1
|
Chen B, Dong K, Xu Y, Jiang M, Zheng J, Zeng H, Zhang X, Chen Y, Li H. Biodegradation of nitrate and p-bromophenol using hydrogen-based membrane biofilm reactors in parallel. ENVIRONMENTAL TECHNOLOGY 2024; 45:4550-4564. [PMID: 37729639 DOI: 10.1080/09593330.2023.2259091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 04/28/2023] [Indexed: 09/22/2023]
Abstract
ABSTRACTP-bromophenol (4-BP) is a toxic halogenated phenolic organic compound. The conventional treatment processes for 4-BP elimination are costly and inefficient, with complete mineralization remaining a challenge for water treatment. To overcome these limitations, we investigated the treatment of 4-BP in a membrane biofilm reactor (MBfR) using hydrogen as an electron donor. The pathway of 4-BP degradation within the H2-MBfR was investigated through long-term operational experiments by considering the effect of nitrate and 4-BP concentrations, hydrogen partial pressure, static experiments, and microbial community diversity, which was studied using 16S rRNA. The results showed that H2-MBfR could quickly remove approximately 100% of 4-BP (up to 20 mg/L), with minimal intermediate product accumulation and 10 mg/L of nitrate continuously reduced. The microbial community structure showed that the presence of H2 created an anaerobic environment, and Thauera was the dominant functional genus involved in the degradation of 4-BP. The genes encoding related enzymes were further enhanced. This study provides an economically viable and environmentally friendly bioremediation technique for water bodies that contain 4-BP and nitrates.
Collapse
Affiliation(s)
- Bo Chen
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, People's Republic of China
| | - Kun Dong
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, People's Republic of China
| | - Yufeng Xu
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, People's Republic of China
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin, People's Republic of China
| | - Minmin Jiang
- College of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, People's Republic of China
| | - Junjian Zheng
- College of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, People's Republic of China
| | - Honghu Zeng
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, People's Republic of China
| | - Xuehong Zhang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, People's Republic of China
| | - Yuchao Chen
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, People's Republic of China
| | - Haixiang Li
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, People's Republic of China
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin, People's Republic of China
| |
Collapse
|
2
|
Sohn W, Jiang J, Su Z, Zheng M, Wang Q, Phuntsho S, Kyong Shon H. Microbial community analysis of membrane bioreactor incorporated with biofilm carriers and activated carbon for nitrification of urine. BIORESOURCE TECHNOLOGY 2024; 397:130462. [PMID: 38369083 DOI: 10.1016/j.biortech.2024.130462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/31/2024] [Accepted: 02/15/2024] [Indexed: 02/20/2024]
Abstract
The integration of powdered activated carbon and biofilm carriers in a membrane bioreactor (MBR) presents a promising approach to address the challenge of long hydraulic retention time (HRT) for nitrification of hydrolysed urine. This study investigated the effect of the incorporation in the MBR on microbial dynamics, focusing on dominant nitrifying bacteria. The results showed that significant shifts in microbial compositions were observed with the feed transition to full-strength urine and across different sludge growth forms. Remarkably, the nitrite-oxidizing bacteria Nitrospira were highly enriched in the suspended sludge. Simultaneously, ammonia-oxidizing bacteria, Nitrosococcaceae thrived in the attached biomass, showing a significant seven-fold increase in relative abundance compared to its suspended counterpart. Consequently, the incorporated MBR displayed 36% higher nitrification rate and 40% HRT reduction compared to the conventional MBR. This study provides valuable insights on the potential development of household or building scale on-site nutrient recovery from urine to fertiliser.
Collapse
Affiliation(s)
- Weonjung Sohn
- Australian Research Council Research Hub for Nutrients in a Circular Economy, Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia
| | - Jiaxi Jiang
- Australian Research Council Research Hub for Nutrients in a Circular Economy, Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia
| | - Zicheng Su
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Min Zheng
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Qilin Wang
- Australian Research Council Research Hub for Nutrients in a Circular Economy, Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia
| | - Sherub Phuntsho
- Australian Research Council Research Hub for Nutrients in a Circular Economy, Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia
| | - Ho Kyong Shon
- Australian Research Council Research Hub for Nutrients in a Circular Economy, Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia.
