
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA.,Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA.,Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Mark R Woodford
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA.,Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA.,Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Elham Ahanin
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA.,Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA.,Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Rebecca A Sager
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA.,Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA.,Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Dimitra Bourboulia
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA.,Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA.,Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Mehdi Mollapour
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA. .,Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA. .,Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, USA.
| |
Collapse
|
10
|
Nussinov R, Zhang M, Maloney R, Liu Y, Tsai CJ, Jang H. Allostery: Allosteric Cancer Drivers and Innovative Allosteric Drugs. J Mol Biol 2022; 434:167569. [PMID: 35378118 PMCID: PMC9398924 DOI: 10.1016/j.jmb.2022.167569] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/11/2022] [Accepted: 03/25/2022] [Indexed: 01/12/2023]
Abstract
Here, we discuss the principles of allosteric activating mutations, propagation downstream of the signals that they prompt, and allosteric drugs, with examples from the Ras signaling network. We focus on Abl kinase where mutations shift the landscape toward the active, imatinib binding-incompetent conformation, likely resulting in the high affinity ATP outcompeting drug binding. Recent pharmacological innovation extends to allosteric inhibitor (GNF-5)-linked PROTAC, targeting Bcr-Abl1 myristoylation site, and broadly, allosteric heterobifunctional degraders that destroy targets, rather than inhibiting them. Designed chemical linkers in bifunctional degraders can connect the allosteric ligand that binds the target protein and the E3 ubiquitin ligase warhead anchor. The physical properties and favored conformational state of the engineered linker can precisely coordinate the distance and orientation between the target and the recruited E3. Allosteric PROTACs, noncompetitive molecular glues, and bitopic ligands, with covalent links of allosteric ligands and orthosteric warheads, increase the effective local concentration of productively oriented and placed ligands. Through covalent chemical or peptide linkers, allosteric drugs can collaborate with competitive drugs, degrader anchors, or other molecules of choice, driving innovative drug discovery.
Collapse
Affiliation(s)
- Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, MD 21702, USA; Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.
| | - Mingzhen Zhang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, MD 21702, USA
| | - Ryan Maloney
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, MD 21702, USA
| | - Yonglan Liu
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, MD 21702, USA
| | - Chung-Jung Tsai
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, MD 21702, USA
| | - Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, MD 21702, USA
| |
Collapse
|
11
|
Verkhivker GM. Conformational Dynamics and Mechanisms of Client Protein Integration into the Hsp90 Chaperone Controlled by Allosteric Interactions of Regulatory Switches: Perturbation-Based Network Approach for Mutational Profiling of the Hsp90 Binding and Allostery. J Phys Chem B 2022; 126:5421-5442. [PMID: 35853093 DOI: 10.1021/acs.jpcb.2c03464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Understanding the allosteric mechanisms of the Hsp90 chaperone interactions with cochaperones and client protein clientele is fundamental to dissect activation and regulation of many proteins. In this work, atomistic simulations are combined with perturbation-based approaches and dynamic network modeling for a comparative mutational profiling of the Hsp90 binding and allosteric interaction networks in the three Hsp90 maturation complexes with FKBP51 and P23 cochaperones and the glucocorticoid receptor (GR) client. The conformational dynamics signatures of the Hsp90 complexes and dynamics fluctuation analysis revealed how the intrinsic plasticity of the Hsp90 dimer can be modulated by cochaperones and client proteins to stabilize the closed dimer state required at the maturation stage of the ATPase cycle. In silico deep mutational scanning of the protein residues characterized the hot spots of protein stability and binding affinity in the Hsp90 complexes, showing that binding hot spots may often coincide with the regulatory centers that modulate dynamic allostery in the Hsp90 dimer. We introduce a perturbation-based network approach for mutational scanning of allosteric residue potentials and characterize allosteric switch clusters that control mechanism of cochaperone-dependent client recognition and remodeling by the Hsp90 chaperone. The results revealed a conserved network of allosteric switches in the Hsp90 complexes that allow cochaperones and GR protein to become integrated into the Hsp90 system by anchoring to the conformational switch points in the functional Hsp90 regions. This study suggests that the Hsp90 binding and allostery may operate under a regulatory mechanism in which activation or repression of the Hsp90 activity can be pre-encoded in the allosterically regulated Hsp90 dimer motions. By binding directly to the conformational switch centers on the Hsp90, cochaperones and interacting proteins can efficiently modulate the allosteric interactions and long-range communications required for client remodeling and activation.
Collapse
Affiliation(s)
- Gennady M Verkhivker
- Keck Center for Science and Engineering, Schmid College of Science and Technology, Chapman University, 1 University Drive, Orange, California 92866, United States
- Depatment of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California 92618, United States
| |
Collapse
|
12
|
Zhu F, Yang S, Meng F, Zheng Y, Ku X, Luo C, Hu G, Liang Z. Leveraging Protein Dynamics to Identify Functional Phosphorylation Sites using Deep Learning Models. J Chem Inf Model 2022; 62:3331-3345. [PMID: 35816597 DOI: 10.1021/acs.jcim.2c00484] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Accurate prediction of post-translational modifications (PTMs) is of great significance in understanding cellular processes, by modulating protein structure and dynamics. Nowadays, with the rapid growth of protein data at different "omics" levels, machine learning models largely enriched the prediction of PTMs. However, most machine learning models only rely on protein sequence and little structural information. The lack of the systematic dynamics analysis underlying PTMs largely limits the PTM functional predictions. In this research, we present two dynamics-centric deep learning models, namely, cDL-PAU and cDL-FuncPhos, by incorporating sequence, structure, and dynamics-based features to elucidate the molecular basis and underlying functional landscape of PTMs. cDL-PAU achieved satisfactory area under the curve (AUC) scores of 0.804-0.888 for predicting phosphorylation, acetylation, and ubiquitination (PAU) sites, while cDL-FuncPhos achieved an AUC value of 0.771 for predicting functional phosphorylation (FuncPhos) sites, displaying reliable improvements. Through a feature selection, the dynamics-based coupling and commute ability show large contributions in discovering PAU sites and FuncPhos sites, suggesting the allosteric propensity for important PTMs. The application of cDL-FuncPhos in three oncoproteins not only corroborates its strong performance in FuncPhos prioritization but also gains insight into the physical basis for the functions. The source code and data set of cDL-PAU and cDL-FuncPhos are available at https://github.com/ComputeSuda/PTM_ML.
Collapse
Affiliation(s)
- Fei Zhu
- Center for Systems Biology, Department of Bioinformatics, School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, China.,School of Computer Science and Technology, Soochow University, Suzhou 215006, China
| | - Sijie Yang
- School of Computer Science and Technology, Soochow University, Suzhou 215006, China
| | - Fanwang Meng
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton L8S 4L8, Ontario, Canada
| | - Yuxiang Zheng
- Center for Systems Biology, Department of Bioinformatics, School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, China
| | - Xin Ku
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Cheng Luo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Guang Hu
- Center for Systems Biology, Department of Bioinformatics, School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, China
| | - Zhongjie Liang
- Center for Systems Biology, Department of Bioinformatics, School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, China.,Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China.,State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| |
Collapse
|
13
|
Heat Shock Protein 90 (HSP90) Inhibitors as Anticancer Medicines: A Review on the Computer-Aided Drug Discovery Approaches over the Past Five Years. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:2147763. [PMID: 35685897 PMCID: PMC9173959 DOI: 10.1155/2022/2147763] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 05/08/2022] [Accepted: 05/19/2022] [Indexed: 12/24/2022]
Abstract
Cancer is a disease caused by the uncontrolled, abnormal growth of cells in different anatomic sites. In 2018, it was predicted that the worldwide cancer burden would rise to 18.1 million new cases and 9.6 million deaths. Anticancer compounds, often known as chemotherapeutic medicines, have gained much interest in recent cancer research. These medicines work through various biological processes in targeting cells at various stages of the cell's life cycle. One of the most significant roadblocks to developing anticancer drugs is that traditional chemotherapy affects normal cells and cancer cells, resulting in substantial side effects. Recently, advancements in new drug development methodologies and the prediction of the targeted interatomic and intermolecular ligand interaction sites have been beneficial. This has prompted further research into developing and discovering novel chemical species as preferred therapeutic compounds against specific cancer types. Identifying new drug molecules with high selectivity and specificity for cancer is a prerequisite in the treatment and management of the disease. The overexpression of HSP90 occurs in patients with cancer, and the HSP90 triggers unstable harmful kinase functions, which enhance carcinogenesis. Therefore, the development of potent HSP90 inhibitors with high selectivity and specificity becomes very imperative. The activities of HSP90 as chaperones and cochaperones are complex due to the conformational dynamism, and this could be one of the reasons why no HSP90 drugs have made it beyond the clinical trials. Nevertheless, HSP90 modulations appear to be preferred due to the competitive inhibition of the targeted N-terminal adenosine triphosphate pocket. This study, therefore, presents an overview of the various computational models implored in the development of HSP90 inhibitors as anticancer medicines. We hereby suggest an extensive investigation of advanced computational modelling of the three different domains of HSP90 for potent, effective inhibitor design with minimal off-target effects.