| |
Collapse
|
3
|
Ni Z, Gong Z, Song L, Jia C, Zhang X. Adaptation strategies and functional transitions of microbial community in pyrene-contaminated soils promoted by lead with Pseudomonas veronii and its extracellular polymeric substances. CHEMOSPHERE 2024; 351:141139. [PMID: 38185422 DOI: 10.1016/j.chemosphere.2024.141139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 12/25/2023] [Accepted: 01/04/2024] [Indexed: 01/09/2024]
Abstract
Pyrene was designated as a remediation target in this study, and low contamination of lead (Pb) was set to induce heavy metal stress. Pseudomonas veronii and its extracellular polymeric substances (EPSs) were chosen for biofortification, with the aim of elucidating the structural, metabolic, and functional responses of soil microbial communities. Community analysis of soil microorganisms using high-throughput sequencing showed that the co-addition of P. veronii and EPSs resulted in an increase in relative abundance of phyla associated with pyrene degradation, and formed a symbiotic system dominated by Firmicutes and Proteobacteria, which involved in pyrene metabolism. Co-occurrence network analysis revealed that the module containing P. veronii was the only one exhibiting a positive correlation between bacterial abundance and pyrene removal, indicating the potential of bioaugmentation in enriching functional taxa. Biofortification also enhanced the abundance of functional gene linked to EPS production (biofilm formation-Pseudomonas aeruginosa) and pyrene degradation. Furthermore, 17 potential functional bacteria were screened out using random forest algorithm. Lead contamination further promoted the growth of Proteobacteria, intensified cooperative associations among bacteria, and increased the abundance of bacteria with positive correlation with pyrene degradation. The results offer novel perspectives on alterations in microbial communities resulting from the synergistic impact of heavy metal stress and biofortification.
Collapse
Affiliation(s)
- Zijun Ni
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Zongqiang Gong
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China.
| | - Lei Song
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Chunyun Jia
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China.
| | - Xiaorong Zhang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China.
| |
Collapse
|
4
|
Dijamentiuk A, Mangavel C, Gapp C, Elfassy A, Revol-Junelles AM, Borges F. Serial cultures in invert emulsion and monophase systems for microbial community shaping and propagation. Microb Cell Fact 2024; 23:50. [PMID: 38355580 PMCID: PMC10865683 DOI: 10.1186/s12934-024-02322-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 01/29/2024] [Indexed: 02/16/2024] Open
Abstract
BACKGROUND Microbial communities harbor important biotechnological potential in diverse domains, however, the engineering and propagation of such communities still face both knowledge and know-how gaps. More specifically, culturing tools are needed to propagate and shape microbial communities, to obtain desired properties, and to exploit them. Previous work suggested that micro-confinement and segregation of microorganisms using invert (water-in-oil, w/o) emulsion broth can shape communities during propagation, by alleviating biotic interactions and inducing physiological changes in cultured bacteria. The present work aimed at evaluating invert emulsion and simple broth monophasic cultures for the propagation and shaping of bacterial communities derived from raw milk in a serial propagation design. RESULTS The monophasic setup resulted in stable community structures during serial propagation, whereas the invert emulsion system resulted in only transiently stable structures. In addition, different communities with different taxonomic compositions could be obtained from a single inoculum. Furthermore, the implementation of invert emulsion systems has allowed for the enrichment of less abundant microorganisms and consequently facilitated their isolation on culture agar plates. CONCLUSIONS The monophasic system enables communities to be propagated in a stable manner, whereas the invert emulsion system allowed for the isolation of less abundant microorganisms and the generation of diverse taxonomic compositions from a single inoculum.
Collapse
Affiliation(s)
- Alexis Dijamentiuk
- Laboratoire d'Ingénierie des Biomolécules (LIBio), Université de Lorraine, Nancy, France
| | - Cécile Mangavel
- Laboratoire d'Ingénierie des Biomolécules (LIBio), Université de Lorraine, Nancy, France
| | - Chloé Gapp
- Laboratoire d'Ingénierie des Biomolécules (LIBio), Université de Lorraine, Nancy, France
| | - Annelore Elfassy
- Laboratoire d'Ingénierie des Biomolécules (LIBio), Université de Lorraine, Nancy, France
| | | | - Frédéric Borges
- Laboratoire d'Ingénierie des Biomolécules (LIBio), Université de Lorraine, Nancy, France.
| |
Collapse
|
5
|
Antiñolo Bermúdez L, Martínez Sánchez EM, Leyva Díaz JC, Muñio Martínez MDM, Poyatos Capilla JM, Martín Pascual J. Impacts of Organic Emerging Contaminants (Erythromycin, Ibuprofen, and Diclofenac) on the Performance of a Membrane Bioreactor Treating Urban Wastewater: A Heterotrophic Kinetic Investigation. MEMBRANES 2023; 13:697. [PMID: 37623758 PMCID: PMC10456289 DOI: 10.3390/membranes13080697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/25/2023] [Accepted: 07/25/2023] [Indexed: 08/26/2023]
Abstract
The occurrence of emerging organic contaminants, such as pharmaceuticals, is a growing global concern. In this research, for a membrane bioreactor (MBR) laboratory plant operating at a hydraulic retention time (HRT) of 24 h, fed with real urban wastewater, the heterotrophic biomass behaviour was analysed for two concentrations of erythromycin, ibuprofen, and diclofenac. The concentrations studied for the first phase were erythromycin 0.576 mg L-1, ibuprofen 0.056 mg L-1, and diclofenac 0.948 mg L-1. For Phase 2, the concentrations were increased to erythromycin 1.440 mg L-1, ibuprofen 0.140 mg L-1, and diclofenac 2.370 mg L-1. Heterotrophic biomass was affected and inhibited by the presence of pharmaceutical compounds in both phases. The system response to low concentrations of pharmaceutical compounds occurred in the initial phase of plant doping. Under these operating conditions, there was a gradual decrease in the concentration of mixed liquor suspended solids and the removal of chemical oxygen demand of the system, as it was not able to absorb the effect produced by the pharmaceutical compounds added in both phases.
Collapse
Affiliation(s)
- Laura Antiñolo Bermúdez
- Department of Civil Engineering, Institute of Water Research, University of Granada, 18071 Granada, Spain; (L.A.B.); (E.M.M.S.); (J.C.L.D.); (J.M.P.C.)
| | - Elena María Martínez Sánchez
- Department of Civil Engineering, Institute of Water Research, University of Granada, 18071 Granada, Spain; (L.A.B.); (E.M.M.S.); (J.C.L.D.); (J.M.P.C.)
| | - Juan Carlos Leyva Díaz
- Department of Civil Engineering, Institute of Water Research, University of Granada, 18071 Granada, Spain; (L.A.B.); (E.M.M.S.); (J.C.L.D.); (J.M.P.C.)
| | | | - Jose Manuel Poyatos Capilla
- Department of Civil Engineering, Institute of Water Research, University of Granada, 18071 Granada, Spain; (L.A.B.); (E.M.M.S.); (J.C.L.D.); (J.M.P.C.)
| | - Jaime Martín Pascual
- Department of Civil Engineering, Institute of Water Research, University of Granada, 18071 Granada, Spain; (L.A.B.); (E.M.M.S.); (J.C.L.D.); (J.M.P.C.)
| |
Collapse
|
6
|
Bianco F, Race M, Papirio S, Esposito G. Phenanthrene removal from a spent sediment washing solution in a continuous-flow stirred-tank reactor. ENVIRONMENTAL RESEARCH 2023; 228:115889. [PMID: 37054831 DOI: 10.1016/j.envres.2023.115889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/05/2023] [Accepted: 04/11/2023] [Indexed: 05/16/2023]
Abstract
The issue of polycyclic aromatic hydrocarbons (PAHs) is widespread in marine sediments involving ecological systems and human health. Sediment washing (SW) has proven to be the most effective remediation approach for sediments polluted by PAHs, such as phenanthrene (PHE). However, SW still raises waste handling concerns due to a considerable amount of effluents generated downstream. In this context, the biological treatment of a PHE- and ethanol-containing spent SW solution can represent a highly efficient and environmentally-friendly strategy, but its knowledge is still scarce in scientific literature and no studies have so far been conducted in continuous mode. Therefore, a synthetic PHE-polluted SW solution was biologically treated in a 1 L aerated continuous-flow stirred-tank reactor for 129 days by evaluating the effect of different pH values, aeration flowrates and hydraulic retention times as operating parameters over five successive phases. A PHE removal efficiency of up to 75-94% was achieved by an acclimated PHE-degrading consortium mainly composed of Proteobacteria, Bacteroidota and Firmicutes phyla through biodegradation following the adsorption mechanism. PHE biodegradation, mainly occurring via the benzoate route due to the presence of PAH-related-degrading functional genes and a phthalate accumulation up to 46 mg/L, was also accompanied by a reduction of dissolved organic carbon and ammonia nitrogen above 99% in the treated SW solution.
Collapse
Affiliation(s)
- Francesco Bianco
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Via Di Biasio 43, 03043, Cassino, Italy.