Collapse
|
14
|
Allosteric Determinants of the SARS-CoV-2 Spike Protein Binding with Nanobodies: Examining Mechanisms of Mutational Escape and Sensitivity of the Omicron Variant. Int J Mol Sci 2022; 23:ijms23042172. [PMID: 35216287 PMCID: PMC8877688 DOI: 10.3390/ijms23042172] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/13/2022] [Accepted: 02/14/2022] [Indexed: 02/04/2023] Open
Abstract
Structural and biochemical studies have recently revealed a range of rationally engineered nanobodies with efficient neutralizing capacity against the SARS-CoV-2 virus and resilience against mutational escape. In this study, we performed a comprehensive computational analysis of the SARS-CoV-2 spike trimer complexes with single nanobodies Nb6, VHH E, and complex with VHH E/VHH V nanobody combination. We combined coarse-grained and all-atom molecular simulations and collective dynamics analysis with binding free energy scanning, perturbation-response scanning, and network centrality analysis to examine mechanisms of nanobody-induced allosteric modulation and cooperativity in the SARS-CoV-2 spike trimer complexes with these nanobodies. By quantifying energetic and allosteric determinants of the SARS-CoV-2 spike protein binding with nanobodies, we also examined nanobody-induced modulation of escaping mutations and the effect of the Omicron variant on nanobody binding. The mutational scanning analysis supported the notion that E484A mutation can have a significant detrimental effect on nanobody binding and result in Omicron-induced escape from nanobody neutralization. Our findings showed that SARS-CoV-2 spike protein might exploit the plasticity of specific allosteric hotspots to generate escape mutants that alter response to binding without compromising activity. The network analysis supported these findings showing that VHH E/VHH V nanobody binding can induce long-range couplings between the cryptic binding epitope and ACE2-binding site through a broader ensemble of communication paths that is less dependent on specific mediating centers and therefore may be less sensitive to mutational perturbations of functional residues. The results suggest that binding affinity and long-range communications of the SARS-CoV-2 complexes with nanobodies can be determined by structurally stable regulatory centers and conformationally adaptable hotspots that are allosterically coupled and collectively control resilience to mutational escape.
Collapse
|
15
|
Exploring Mechanisms of Allosteric Regulation and Communication Switching in the Multiprotein Regulatory Complexes of the Hsp90 Chaperone with Cochaperones and Client Proteins : Atomistic Insights from Integrative Biophysical Modeling and Network Analysis of Conformational Landscapes. J Mol Biol 2022; 434:167506. [DOI: 10.1016/j.jmb.2022.167506] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 12/16/2022]
|
16
|
Zhu Y, Ye F, Zhou Z, Liu W, Liang Z, Hu G. Insights into Conformational Dynamics and Allostery in DNMT1-H3Ub/USP7 Interactions. Molecules 2021; 26:molecules26175153. [PMID: 34500587 PMCID: PMC8434485 DOI: 10.3390/molecules26175153] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/23/2021] [Accepted: 08/23/2021] [Indexed: 01/03/2023] Open
Abstract
DNA methyltransferases (DNMTs) including DNMT1 are a conserved family of cytosine methylases that play crucial roles in epigenetic regulation. The versatile functions of DNMT1 rely on allosteric networks between its different interacting partners, emerging as novel therapeutic targets. In this work, based on the modeling structures of DNMT1-ubiquitylated H3 (H3Ub)/ubiquitin specific peptidase 7 (USP7) complexes, we have used a combination of elastic network models, molecular dynamics simulations, structural residue perturbation, network modeling, and pocket pathway analysis to examine their molecular mechanisms of allosteric regulation. The comparative intrinsic and conformational dynamics analysis of three DNMT1 systems has highlighted the pivotal role of the RFTS domain as the dynamics hub in both intra- and inter-molecular interactions. The site perturbation and network modeling approaches have revealed the different and more complex allosteric interaction landscape in both DNMT1 complexes, involving the events caused by mutational hotspots and post-translation modification sites through protein-protein interactions (PPIs). Furthermore, communication pathway analysis and pocket detection have provided new mechanistic insights into molecular mechanisms underlying quaternary structures of DNMT1 complexes, suggesting potential targeting pockets for PPI-based allosteric drug design.
Collapse
Affiliation(s)
- Yu Zhu
- Center for Systems Biology, Department of Bioinformatics, School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, China; (Y.Z.); (Z.Z.); (W.L.)
| | - Fei Ye
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China;
| | - Ziyun Zhou
- Center for Systems Biology, Department of Bioinformatics, School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, China; (Y.Z.); (Z.Z.); (W.L.)
| | - Wanlin Liu
- Center for Systems Biology, Department of Bioinformatics, School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, China; (Y.Z.); (Z.Z.); (W.L.)
| | - Zhongjie Liang
- Center for Systems Biology, Department of Bioinformatics, School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, China; (Y.Z.); (Z.Z.); (W.L.)
- Correspondence: (Z.L.); (G.H.)
| | - Guang Hu
- Center for Systems Biology, Department of Bioinformatics, School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, China; (Y.Z.); (Z.Z.); (W.L.)
- Correspondence: (Z.L.); (G.H.)
| |
Collapse
|
17
|
Verkhivker G, Agajanian S, Oztas D, Gupta G. Dynamic Profiling of Binding and Allosteric Propensities of the SARS-CoV-2 Spike Protein with Different Classes of Antibodies: Mutational and Perturbation-Based Scanning Reveals the Allosteric Duality of Functionally Adaptable Hotspots. J Chem Theory Comput 2021; 17:4578-4598. [PMID: 34138559 DOI: 10.1021/acs.jctc.1c00372] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The functional adaptability and conformational plasticity of SARS-CoV-2 spike proteins allow for the efficient modulation of complex phenotypic responses to the host receptor and antibodies. In this study, we combined atomistic simulations with mutational and perturbation-based scanning approaches to examine binding mechanisms of the SARS-CoV-2 spike proteins with three different classes of antibodies. The ensemble-based profiling of binding and allosteric propensities of the SARS-CoV-2 spike protein residues showed that these proteins can work as functionally adaptable and allosterically regulated machines. Conformational dynamics analysis revealed that binding-induced modulation of soft modes can elicit the unique protein response to different classes of antibodies. Mutational scanning heatmaps and sensitivity analysis revealed the binding energy hotspots for different classes of antibodies that are consistent with the experimental deep mutagenesis, showing that differences in the binding affinity caused by global circulating variants in spike positions K417, E484, and N501 are relatively moderate and may not fully account for the observed antibody resistance effects. Through functional dynamics analysis and perturbation-response scanning of the SARS-CoV-2 spike protein residues in the unbound form and antibody-bound forms, we examine how antibody binding can modulate allosteric propensities of spike protein residues and determine allosteric hotspots that control signal transmission and global conformational changes. These results show that residues K417, E484, and N501 targeted by circulating mutations correspond to a group of versatile allosteric centers in which small perturbations can modulate collective motions, alter the global allosteric response, and elicit binding resistance. We suggest that the SARS-CoV-2 S protein may exploit the plasticity of specific allosteric hotspots to generate escape mutants that alter the response to antibody binding without compromising the activity of the spike protein.
Collapse
Affiliation(s)
- Gennady Verkhivker
- Keck Center for Science and Engineering, Schmid College of Science and Technology, Chapman University, One University Drive, Orange, California 92866, United States.,Depatment of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California 92618, United States
| | - Steve Agajanian
- Keck Center for Science and Engineering, Schmid College of Science and Technology, Chapman University, One University Drive, Orange, California 92866, United States
| | - Deniz Oztas
- Keck Center for Science and Engineering, Schmid College of Science and Technology, Chapman University, One University Drive, Orange, California 92866, United States
| | - Grace Gupta
- Keck Center for Science and Engineering, Schmid College of Science and Technology, Chapman University, One University Drive, Orange, California 92866, United States
| |
Collapse
|
18
|
Gao S, Zhao X, Hou L, Ma R, Zhou J, Zhu MX, Pan SJ, Li Y. The interplay between SUMOylation and phosphorylation of PKCδ facilitates oxidative stress-induced apoptosis. FEBS J 2021; 288:6447-6464. [PMID: 34089566 DOI: 10.1111/febs.16050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/30/2021] [Accepted: 06/03/2021] [Indexed: 12/01/2022]
Abstract
Although the increase in the number of identified posttranslational modifications (PTMs) has substantially improved our knowledge about substrate site specificity of single PTMs, the fact that different types of PTMs can crosstalk and act in concert to exert important regulatory mechanisms for protein function has not gained much attention. Here, we show that protein kinase Cδ (PKCδ) is SUMOylated at lysine 473 in its C-terminal catalytic domain, and the SUMOylation increases PKCδ stability by repressing its ubiquitination. In addition, we uncover a functional interplay between the phosphorylation and SUMOylation of PKCδ, which can strengthen each other through recruiting SUMO E2/E3 ligases and the PKCδ kinase, respectively, to the PKCδ complexes. We identified PIAS2β as the SUMO E3 ligase of PKCδ. More importantly, by enhancing PKCδ protein stability and its phosphorylation through an interdependent interplay of the PTMs, the SUMOylation of PKCδ promotes apoptotic cell death induced by H2 O2 . We conclude that SUMOylation represents an important regulatory mechanism of PKCδ PTMs for the kinase's function in oxidative cell damage.
Collapse
Affiliation(s)
- Siman Gao
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, China
| | - Xiangteng Zhao
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, China
| | - Lin Hou
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, China
| | - Ruining Ma
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, China
| | - Jie Zhou
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, China
| | - Michael X Zhu
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, TX, USA
| | - Si-Jian Pan
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Yong Li
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, China
| |
Collapse
|
19
|
Verkhivker GM, Agajanian S, Oztas DY, Gupta G. Comparative Perturbation-Based Modeling of the SARS-CoV-2 Spike Protein Binding with Host Receptor and Neutralizing Antibodies: Structurally Adaptable Allosteric Communication Hotspots Define Spike Sites Targeted by Global Circulating Mutations. Biochemistry 2021; 60:1459-1484. [PMID: 33900725 PMCID: PMC8098775 DOI: 10.1021/acs.biochem.1c00139] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 04/12/2021] [Indexed: 12/11/2022]
Abstract
In this study, we used an integrative computational approach to examine molecular mechanisms and determine functional signatures underlying the role of functional residues in the SARS-CoV-2 spike protein that are targeted by novel mutational variants and antibody-escaping mutations. Atomistic simulations and functional dynamics analysis are combined with alanine scanning and mutational sensitivity profiling of the SARS-CoV-2 spike protein complexes with the ACE2 host receptor and the REGN-COV2 antibody cocktail(REG10987+REG10933). Using alanine scanning and mutational sensitivity analysis, we have shown that K417, E484, and N501 residues correspond to key interacting centers with a significant degree of structural and energetic plasticity that allow mutants in these positions to afford the improved binding affinity with ACE2. Through perturbation-based network modeling and community analysis of the SARS-CoV-2 spike protein complexes with ACE2, we demonstrate that E406, N439, K417, and N501 residues serve as effector centers of allosteric interactions and anchor major intermolecular communities that mediate long-range communication in the complexes. The results provide support to a model according to which mutational variants and antibody-escaping mutations constrained by the requirements for host receptor binding and preservation of stability may preferentially select structurally plastic and energetically adaptable allosteric centers to differentially modulate collective motions and allosteric interactions in the complexes with the ACE2 enzyme and REGN-COV2 antibody combination. This study suggests that the SARS-CoV-2 spike protein may function as a versatile and functionally adaptable allosteric machine that exploits the plasticity of allosteric regulatory centers to fine-tune response to antibody binding without compromising the activity of the spike protein.
Collapse
Affiliation(s)
- Gennady M. Verkhivker
- Keck Center for Science and Engineering, Schmid
College of Science and Technology, Chapman University, One
University Drive, Orange, California 92866, United States
- Depatment of Biomedical and Pharmaceutical Sciences,
Chapman University School of Pharmacy, Irvine, California
92618, United States
| | - Steve Agajanian
- Keck Center for Science and Engineering, Schmid
College of Science and Technology, Chapman University, One
University Drive, Orange, California 92866, United States
| | - Deniz Yazar Oztas
- Keck Center for Science and Engineering, Schmid
College of Science and Technology, Chapman University, One
University Drive, Orange, California 92866, United States
| | - Grace Gupta
- Keck Center for Science and Engineering, Schmid
College of Science and Technology, Chapman University, One
University Drive, Orange, California 92866, United States
| |
Collapse
|
20
|
Verkhivker GM, Di Paola L. Integrated Biophysical Modeling of the SARS-CoV-2 Spike Protein Binding and Allosteric Interactions with Antibodies. J Phys Chem B 2021; 125:4596-4619. [PMID: 33929853 PMCID: PMC8098774 DOI: 10.1021/acs.jpcb.1c00395] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/16/2021] [Indexed: 02/07/2023]
Abstract
Structural and biochemical studies of the severe acute respiratory syndrome (SARS)-CoV-2 spike glycoproteins and complexes with highly potent antibodies have revealed multiple conformation-dependent epitopes highlighting conformational plasticity of spike proteins and capacity for eliciting specific binding and broad neutralization responses. In this study, we used coevolutionary analysis, molecular simulations, and perturbation-based hierarchical network modeling of the SARS-CoV-2 spike protein complexes with a panel of antibodies targeting distinct epitopes to explore molecular mechanisms underlying binding-induced modulation of dynamics and allosteric signaling in the spike proteins. Through coevolutionary analysis of the SARS-CoV-2 spike proteins, we identified highly coevolving hotspots and functional clusters that enable a functional cross-talk between distant allosteric regions in the SARS-CoV-2 spike complexes with antibodies. Coarse-grained and all-atom molecular dynamics simulations combined with mutational sensitivity mapping and perturbation-based profiling of the SARS-CoV-2 receptor-binding domain (RBD) complexes with CR3022 and CB6 antibodies enabled a detailed validation of the proposed approach and an extensive quantitative comparison with the experimental structural and deep mutagenesis scanning data. By combining in silico mutational scanning, perturbation-based modeling, and network analysis of the SARS-CoV-2 spike trimer complexes with H014, S309, S2M11, and S2E12 antibodies, we demonstrated that antibodies can incur specific and functionally relevant changes by modulating allosteric propensities and collective dynamics of the SARS-CoV-2 spike proteins. The results provide a novel insight into regulatory mechanisms of SARS-CoV-2 S proteins showing that antibody-escaping mutations can preferentially target structurally adaptable energy hotspots and allosteric effector centers that control functional movements and allosteric communication in the complexes.