| | - Marco Race
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Via Di Biasio 43, 03043, Cassino, Italy
| | - Stefano Papirio
- Department of Civil, Architectural and Environmental Engineering, University of Napoli Federico II, Via Claudio 21, 80125, Napoli, Italy
| | - Giovanni Esposito
- Department of Civil, Architectural and Environmental Engineering, University of Napoli Federico II, Via Claudio 21, 80125, Napoli, Italy
| |
Collapse
|
7
|
Márquez-Villa JM, Rodríguez-Sierra JC, Amtanus Chequer N, Cob-Calan NN, García-Maldonado JQ, Cadena S, Hernández-Núñez E. Phenanthrene Degradation by Photosynthetic Bacterial Consortium Dominated by Fischerella sp. Life (Basel) 2023; 13:life13051108. [PMID: 37240753 DOI: 10.3390/life13051108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/20/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
Microbial degradation of aromatic hydrocarbons is an emerging technology, and it is well recognized for its economic methods, efficiency, and safety; however, its exploration is still scarce and greater emphasis on cyanobacteria-bacterial mutualistic interactions is needed. We evaluated and characterized the phenanthrene biodegradation capacity of consortium dominated by Fischerella sp. under holoxenic conditions with aerobic heterotrophic bacteria and their molecular identification through 16S rRNA Illumina sequencing. Results indicated that our microbial consortium can degrade up to 92% of phenanthrene in five days. Bioinformatic analyses revealed that consortium was dominated by Fischerella sp., however different members of Nostocaceae and Weeksellaceae, as well as several other bacteria, such as Chryseobacterium, and Porphyrobacter, were found to be putatively involved in the biological degradation of phenanthrene. This work contributes to a better understanding of biodegradation of phenanthrene by cyanobacteria and identify the microbial diversity related.
Collapse
Affiliation(s)
| | | | - Nayem Amtanus Chequer
- Department of Marine Resources, Centro de Investigación y de Estudios Avanzados del IPN, Merida 97310, Yucatan, Mexico
| | - Nubia Noemí Cob-Calan
- Instituto Tecnológico Superior de Calkiní en el Estado de Campeche, Calkiní 24900, Campeche, Mexico
| | | | - Santiago Cadena
- Department of Marine Resources, Centro de Investigación y de Estudios Avanzados del IPN, Merida 97310, Yucatan, Mexico
| | - Emanuel Hernández-Núñez
- Department of Marine Resources, Centro de Investigación y de Estudios Avanzados del IPN, Merida 97310, Yucatan, Mexico
| |
Collapse
|
8
|
Šašinková D, Serbruyns L, Julinová M, FayyazBakhsh A, De Wilde B, Koutný M. Evaluation of the biodegradation of polymeric materials in the freshwater environment—An attempt to prolong and accelerate the biodegradation experiment. Polym Degrad Stab 2022. [DOI: 10.1016/j.polymdegradstab.2022.110085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
9
|
Bianco F, Race M, Papirio S, Oleszczuk P, Esposito G. Coupling of desorption of phenanthrene from marine sediments and biodegradation of the sediment washing solution in a novel biochar immobilized-cell reactor. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 308:119621. [PMID: 35709914 DOI: 10.1016/j.envpol.2022.119621] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 05/03/2022] [Accepted: 06/12/2022] [Indexed: 06/15/2023]
Abstract
The recurrent dredging of marine sediments needs the use of ex-situ technologies such as sediment washing (SW) to effectively remove polycyclic aromatic hydrocarbons. Notwithstanding, the large volumes of generated spent SW effluents require adequate treatment by employing highly-efficient, inexpensive and environmentally-friendly solutions. This study proposes the phenanthrene (PHE) desorption from sediments using Tween® 80 (TW80) as extracting agent and the treatment of the resulting spent SW solution in a biochar (BC) immobilized-cell bioreactor. The SW process reached the highest PHE removal of about 91% using a surfactant solution containing 10,800 mg L-1 of TW80. The generated amount of spent PHE-polluted SW solution can be controlled by keeping a solid to liquid ratio of 1:4. A PHE degradation of up to 96% was subsequently achieved after 43 days of continuous reactor operation, aerobically treating the TW80 solution in the BC immobilized-cell bioreactor with a hydraulic retention time of 3.5 days. Brevundimonas, Chryseobacterium, Dysgonomonas, Nubsella, and both uncultured Weeksellaceae and Xanthobacteraceae genera were mainly involved in PHE biodegradation. A rough economic study showed a total cost of 342.60 € ton-1 of sediment, including the SW operations, TW80 and BC supply and the biological treatment of the SW solution.
Collapse
Affiliation(s)
- Francesco Bianco
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Via Di Biasio 43, 03043, Cassino, Italy.