Collapse
Affiliation(s)
- Gennady M. Verkhivker
- Keck Center for Science and Engineering, Schmid
College of Science and Technology, Chapman University, One
University Drive, Orange, California 92866, United States
- Department of Biomedical and Pharmaceutical Sciences,
Chapman University School of Pharmacy, Irvine, California
92618, United States
| | - Luisa Di Paola
- Unit of Chemical-Physics Fundamentals in Chemical
Engineering, Department of Engineering, Università Campus Bio-Medico
di Roma, via Álvaro del Portillo 21, 00128 Rome,
Italy
| |
Collapse
|
21
|
Abstract
Allostery is a fundamental regulatory mechanism in the majority of biological processes of molecular machines. Allostery is well-known as a dynamic-driven process, and thus, the molecular mechanism of allosteric signal transmission needs to be established. Elastic network models (ENMs) provide efficient methods for investigating the intrinsic dynamics and allosteric communication pathways in proteins. In this chapter, two ENM methods including Gaussian network model (GNM) coupled with Markovian stochastic model, as well as the anisotropic network model (ANM), were introduced to identify allosteric effects in hemoglobins. Techniques on model parameters, scripting and calculation, analysis, and visualization are shown step by step.
Collapse
|
22
|
Visualizing the Dynamics of a Protein Folding Machinery: The Mechanism of Asymmetric ATP Processing in Hsp90 and its Implications for Client Remodelling. J Mol Biol 2020; 433:166728. [PMID: 33275968 DOI: 10.1016/j.jmb.2020.166728] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 11/25/2020] [Accepted: 11/25/2020] [Indexed: 01/22/2023]
Abstract
The Hsp90 chaperone system interacts with a wide spectrum of client proteins, forming variable and dynamic multiprotein complexes that involve the intervention of cochaperone partners. Recent results suggest that the role of Hsp90 complexes is to establish interactions that suppress unwanted client activities, allow clients to be protected from degradation and respond to biochemical signals. Cryo-electron microscopy (cryoEM) provided the first key molecular picture of Hsp90 in complex with a kinase, Cdk4, and a cochaperone, Cdc37. Here, we use a combination of molecular dynamics (MD) simulations and advanced comparative analysis methods to elucidate key aspects of the functional dynamics of the complex, with different nucleotides bound at the N-terminal Domain of Hsp90. The results reveal that nucleotide-dependent structural modulations reverberate in a striking asymmetry of the dynamics of Hsp90 and identify specific patterns of long-range coordination between the nucleotide binding site, the client binding pocket, the cochaperone and the client. Our model establishes a direct atomic-resolution cross-talk between the ATP-binding site, the client region that is to be remodeled and the surfaces of the Cdc37-cochaperone.
Collapse
|
23
|
Verkhivker GM. Molecular Simulations and Network Modeling Reveal an Allosteric Signaling in the SARS-CoV-2 Spike Proteins. J Proteome Res 2020; 19:4587-4608. [PMID: 33006900 PMCID: PMC7640983 DOI: 10.1021/acs.jproteome.0c00654] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Indexed: 12/13/2022]
Abstract
The development of computational strategies for the quantitative characterization of the functional mechanisms of SARS-CoV-2 spike proteins is of paramount importance in efforts to accelerate the discovery of novel therapeutic agents and vaccines combating the COVID-19 pandemic. Structural and biophysical studies have recently characterized the conformational landscapes of the SARS-CoV-2 spike glycoproteins in the prefusion form, revealing a spectrum of stable and more dynamic states. By employing molecular simulations and network modeling approaches, this study systematically examined functional dynamics and identified the regulatory centers of allosteric interactions for distinct functional states of the wild-type and mutant variants of the SARS-CoV-2 prefusion spike trimer. This study presents evidence that the SARS-CoV-2 spike protein can function as an allosteric regulatory engine that fluctuates between dynamically distinct functional states. Perturbation-based modeling of the interaction networks revealed a key role of the cross-talk between the effector hotspots in the receptor binding domain and the fusion peptide proximal region of the SARS-CoV-2 spike protein. The results have shown that the allosteric hotspots of the interaction networks in the SARS-CoV-2 spike protein can control the dynamic switching between functional conformational states that are associated with virus entry to the host receptor. This study offers a useful and novel perspective on the underlying mechanisms of the SARS-CoV-2 spike protein through the lens of allosteric signaling as a regulatory apparatus of virus transmission that could open up opportunities for targeted allosteric drug discovery against SARS-CoV-2 proteins and contribute to the rapid response to the current and potential future pandemic scenarios.
Collapse
Affiliation(s)
- Gennady M. Verkhivker
- Graduate
Program in Computational and Data Sciences, Keck Center for Science
and Engineering, Schmid College of Science and Technology, Chapman University, One University Drive, Orange, California 92866, United States
- Department
of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California 92618, United States
| |
Collapse
|
24
|
Verkhivker G. Coevolution, Dynamics and Allostery Conspire in Shaping Cooperative Binding and Signal Transmission of the SARS-CoV-2 Spike Protein with Human Angiotensin-Converting Enzyme 2. Int J Mol Sci 2020; 21:ijms21218268. [PMID: 33158276 PMCID: PMC7672574 DOI: 10.3390/ijms21218268] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 11/02/2020] [Accepted: 11/03/2020] [Indexed: 02/07/2023] Open
Abstract
Binding to the host receptor is a critical initial step for the coronavirus SARS-CoV-2 spike protein to enter into target cells and trigger virus transmission. A detailed dynamic and energetic view of the binding mechanisms underlying virus entry is not fully understood and the consensus around the molecular origins behind binding preferences of SARS-CoV-2 for binding with the angiotensin-converting enzyme 2 (ACE2) host receptor is yet to be established. In this work, we performed a comprehensive computational investigation in which sequence analysis and modeling of coevolutionary networks are combined with atomistic molecular simulations and comparative binding free energy analysis of the SARS-CoV and SARS-CoV-2 spike protein receptor binding domains with the ACE2 host receptor. Different from other computational studies, we systematically examine the molecular and energetic determinants of the binding mechanisms between SARS-CoV-2 and ACE2 proteins through the lens of coevolution, conformational dynamics, and allosteric interactions that conspire to drive binding interactions and signal transmission. Conformational dynamics analysis revealed the important differences in mobility of the binding interfaces for the SARS-CoV-2 spike protein that are not confined to several binding hotspots, but instead are broadly distributed across many interface residues. Through coevolutionary network analysis and dynamics-based alanine scanning, we established linkages between the binding energy hotspots and potential regulators and carriers of signal communication in the virus-host receptor complexes. The results of this study detailed a binding mechanism in which the energetics of the SARS-CoV-2 association with ACE2 may be determined by cumulative changes of a number of residues distributed across the entire binding interface. The central findings of this study are consistent with structural and biochemical data and highlight drug discovery challenges of inhibiting large and adaptive protein-protein interfaces responsible for virus entry and infection transmission.
Collapse
Affiliation(s)
- Gennady Verkhivker
- Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA; ; Tel.: +1-714-516-4586
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA 92618, USA
| |
Collapse
|
25
|
Garlick JM, Mapp AK. Selective Modulation of Dynamic Protein Complexes. Cell Chem Biol 2020; 27:986-997. [PMID: 32783965 PMCID: PMC7469457 DOI: 10.1016/j.chembiol.2020.07.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/07/2020] [Accepted: 07/22/2020] [Indexed: 12/11/2022]
Abstract
Dynamic proteins perform critical roles in cellular machines, including those that control proteostasis, transcription, translation, and signaling. Thus, dynamic proteins are prime candidates for chemical probe and drug discovery but difficult targets because they do not conform to classical rules of design and screening. Selectivity is pivotal for candidate probe molecules due to the extensive interaction network of these dynamic hubs. Recognition that the traditional rules of probe discovery are not necessarily applicable to dynamic proteins and their complexes, as well as technological advances in screening, have produced remarkable results in the last 2-4 years. Particularly notable are the improvements in target selectivity for small-molecule modulators of dynamic proteins, especially with techniques that increase the discovery likelihood of allosteric regulatory mechanisms. We focus on approaches to small-molecule screening that appear to be more suitable for highly dynamic targets and have the potential to streamline identification of selective modulators.