| | - Marco Race
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Via Di Biasio 43, 03043, Cassino, Italy
| | - Stefano Papirio
- Department of Civil, Architectural and Environmental Engineering, University of Napoli Federico II, Via Claudio 21, 80125, Napoli, Italy
| | - Patryk Oleszczuk
- Department of Radiochemistry and Environmental Chemistry, Maria Curie-Skłodowska University, 3 Maria Curie-Skłodowska Square, 20031, Lublin, Poland
| | - Giovanni Esposito
- Department of Civil, Architectural and Environmental Engineering, University of Napoli Federico II, Via Claudio 21, 80125, Napoli, Italy
| |
Collapse
|
10
|
Chen Z, An C, Elektorowicz M, Tian X. Sources, behaviors, transformations, and environmental risks of organophosphate esters in the coastal environment: A review. MARINE POLLUTION BULLETIN 2022; 180:113779. [PMID: 35635887 DOI: 10.1016/j.marpolbul.2022.113779] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
The rapid growth in the global production of organophosphate esters (OPEs) has resulted in their high environmental concentrations. The low removal rate of OPEs makes the effluents of wastewater treatment plants be one of the major sources of OPEs. Due to relatively high solubility and mobility, OPEs can be carried to the coastal environment through river discharge and atmospheric deposition. Therefore, the coastal environment can be an important OPE sink. Previous studies have shown that OPEs were widely detected in coastal atmospheres, water, sediments, and even aquatic organisms. OPEs can undergo various environmental processes in the coastal environment, including adsorption/desorption, air-water exchange, and degradation. In addition, bioaccumulation of OPEs was observed in coastal biota but current concentrations would not cause significant ecological risks. More efforts are required to understand the environmental behaviors of OPEs and address resultant environmental and health risks, especially in the complicated environment.
Collapse
Affiliation(s)
- Zhikun Chen
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal H3G 1M8, Canada
| | - Chunjiang An
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal H3G 1M8, Canada.
| | - Maria Elektorowicz
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal H3G 1M8, Canada
| | - Xuelin Tian
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal H3G 1M8, Canada
| |
Collapse
|
11
|
Deb A, Gurung K, Rumky J, Sillanpää M, Mänttäri M, Kallioinen M. Dynamics of microbial community and their effects on membrane fouling in an anoxic-oxic gravity-driven membrane bioreactor under varying solid retention time: A pilot-scale study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:150878. [PMID: 34627895 DOI: 10.1016/j.scitotenv.2021.150878] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/24/2021] [Accepted: 10/04/2021] [Indexed: 06/13/2023]
Abstract
Membrane fouling in a membrane bioreactor (MBR) is highly influenced by the characteristics of the influent, the mixed liquor microbial community and the operational parameters, all of which are environment specific. Therefore, we studied the dynamics of microbial community during the treatment of real municipal wastewater in a pilotscale anoxic-oxic (A/O) MBR equipped with a gravity-driven membrane filtration system. The MBR was operated at three different solid retention times (SRTs): 25, 40 and 10 days for a total period of 180 days in Nordic environmental conditions. Analysis of microbial community dynamics revealed a high diversity of microbial species at SRT of 40 days, whereas SRT of 25 days was superior with microbial richness. Production of soluble microbial products (SMP) and extracellular polymeric substances (EPS) was found to be intensely connected with the SRT and food to microorganism (F/M) ratio. Relatively longer operational period with the lowest rate of membrane fouling was observed at SRT of 25 days, which was resulted from the superior microbial community, lowest production of SMP and loosely bound EPS as well as the lower filtration resistance of larger sludge flocs. Abundance of quorum quenching (QQ) bacteria and granular floc forming bacterial genera at SRT of 25 days provided relatively lower membrane fouling tendency and larger floc formation, respectively. On the other hand, substantial amount of various surface colonizing and EPS producing bacteria was found at SRT of 10 days, which promoted more rapid membrane fouling compared with the fouling rate seen at other tested SRTs. To sum up, this research provides a realistic insight into the impact of SRT on microbial community dynamics and resulting characteristics of mixed liquor, floc size distribution and membrane fouling for improved MBR operation.
Collapse
Affiliation(s)
- Anjan Deb
- Department of Separation Science, School of Engineering Science, Lappeenranta-Lahti University of Technology (LUT University), Sammonkatu 12, 50130 Mikkeli, Finland; Department of Chemistry, University of Helsinki, P.O. Box 55 (A.I. Virtasen aukio 1), 00014 Helsinki, Finland.