Collapse
Affiliation(s)
- Julie M Garlick
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Anna K Mapp
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA; Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA; Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
26
|
Schmid S, Hugel T. Controlling protein function by fine-tuning conformational flexibility. eLife 2020; 9:57180. [PMID: 32697684 PMCID: PMC7375816 DOI: 10.7554/elife.57180] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 06/28/2020] [Indexed: 12/28/2022] Open
Abstract
In a living cell, protein function is regulated in several ways, including post-translational modifications (PTMs), protein-protein interaction, or by the global environment (e.g. crowding or phase separation). While site-specific PTMs act very locally on the protein, specific protein interactions typically affect larger (sub-)domains, and global changes affect the whole protein non-specifically. Herein, we directly observe protein regulation under three different degrees of localization, and present the effects on the Hsp90 chaperone system at the levels of conformational steady states, kinetics and protein function. Interestingly using single-molecule FRET, we find that similar functional and conformational steady states are caused by completely different underlying kinetics. We disentangle specific and non-specific effects that control Hsp90’s ATPase function, which has remained a puzzle up to now. Lastly, we introduce a new mechanistic concept: functional stimulation through conformational confinement. Our results demonstrate how cellular protein regulation works by fine-tuning the conformational state space of proteins. Proteins play a wide variety of roles in the cell and interact with many other molecules. The behavior of proteins depends on their structure; yet, proteins are often flexible and will change shape, much like a tree in the wind. Nevertheless, for some of the activities that it performs, a protein must adopt one specific shape. Therefore, the likelihood that the protein will take on this specific shape directly determines how efficiently that protein can perform a specific job. The shape of a protein can be regulated by changes at several levels; these could include modifying one of the amino acid building blocks that make up that protein, binding to another protein, or by placing the protein in a part of the cell that is crowded with other large molecules. Schmid and Hugel wanted to understand how these three different types of regulation affect the structure of a protein and how they relate to its activities. The protein Hsp90 was used as a test case. It typically exists with two copies of the protein bound together, either in a parallel or a V-shape. Hsp90 plays several important roles in metabolism and can break down molecules of ATP, the so-called energy currency of the cell. All three types of regulation favored the Hsp90 pairs taking the parallel structure and increased its breakdown of ATP. The results suggest that the Hsp90 pair has a flexible structure, and that reducing this flexibility can improve Hsp90’s efficiency in carrying out its role. It was particularly unexpected that the large-scale, unspecific effect of placing the protein in a crowded environment could have such similar results to a small-scale, precise change of a single amino acid within the protein. While all three forms of regulation help to stabilize the parallel structure for Hsp90, they do this through different mechanisms, which influence the speed and the way that the protein transitions between the two structures. Schmid and Hugel believe that these results offer a new perspective on how diversely the shape and function of proteins is controlled at the molecular level, which could have wider implications for medical diagnostics and treatment.
Collapse
Affiliation(s)
- Sonja Schmid
- Institute of Physical Chemistry, University of Freiburg, Freiburg, Germany
| | - Thorsten Hugel
- Institute of Physical Chemistry, University of Freiburg, Freiburg, Germany.,Signalling research centers BIOSS and CIBSS, Albert Ludwigs University, Freiburg, Germany
| |
Collapse
|
27
|
Stetz G, Astl L, Verkhivker GM. Exploring Mechanisms of Communication Switching in the Hsp90-Cdc37 Regulatory Complexes with Client Kinases through Allosteric Coupling of Phosphorylation Sites: Perturbation-Based Modeling and Hierarchical Community Analysis of Residue Interaction Networks. J Chem Theory Comput 2020; 16:4706-4725. [PMID: 32492340 DOI: 10.1021/acs.jctc.0c00280] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Understanding molecular principles underlying chaperone-based modulation of kinase client activity is critically important to dissect functions and activation mechanisms of many oncogenic proteins. The recent experimental studies have suggested that phosphorylation sites in the Hsp90 and Cdc37 proteins can serve as conformational communication switches of chaperone regulation and kinase interactions. However, a mechanism of allosteric coupling between phosphorylation sites in the Hsp90 and Cdc37 during client binding is poorly understood, and the molecular signatures underpinning specific roles of phosphorylation sites in the Hsp90 regulation remain unknown. In this work, we employed a combination of evolutionary analysis, coarse-grained molecular simulations together with perturbation-based network modeling and scanning of the unbound and bound Hsp90 and Cdc37 structures to quantify allosteric effects of phosphorylation sites and identify unique signatures that are characteristic for communication switches of kinase-specific client binding. By using network-based metrics of the dynamic intercommunity bridgeness and community centrality, we characterize specific signatures of phosphorylation switches involved in allosteric regulation. Through perturbation-based analysis of the dynamic residue interaction networks, we show that mutations of kinase-specific phosphorylation switches can induce long-range effects and lead to a global rewiring of the allosteric network and signal transmission in the Hsp90-Cdc37-kinase complex. We determine a specific group of phosphorylation sites in the Hsp90 where mutations may have a strong detrimental effect on allosteric interaction network, providing insight into the mechanism of phosphorylation-induced communication switching. The results demonstrate that kinase-specific phosphorylation switches of communications in the Hsp90 may be partly predisposed for their regulatory role based on preexisting allosteric propensities.
Collapse
Affiliation(s)
- Gabrielle Stetz
- Graduate Program in Computational and Data Sciences, Keck Center for Science and Engineering, Schmid College of Science and Technology, Chapman University, One University Drive, Orange, California 92866, United States
| | - Lindy Astl
- Graduate Program in Computational and Data Sciences, Keck Center for Science and Engineering, Schmid College of Science and Technology, Chapman University, One University Drive, Orange, California 92866, United States
| | - Gennady M Verkhivker
- Graduate Program in Computational and Data Sciences, Keck Center for Science and Engineering, Schmid College of Science and Technology, Chapman University, One University Drive, Orange, California 92866, United States.,Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California 92618, United States
| |
Collapse
|
28
|
Backe SJ, Sager RA, Woodford MR, Makedon AM, Mollapour M. Post-translational modifications of Hsp90 and translating the chaperone code. J Biol Chem 2020; 295:11099-11117. [PMID: 32527727 DOI: 10.1074/jbc.rev120.011833] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/11/2020] [Indexed: 12/12/2022] Open
Abstract
Cells have a remarkable ability to synthesize large amounts of protein in a very short period of time. Under these conditions, many hydrophobic surfaces on proteins may be transiently exposed, and the likelihood of deleterious interactions is quite high. To counter this threat to cell viability, molecular chaperones have evolved to help nascent polypeptides fold correctly and multimeric protein complexes assemble productively, while minimizing the danger of protein aggregation. Heat shock protein 90 (Hsp90) is an evolutionarily conserved molecular chaperone that is involved in the stability and activation of at least 300 proteins, also known as clients, under normal cellular conditions. The Hsp90 clients participate in the full breadth of cellular processes, including cell growth and cell cycle control, signal transduction, DNA repair, transcription, and many others. Hsp90 chaperone function is coupled to its ability to bind and hydrolyze ATP, which is tightly regulated both by co-chaperone proteins and post-translational modifications (PTMs). Many reported PTMs of Hsp90 alter chaperone function and consequently affect myriad cellular processes. Here, we review the contributions of PTMs, such as phosphorylation, acetylation, SUMOylation, methylation, O-GlcNAcylation, ubiquitination, and others, toward regulation of Hsp90 function. We also discuss how the Hsp90 modification state affects cellular sensitivity to Hsp90-targeted therapeutics that specifically bind and inhibit its chaperone activity. The ultimate challenge is to decipher the comprehensive and combinatorial array of PTMs that modulate Hsp90 chaperone function, a phenomenon termed the "chaperone code."