| | - Khum Gurung
- Department of Separation Science, School of Engineering Science, Lappeenranta-Lahti University of Technology (LUT University), Sammonkatu 12, 50130 Mikkeli, Finland
| | - Jannatul Rumky
- Department of Separation Science, School of Engineering Science, Lappeenranta-Lahti University of Technology (LUT University), Sammonkatu 12, 50130 Mikkeli, Finland
| | - Mika Sillanpää
- Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg, P. O. Box 17011, Doornfontein 2028, South Africa; School of Chemical and Metallurgical Engineering, University of the Witwatersrand, 2050 Johannesburg, South Africa; Chemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; School of Resources and Environment, University of Electronic Science and Technology of China (UESTC), NO. 2006, Xiyuan Ave., West High-Tech Zone, Chengdu, Sichuan 611731, PR China; Faculty of Science and Technology, School of Applied Physics, University Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia; School of Chemistry, Shoolini University, Solan, Himachal Pradesh 173229, India
| | - Mika Mänttäri
- Department of Separation Science, School of Engineering Science, Lappeenranta-Lahti University of Technology (LUT University), Sammonkatu 12, 50130 Mikkeli, Finland
| | - Mari Kallioinen
- Department of Separation Science, School of Engineering Science, Lappeenranta-Lahti University of Technology (LUT University), Sammonkatu 12, 50130 Mikkeli, Finland
| |
Collapse
|
12
|
Dynamics of Microbial Communities during the Removal of Copper and Zinc in a Sulfate-Reducing Bioreactor with a Limestone Pre-Column System. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19031484. [PMID: 35162506 PMCID: PMC8835105 DOI: 10.3390/ijerph19031484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/15/2022] [Accepted: 01/25/2022] [Indexed: 11/30/2022]
Abstract
Biological treatment using sulfate-reducing bacteria (SRB) is a promising approach to remediate acid rock drainage (ARD). Our purpose was to assess the performance of a sequential system consisting of a limestone bed filter followed by a sulfate-reducing bioreactor treating synthetic ARD for 375 days and to evaluate changes in microbial composition. The treatment system was effective in increasing the pH of the ARD from 2.7 to 7.5 and removed total Cu(II) and Zn(II) concentrations by up to 99.8% and 99.9%, respectively. The presence of sulfate in ARD promoted sulfidogenesis and changed the diversity and structure of the microbial communities. Methansarcina spp. was the most abundant amplicon sequence variant (ASV); however, methane production was not detected. Biodiversity indexes decreased over time with the bioreactor operation, whereas SRB abundance remained stable. Desulfobacteraceae, Desulfocurvus, Desulfobulbaceae and Desulfovibrio became more abundant, while Desulfuromonadales, Desulfotomaculum and Desulfobacca decreased. Geobacter and Syntrophobacter were enriched with bioreactor operation time. At the beginning, ASVs with relative abundance <2% represented 65% of the microbial community and 21% at the end of the study period. Thus, the results show that the microbial community gradually lost diversity while the treatment system was highly efficient in remediating ARD.
Collapse
|
13
|
Corpuz MVA, Borea L, Senatore V, Castrogiovanni F, Buonerba A, Oliva G, Ballesteros F, Zarra T, Belgiorno V, Choo KH, Hasan SW, Naddeo V. Wastewater treatment and fouling control in an electro algae-activated sludge membrane bioreactor. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 786:147475. [PMID: 33971601 DOI: 10.1016/j.scitotenv.2021.147475] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 06/12/2023]
Abstract
The effect of addition of algae to activated sludge as active biomass in membrane bioreactors (MBRs) and electro-MBRs (e-MBRs) for wastewater remediation was examined in this study. The performances of Algae-Activated Sludge Membrane Bioreactor (AAS-MBR) and electro Algae-Activated Sludge Membrane Bioreactor (e-AAS-MBR) were compared to those observed in conventional MBR and e-MBR, which were previously reported and utilized activated sludge as biomass. The effect of application of electric field was also examined by the comparison of performances of e-AAS-MBR and AAS-MBR. Similar chemical oxygen demand (COD) reduction efficiencies of AAS-MBR, e-AAS-MBR, MBR, and e-MBR (98.35 ± 0.35%, 99.12 ± 0.08%, 97.70 ± 1.10%, and 98.10 ± 1.70%, respectively) were observed. The effect of the algae-activated sludge system was significantly higher in the nutrient removals. Ammoniacal nitrogen (NH3-N) removal efficiencies of AAS-MBR and e-AAS-MBR were higher by 43.89% and 26.61% than in the conventional MBR and e-MBR, respectively. Phosphate phosphorous (PO43--P) removals were also higher in AAS-MBR and e-AAS-MBR by 6.43% and 2.66% than those in conventional MBR and e-MBR. Membrane fouling rates in AAS-MBR and e-AAS-MBR were lower by 57.30% and 61.95% than in MBR and e-MBR, respectively. Lower concentrations of fouling substances were also observed in the reactors containing algae-activated sludge biomass. Results revealed that addition of algae improved nutrient removal and membrane fouling mitigation. The study also highlighted that the application of electric field in the e-AAS-MBR enhanced organic contaminants and nutrients removal, and fouling rate reduction.
Collapse
Affiliation(s)
- Mary Vermi Aizza Corpuz
- Environmental Engineering Program, National Graduate School of Engineering, University of the Philippines, 1101 Diliman, Quezon City, Philippines
| | - Laura Borea
- Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, 84084 Fisciano, Italy
| | - Vincenzo Senatore
- Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, 84084 Fisciano, Italy
| | - Fabiano Castrogiovanni
- Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, 84084 Fisciano, Italy
| | - Antonio Buonerba
- Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, 84084 Fisciano, Italy; Inter-University Centre for Prediction and Prevention of Relevant Hazards (Centro Universitario per la Previsione e Prevenzione Grandi Rischi, C.U.G.RI.), Via Giovanni Paolo II, Fisciano, SA, Italy
| | - Giuseppina Oliva
- Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, 84084 Fisciano, Italy
| | - Florencio Ballesteros
- Environmental Engineering Program, National Graduate School of Engineering, University of the Philippines, 1101 Diliman, Quezon City, Philippines; Department of Chemical Engineering, College of Engineering, University of the Philippines, 1101 Diliman, Quezon City, Philippines
| | - Tiziano Zarra
- Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, 84084 Fisciano, Italy
| | - Vincenzo Belgiorno
- Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, 84084 Fisciano, Italy
| | - Kwang-Ho Choo
- Department of Environmental Engineering, Kyungpook National University (KNU), 80 Daehak-ro, Bukgu, Daegu 41566, Republic of Korea
| | - Shadi W Hasan
- Center for Membranes and Advanced Water Technology (CMAT), Department of Chemical Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Vincenzo Naddeo
- Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, 84084 Fisciano, Italy.
| |
Collapse
|
14
|
Płaza G, Jałowiecki Ł, Głowacka D, Hubeny J, Harnisz M, Korzeniewska E. Insights into the microbial diversity and structure in a full-scale municipal wastewater treatment plant with particular regard to Archaea. PLoS One 2021; 16:e0250514. [PMID: 33901216 PMCID: PMC8075261 DOI: 10.1371/journal.pone.0250514] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 04/07/2021] [Indexed: 12/02/2022] Open
Abstract
Due to limited description of the role and diversity of archaea in WWTPs, the aim of the study was to analyze microbial community structures and diversities with particular regard to Archaea in the samples taken from different stages of the full-scale municipal wastewater treatment plant and effluent receiving water (upstream and downstream discharge point). Our study was focused on showing how the treatment processes influenced the Eubacteria and Archaea composition. Alpha and Beta diversity were used to evaluate the microbial diversity changes in the collected samples. Proteobacteria was the largest fraction ranging from 28% to 67% with 56% relative abundance across all samples. Archaea were present in all stages of WWTP ranged from 1 to 8%. Among the Archaea, two groups of methanogens, acetoclastic (Methanosarcina, Methanosaeta) and hydrogenotrophic methanogens (Methanospirillium, Methanoculleus, Methanobrevibacter) were dominant in the technological stages. The obtained results indicate that the treated wastewater did not significantly affect eubacterial and archaeal composition in receiving water. However, differences in richness, diversity and microbial composition of Eubacteria and Archaea between the wastewater samples taken from the primary and secondary treatment were observed.
Collapse
Affiliation(s)
- Grażyna Płaza
- Environmental Microbiology Unit, Institute for Ecology of Industrial Areas, Katowice, Poland
- * E-mail:
| | - Łukasz Jałowiecki
- Environmental Microbiology Unit, Institute for Ecology of Industrial Areas, Katowice, Poland
| | | | - Jakub Hubeny
- Faculty of Geoengineering, Department of Engineering of Water Protection and Environmental Microbiology, University of Warmia and Mazury Olsztyn, Olsztyn, Poland
| | - Monika Harnisz
- Faculty of Geoengineering, Department of Engineering of Water Protection and Environmental Microbiology, University of Warmia and Mazury Olsztyn, Olsztyn, Poland
| | - Ewa Korzeniewska
- Faculty of Geoengineering, Department of Engineering of Water Protection and Environmental Microbiology, University of Warmia and Mazury Olsztyn, Olsztyn, Poland
| |
Collapse
|
15
|
ElNaker NA, Sallam AM, El-Sayed ESM, El Ghandoor H, Talaat MS, Yousef AF, Hasan SW. A conceptual framework modeling of functional microbial communities in wastewater treatment electro-bioreactors. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2020; 82:3047-3061. [PMID: 33341792 DOI: 10.2166/wst.2020.553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Understanding the microbial ecology of a system allows linking members of the community and their metabolic functions to the performance of the wastewater bioreactor. This study provided a comprehensive conceptual framework for microbial communities in wastewater treatment electro-bioreactors (EBRs). The model was based on data acquired from monitoring the effect of altering different bioreactor operational parameters, such as current density and hydraulic retention time, on the microbial communities of an EBR and its nutrient removal efficiency. The model was also based on the 16S rRNA gene high-throughput sequencing data analysis and bioreactor efficiency data. The collective data clearly demonstrated that applying various electric currents affected the microbial community composition and stability and the reactor efficiency in terms of chemical oxygen demand, N and P removals. Moreover, a schematic that recommends operating conditions that are tailored to the type of wastewater that needs to be treated based on the functional microbial communities enriched at specific operating conditions was suggested. In this study, a conceptual model as a simplified representation of the behavior of microbial communities in EBRs was developed. The proposed conceptual model can be used to predict how biological treatment of wastewater in EBRs can be improved by varying several operating conditions.