Collapse
Affiliation(s)
- Sarah J Backe
- Department of Urology, SUNY Upstate Medical University, Syracuse, New York, USA.,Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York, USA.,Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Rebecca A Sager
- Department of Urology, SUNY Upstate Medical University, Syracuse, New York, USA.,Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York, USA.,Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, New York, USA.,College of Medicine, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Mark R Woodford
- Department of Urology, SUNY Upstate Medical University, Syracuse, New York, USA.,Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York, USA.,Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Alan M Makedon
- Department of Urology, SUNY Upstate Medical University, Syracuse, New York, USA.,Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Mehdi Mollapour
- Department of Urology, SUNY Upstate Medical University, Syracuse, New York, USA .,Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York, USA.,Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, New York, USA
| |
Collapse
|
29
|
Astl L, Stetz G, Verkhivker GM. Allosteric Mechanism of the Hsp90 Chaperone Interactions with Cochaperones and Client Proteins by Modulating Communication Spines of Coupled Regulatory Switches: Integrative Atomistic Modeling of Hsp90 Signaling in Dynamic Interaction Networks. J Chem Inf Model 2020; 60:3616-3631. [DOI: 10.1021/acs.jcim.0c00380] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Lindy Astl
- Graduate Program in Computational and Data Sciences, Keck Center for Science and Engineering, Schmid College of Science and Technology, Chapman University, One University Drive, Orange, California 92866, United States
| | - Gabrielle Stetz
- Graduate Program in Computational and Data Sciences, Keck Center for Science and Engineering, Schmid College of Science and Technology, Chapman University, One University Drive, Orange, California 92866, United States
| | - Gennady M. Verkhivker
- Graduate Program in Computational and Data Sciences, Keck Center for Science and Engineering, Schmid College of Science and Technology, Chapman University, One University Drive, Orange, California 92866, United States
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California92618, United States
| |
Collapse
|
30
|
Jalalypour F, Sensoy O, Atilgan C. Perturb-Scan-Pull: A Novel Method Facilitating Conformational Transitions in Proteins. J Chem Theory Comput 2020; 16:3825-3841. [PMID: 32324386 DOI: 10.1021/acs.jctc.9b01222] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Conformational transitions in proteins facilitate precise physiological functions. Therefore, it is crucial to understand the mechanisms underlying these processes to modulate protein function. Yet, studying structural and dynamical properties of proteins is notoriously challenging due to the complexity of the underlying potential energy surfaces (PES). We have previously developed the perturbation-response scanning (PRS) method to identify key residues that participate in the communication network responsible for specific conformational transitions. PRS is based on a residue-by-residue scan of the protein to determine the subset of residues/forces which provide the closest conformational change leading to a target conformational state, inasmuch as linear response theory applies to these motions. Here, we develop a novel method to further evaluate if conformational transitions may be triggered on the PES. We aim to study functionally relevant conformational transitions in proteins by using results obtained from PRS and feeding them as inputs to steered molecular dynamics simulations. The success and the transferability of the method are evaluated on three protein systems having different complexities of motion on the PES: calmodulin, adenylate kinase, and bacterial ferric binding protein. We find that the method captures the target conformation, while providing key residues and the optimum paths with relatively low free energy profiles.
Collapse
Affiliation(s)
- Farzaneh Jalalypour
- Faculty of Engineering and Natural Sciences, Sabanci University, 34956, Istanbul, Turkey
| | - Ozge Sensoy
- School of Engineering and Natural Sciences, Istanbul Medipol University, 34810, Istanbul, Turkey
| | - Canan Atilgan
- Faculty of Engineering and Natural Sciences, Sabanci University, 34956, Istanbul, Turkey.,Sabanci University Nanotechnology Research and Application Center, SUNUM, 34956, Istanbul, Turkey
| |
Collapse
|
31
|
Huang KY, Lee TY, Kao HJ, Ma CT, Lee CC, Lin TH, Chang WC, Huang HD. dbPTM in 2019: exploring disease association and cross-talk of post-translational modifications. Nucleic Acids Res 2020; 47:D298-D308. [PMID: 30418626 PMCID: PMC6323979 DOI: 10.1093/nar/gky1074] [Citation(s) in RCA: 150] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Accepted: 10/19/2018] [Indexed: 12/25/2022] Open
Abstract
The dbPTM (http://dbPTM.mbc.nctu.edu.tw/) has been maintained for over 10 years with the aim to provide functional and structural analyses for post-translational modifications (PTMs). In this update, dbPTM not only integrates more experimentally validated PTMs from available databases and through manual curation of literature but also provides PTM-disease associations based on non-synonymous single nucleotide polymorphisms (nsSNPs). The high-throughput deep sequencing technology has led to a surge in the data generated through analysis of association between SNPs and diseases, both in terms of growth amount and scope. This update thus integrated disease-associated nsSNPs from dbSNP based on genome-wide association studies. The PTM substrate sites located at a specified distance in terms of the amino acids encoded from nsSNPs were deemed to have an association with the involved diseases. In recent years, increasing evidence for crosstalk between PTMs has been reported. Although mass spectrometry-based proteomics has substantially improved our knowledge about substrate site specificity of single PTMs, the fact that the crosstalk of combinatorial PTMs may act in concert with the regulation of protein function and activity is neglected. Because of the relatively limited information about concurrent frequency and functional relevance of PTM crosstalk, in this update, the PTM sites neighboring other PTM sites in a specified window length were subjected to motif discovery and functional enrichment analysis. This update highlights the current challenges in PTM crosstalk investigation and breaks the bottleneck of how proteomics may contribute to understanding PTM codes, revealing the next level of data complexity and proteomic limitation in prospective PTM research.
Collapse
Affiliation(s)
- Kai-Yao Huang
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen 518172, China.,School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518172, China.,School of Life and Health Science, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Tzong-Yi Lee
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen 518172, China.,School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518172, China.,School of Life and Health Science, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Hui-Ju Kao
- Department of Computer Science and Engineering, Yuan Ze University, Taoyuan 32003, Taiwan
| | - Chen-Tse Ma
- Department of Computer Science and Engineering, Yuan Ze University, Taoyuan 32003, Taiwan
| | - Chao-Chun Lee
- Department of Computer Science and Engineering, Yuan Ze University, Taoyuan 32003, Taiwan
| | - Tsai-Hsuan Lin
- Department of Computer Science and Engineering, Yuan Ze University, Taoyuan 32003, Taiwan
| | - Wen-Chi Chang
- Institute of Tropical Plant Sciences, College of Biosciences and Biotechnology, National Cheng Kung University, Tainan 70101, Taiwan
| | - Hsien-Da Huang
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen 518172, China.,School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518172, China.,School of Life and Health Science, The Chinese University of Hong Kong, Shenzhen 518172, China
| |
Collapse
|
32
|
Manzano-Román R, Fuentes M. Relevance and proteomics challenge of functional posttranslational modifications in Kinetoplastid parasites. J Proteomics 2020; 220:103762. [PMID: 32244008 DOI: 10.1016/j.jprot.2020.103762] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 03/06/2020] [Accepted: 03/23/2020] [Indexed: 02/06/2023]
Abstract
Protozoan parasitic infections are health, social and economic issues impacting both humans and animals, with significant morbidity and mortality worldwide. Protozoan parasites have complicated life cycles with both intracellular and extracellular forms. As a consequence, protozoan adapt to changing environments in part through a dynamic enzyme-catalyzed process leading to reversible posttranslational modifications (PTMs). The characterization by proteomics approaches reveals the critical role of the PTMs of the proteins involved in host-pathogen interaction. The complexity of PTMs characterization is increased by the high diversity, stoichiometry, dynamic and also co-existence of several PTMs in the same moieties which crosstalk between them. Here, we review how to understand the complexity and the essential role of PTMs crosstalk in order to provide a new hallmark for vaccines developments, immunotherapies and personalized medicine. In addition, the importance of these motifs in the biology and biological cycle of kinetoplastid parasites is highlighted with key examples showing the potential to act as targets against protozoan diseases.
Collapse
Affiliation(s)
- R Manzano-Román
- Proteomics Unit, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007, Salamanca, Spain..
| | - M Fuentes
- Proteomics Unit, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007, Salamanca, Spain.; Proteomics Unit, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain; Department of Medicine and General Cytometry Service-Nucleus, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007, Salamanca, Spain
| |
Collapse
|
33
|
Astl L, Verkhivker GM. Dynamic View of Allosteric Regulation in the Hsp70 Chaperones by J-Domain Cochaperone and Post-Translational Modifications: Computational Analysis of Hsp70 Mechanisms by Exploring Conformational Landscapes and Residue Interaction Networks. J Chem Inf Model 2020; 60:1614-1631. [DOI: 10.1021/acs.jcim.9b01045] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Lindy Astl
- Graduate Program in Computational and Data Sciences, Keck Center for Science and Engineering, Schmid College of Science and Technology, Chapman University, One University Drive, Orange, California 92866, United States
| | - Gennady M. Verkhivker
- Graduate Program in Computational and Data Sciences, Keck Center for Science and Engineering, Schmid College of Science and Technology, Chapman University, One University Drive, Orange, California 92866, United States
- Depatment of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California 92618, United States
| |
Collapse
|
34
|
D'Annessa I, Raniolo S, Limongelli V, Di Marino D, Colombo G. Ligand Binding, Unbinding, and Allosteric Effects: Deciphering Small-Molecule Modulation of HSP90. J Chem Theory Comput 2019; 15:6368-6381. [PMID: 31538783 DOI: 10.1021/acs.jctc.9b00319] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The molecular chaperone HSP90 oversees the functional activation of a large number of client proteins. Because of its role in multiple pathways linked to cancer and neurodegeneration, drug discovery targeting HSP90 has been actively pursued. Yet, a number of inhibitors failed to meet expectations due to induced toxicity problems. In this context, allosteric perturbation has emerged as an alternative strategy for the pharmacological modulation of HSP90 functions. Specifically, novel allosteric stimulators showed the interesting capability of accelerating HSP90 closure dynamics and ATPase activities while inducing tumor cell death. Here, we gain atomistic insight into the mechanisms of allosteric ligand recognition and their consequences on the functional dynamics of HSP90, starting from the fully unbound state. We integrate advanced computational sampling methods based on FunnelMetadynamics, with the analysis of internal dynamics of the structural ensembles visited during the simulations. We observe several binding/unbinding events, and from these, we derive an accurate estimation of the absolute binding free energy. Importantly, we show that different binding poses induce different dynamics states. Our work for the first time explicitly correlates HSP90 responses to binding/unbinding of an allosteric ligand to the modulation of functionally oriented protein motions.
Collapse
Affiliation(s)
| | - Stefano Raniolo
- Università della Svizzera Italiana (USI) , Faculty of Biomedical Sciences, Institute of Computational Science - Center for Computational Medicine in Cardiology , via G. Buffi 13 , CH-Lugano , Switzerland
| | - Vittorio Limongelli
- Università della Svizzera Italiana (USI) , Faculty of Biomedical Sciences, Institute of Computational Science - Center for Computational Medicine in Cardiology , via G. Buffi 13 , CH-Lugano , Switzerland.,Department of Pharmacy , University of Naples ″Federico II″ , via D. Montesano 49 , I-80131 Naples , Italy
| | - Daniele Di Marino
- Università della Svizzera Italiana (USI) , Faculty of Biomedical Sciences, Institute of Computational Science - Center for Computational Medicine in Cardiology , via G. Buffi 13 , CH-Lugano , Switzerland.,Department of Life and Environmental Sciences - New York-Marche Structural Biology Center (NY-MaSBiC) , Polytechnic University of Marche , Via Brecce Bianche , 60131 Ancona , Italy
| | - Giorgio Colombo
- ICRM-CNR , Via Mario Bianco 9 , 20131 Milano , Italy.,Department of Chemistry , University of Pavia , V.le Taramelli 12 , 27100 Pavia , Italy
| |
Collapse
|
35
|
Velasco L, Dublang L, Moro F, Muga A. The Complex Phosphorylation Patterns that Regulate the Activity of Hsp70 and Its Cochaperones. Int J Mol Sci 2019; 20:ijms20174122. [PMID: 31450862 PMCID: PMC6747476 DOI: 10.3390/ijms20174122] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 08/21/2019] [Accepted: 08/22/2019] [Indexed: 12/26/2022] Open
Abstract
Proteins must fold into their native structure and maintain it during their lifespan to display the desired activity. To ensure proper folding and stability, and avoid generation of misfolded conformations that can be potentially cytotoxic, cells synthesize a wide variety of molecular chaperones that assist folding of other proteins and avoid their aggregation, which unfortunately is unavoidable under acute stress conditions. A protein machinery in metazoa, composed of representatives of the Hsp70, Hsp40, and Hsp110 chaperone families, can reactivate protein aggregates. We revised herein the phosphorylation sites found so far in members of these chaperone families and the functional consequences associated with some of them. We also discuss how phosphorylation might regulate the chaperone activity and the interaction of human Hsp70 with its accessory and client proteins. Finally, we present the information that would be necessary to decrypt the effect that post-translational modifications, and especially phosphorylation, could have on the biological activity of the Hsp70 system, known as the “chaperone code”.
Collapse
Affiliation(s)
- Lorea Velasco
- Biofisika Institute (UPV/EHU, CSIC) and Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain
| | - Leire Dublang
- Biofisika Institute (UPV/EHU, CSIC) and Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain
| | - Fernando Moro
- Biofisika Institute (UPV/EHU, CSIC) and Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain.
| | - Arturo Muga
- Biofisika Institute (UPV/EHU, CSIC) and Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain.
| |
Collapse
|
36
|
Aydınkal RM, Serçinoğlu O, Ozbek P. ProSNEx: a web-based application for exploration and analysis of protein structures using network formalism. Nucleic Acids Res 2019; 47:W471-W476. [PMID: 31114881 PMCID: PMC6602423 DOI: 10.1093/nar/gkz390] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 04/17/2019] [Accepted: 05/09/2019] [Indexed: 01/14/2023] Open
Abstract
ProSNEx (Protein Structure Network Explorer) is a web service for construction and analysis of Protein Structure Networks (PSNs) alongside amino acid flexibility, sequence conservation and annotation features. ProSNEx constructs a PSN by adding nodes to represent residues and edges between these nodes using user-specified interaction distance cutoffs for either carbon-alpha, carbon-beta or atom-pair contact networks. Different types of weighted networks can also be constructed by using either (i) the residue-residue interaction energies in the format returned by gRINN, resulting in a Protein Energy Network (PEN); (ii) the dynamical cross correlations from a coarse-grained Normal Mode Analysis (NMA) of the protein structure; (iii) interaction strength. Upon construction of the network, common network metrics (such as node centralities) as well as shortest paths between nodes and k-cliques are calculated. Moreover, additional features of each residue in the form of conservation scores and mutation/natural variant information are included in the analysis. By this way, tool offers an enhanced and direct comparison of network-based residue metrics with other types of biological information. ProSNEx is free and open to all users without login requirement at http://prosnex-tool.com.
Collapse
Affiliation(s)
- Rasim Murat Aydınkal
- Department of Bioengineering, Faculty of Engineering, Marmara University, Kadikoy, Istanbul 34722, Turkey
- Ali Nihat Gokyigit Foundation, Etiler, Istanbul 34340, Turkey
| | - Onur Serçinoğlu
- Department of Bioengineering, Faculty of Engineering, Marmara University, Kadikoy, Istanbul 34722, Turkey
- Department of Bioengineering, Faculty of Engineering, Recep Tayyip Erdoğan University, Rize 53100, Turkey
| | - Pemra Ozbek
- Department of Bioengineering, Faculty of Engineering, Marmara University, Kadikoy, Istanbul 34722, Turkey
| |
Collapse
|
37
|
Hsp90 middle domain phosphorylation initiates a complex conformational program to recruit the ATPase-stimulating cochaperone Aha1. Nat Commun 2019; 10:2574. [PMID: 31189925 PMCID: PMC6561935 DOI: 10.1038/s41467-019-10463-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 05/09/2019] [Indexed: 11/09/2022] Open
Abstract
Complex conformational dynamics are essential for function of the dimeric molecular chaperone heat shock protein 90 (Hsp90), including transient, ATP-biased N-domain dimerization that is necessary to attain ATPase competence. The intrinsic, but weak, ATP hydrolyzing activity of human Hsp90 is markedly enhanced by the co-chaperone Aha1. However, the cellular concentration of Aha1 is substoichiometric relative to Hsp90. Here we report that initial recruitment of this cochaperone to Hsp90 is markedly enhanced by phosphorylation of a highly conserved tyrosine (Y313 in Hsp90α) in the Hsp90 middle domain. Importantly, phosphomimetic mutation of Y313 promotes formation of a transient complex in which both N- and C-domains of Aha1 bind to distinct surfaces of the middle domains of opposing Hsp90 protomers prior to ATP-directed N-domain dimerization. Thus, Y313 represents a phosphorylation-sensitive conformational switch, engaged early after client loading, that affects both local and long-range conformational dynamics to facilitate initial recruitment of Aha1 to Hsp90.
Collapse
|
38
|
Liang Z, Verkhivker GM, Hu G. Integration of network models and evolutionary analysis into high-throughput modeling of protein dynamics and allosteric regulation: theory, tools and applications. Brief Bioinform 2019; 21:815-835. [DOI: 10.1093/bib/bbz029] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 02/04/2019] [Accepted: 02/21/2019] [Indexed: 12/24/2022] Open
Abstract
Abstract
Proteins are dynamical entities that undergo a plethora of conformational changes, accomplishing their biological functions. Molecular dynamics simulation and normal mode analysis methods have become the gold standard for studying protein dynamics, analyzing molecular mechanism and allosteric regulation of biological systems. The enormous amount of the ensemble-based experimental and computational data on protein structure and dynamics has presented a major challenge for the high-throughput modeling of protein regulation and molecular mechanisms. In parallel, bioinformatics and systems biology approaches including genomic analysis, coevolution and network-based modeling have provided an array of powerful tools that complemented and enriched biophysical insights by enabling high-throughput analysis of biological data and dissection of global molecular signatures underlying mechanisms of protein function and interactions in the cellular environment. These developments have provided a powerful interdisciplinary framework for quantifying the relationships between protein dynamics and allosteric regulation, allowing for high-throughput modeling and engineering of molecular mechanisms. Here, we review fundamental advances in protein dynamics, network theory and coevolutionary analysis that have provided foundation for rapidly growing computational tools for modeling of allosteric regulation. We discuss recent developments in these interdisciplinary areas bridging computational biophysics and network biology, focusing on promising applications in allosteric regulations, including the investigation of allosteric communication pathways, protein–DNA/RNA interactions and disease mutations in genomic medicine. We conclude by formulating and discussing future directions and potential challenges facing quantitative computational investigations of allosteric regulatory mechanisms in protein systems.
Collapse
Affiliation(s)
- Zhongjie Liang
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Gennady M Verkhivker
- Department of Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, CA, USA
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA, USA
| | - Guang Hu
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| |
Collapse
|
39
|
Phosphorylation promotes binding affinity of Rap-Raf complex by allosteric modulation of switch loop dynamics. Sci Rep 2018; 8:12976. [PMID: 30154518 PMCID: PMC6113251 DOI: 10.1038/s41598-018-31234-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 08/13/2018] [Indexed: 12/14/2022] Open
Abstract
The effects of phosphorylation of a serine residue on the structural and dynamic properties of Ras-like protein, Rap, and its interactions with effector protein Ras binding domain (RBD) of Raf kinase, in the presence of GTP, are investigated via molecular dynamics simulations. The simulations show that phosphorylation significantly effects the dynamics of functional loops of Rap which participate in the stability of the complex with effector proteins. The effects of phosphorylation on Rap are significant and detailed conformational analysis suggest that the Rap protein, when phosphorylated and with GTP ligand, samples different conformational space as compared to non-phosphorylated protein. In addition, phosphorylation of SER11 opens up a new cavity in the Rap protein which can be further explored for possible drug interactions. Residue network analysis shows that the phosphorylation of Rap results in a community spanning both Rap and RBD and strongly suggests transmission of allosteric effects of local alterations in Rap to distal regions of RBD, potentially affecting the downstream signalling. Binding free energy calculations suggest that phosphorylation of SER11 residue increases the binding between Rap and Raf corroborating the network analysis results. The increased binding of the Rap-Raf complex can have cascading effects along the signalling pathways where availability of Raf can influence the oncogenic effects of Ras proteins. These simulations underscore the importance of post translational modifications like phosphorylation on the functional dynamics in proteins and can be an alternative to drug-targeting, especially in notoriously undruggable oncoproteins belonging to Ras-like GTPase family.
Collapse
|
40
|
Ferraro M, D’Annessa I, Moroni E, Morra G, Paladino A, Rinaldi S, Compostella F, Colombo G. Allosteric Modulators of HSP90 and HSP70: Dynamics Meets Function through Structure-Based Drug Design. J Med Chem 2018; 62:60-87. [DOI: 10.1021/acs.jmedchem.8b00825] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Mariarosaria Ferraro
- Istituto di Chimica del Riconoscimento Molecolare, CNR, Via Mario Bianco 9, 20131 Milano, Italy
| | - Ilda D’Annessa
- Istituto di Chimica del Riconoscimento Molecolare, CNR, Via Mario Bianco 9, 20131 Milano, Italy
| | | | - Giulia Morra
- Istituto di Chimica del Riconoscimento Molecolare, CNR, Via Mario Bianco 9, 20131 Milano, Italy
| | - Antonella Paladino
- Istituto di Chimica del Riconoscimento Molecolare, CNR, Via Mario Bianco 9, 20131 Milano, Italy
| | - Silvia Rinaldi
- Istituto di Chimica del Riconoscimento Molecolare, CNR, Via Mario Bianco 9, 20131 Milano, Italy
| | - Federica Compostella
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Via Saldini, 50, 20133 Milano, Italy
| | - Giorgio Colombo
- Istituto di Chimica del Riconoscimento Molecolare, CNR, Via Mario Bianco 9, 20131 Milano, Italy
- Dipartimento di Chimica, Università di Pavia, V.le Taramelli 12, 27100 Pavia, Italy
| |
Collapse
|
41
|
Dual Roles for Yeast Sti1/Hop in Regulating the Hsp90 Chaperone Cycle. Genetics 2018; 209:1139-1154. [PMID: 29930177 DOI: 10.1534/genetics.118.301178] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 06/20/2018] [Indexed: 11/18/2022] Open
Abstract
The Hsp90 chaperone is regulated by many cochaperones that tune its activities, but how they act to coordinate various steps in the reaction cycle is unclear. The primary role of Saccharomyces cerevisiae Hsp70/Hsp90 cochaperone Sti1 (Hop in mammals) is to bridge Hsp70 and Hsp90 to facilitate client transfer. Sti1 is not essential, so Hsp90 can interact with Hsp70 in vivo without Sti1. Nevertheless, many Hsp90 mutations make Sti1 necessary. We noted that Sti1-dependent mutations cluster in regions proximal to N-terminal domains (SdN) or C-terminal domains (SdC), which are known to be important for interaction with Hsp70 or clients, respectively. To uncover mechanistic details of Sti1-Hsp90 cooperation, we identified intramolecular suppressors of the Hsp90 mutants and assessed their physical, functional, and genetic interactions with Hsp70, Sti1, and other cochaperones. Our findings suggest Hsp90 SdN and SdC mutants depend on the same interaction with Sti1, but for different reasons. Sti1 promoted an essential Hsp70 interaction in the SdN region and supported SdC-region function by establishing an Hsp90 conformation crucial for capturing clients and progressing through the reaction cycle. We find the Hsp70 interaction and relationship with Sti1/Hop is conserved in the human Hsp90 system. Our work consolidates and clarifies much structural, biochemical, and computational data to define in vivo roles of Sti1/Hop in coordinating Hsp70 binding and client transfer with progression of the Hsp90 reaction cycle.
Collapse
|
42
|
Computational Methods for Efficient Sampling of Protein Landscapes and Disclosing Allosteric Regions. COMPUTATIONAL MOLECULAR MODELLING IN STRUCTURAL BIOLOGY 2018; 113:33-63. [DOI: 10.1016/bs.apcsb.2018.06.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|