Collapse
Affiliation(s)
- Nancy A ElNaker
- Center for Membranes and Advanced Water Technology (CMAT), Department of Chemical Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates E-mail: ; Department of Chemistry, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates; Physics Department, Biophysics Group, Faculty of Science, Ain Shams University, P.O. Box 11566, Cairo, Egypt
| | - Abdelsattar M Sallam
- Physics Department, Biophysics Group, Faculty of Science, Ain Shams University, P.O. Box 11566, Cairo, Egypt
| | - El-Sayed M El-Sayed
- Physics Department, Biophysics Group, Faculty of Science, Ain Shams University, P.O. Box 11566, Cairo, Egypt
| | - H El Ghandoor
- Physics Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - M S Talaat
- Physics Department, Biophysics Group, Faculty of Science, Ain Shams University, P.O. Box 11566, Cairo, Egypt
| | - Ahmed F Yousef
- Department of Chemistry, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Shadi W Hasan
- Center for Membranes and Advanced Water Technology (CMAT), Department of Chemical Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates E-mail:
| |
Collapse
|
16
|
Espina L. An approach to increase the success rate of cultivation of soil bacteria based on fluorescence-activated cell sorting. PLoS One 2020; 15:e0237748. [PMID: 32866195 PMCID: PMC7458294 DOI: 10.1371/journal.pone.0237748] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 07/31/2020] [Indexed: 12/05/2022] Open
Abstract
Soil microbiota are considered a source of undiscovered bioactive compounds, yet cultivation of most bacteria within a sample remains generally unsuccessful. Two main reasons behind the unculturability of bacteria are the presence of cells in a viable but not culturable state (such as dormant cells) and the failure to provide the necessary growth requirements in vitro (leading to the classification of some bacterial taxa as yet-to-be-cultured). The present work focuses on the development of a single procedure that helps distinguish between both phenomena of unculturability based on viability staining coupled with flow cytometry and fluorescence-activated cell sorting. In the selected soil sample, the success rate of cultured bacteria was doubled by selecting viable and metabolically active bacteria. It was determined that most of the uncultured fraction was not dormant or dead but likely required different growth conditions. It was also determined that the staining process introduced changes in the taxonomic composition of the outgrown bacterial biomass, which should be considered for further developments. This research shows the potential of flow cytometry and fluorescence-activated cell sorting applied to soil samples to improve the success rate of bacterial cultivation by estimating the proportion of dormant and yet-to-be-cultured bacteria and by directly excluding dormant cells from being inoculated into growth media.
Collapse
Affiliation(s)
- Laura Espina
- Department of Medical Microbiology, Cardiff University, Cardiff, United Kingdom
- * E-mail:
| |
Collapse
|
17
|
Yan S, Cheng KY, Morris C, Douglas G, Ginige MP, Zheng G, Zhou L, Kaksonen AH. Sequential hydrotalcite precipitation and biological sulfate reduction for acid mine drainage treatment. CHEMOSPHERE 2020; 252:126570. [PMID: 32443266 DOI: 10.1016/j.chemosphere.2020.126570] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/09/2020] [Accepted: 03/19/2020] [Indexed: 06/11/2023]
Abstract
Hydrotalcite precipitation is a promising technology for the on-site treatment of acid mine drainage (AMD). This technology is underpinned by the synthesis of hydrotalcite that can effectively remove various contaminants. However, hydrotalcite precipitation has only limited capacity to facilitate sulfate removal from AMD. Therefore, the feasibility of coupling biological sulfate reduction with the hydrotalcite precipitation to maximize sulfate removal was evaluated in this study. AMD emanating from a gold mine (pH 4.3, sulfate 2000 mg L-1, with various metals including Al, Cd, Co, Cu, Fe, Mn, Ni, Zn) was first treated using the hydrotalcite precipitation. Subsequently, biological treatment of the post-hydrotalcite precipitation effluent was conducted in an ethanol-fed fluidized bed reactor (FBR) at a hydraulic retention time (HRT) of 0.8-1.6 day. The hydrotalcite precipitation readily neutralized the acidity of AMD and removed 10% of sulfate and over 99% of Al, Cd, Co, Cu, Fe, Mn, Ni, Zn. The overall sulfate removal increased to 73% with subsequent FBR treatment. Based on 454 pyrosequencing of 16S rRNA genes, the identified genera of sulfate-reducing bacteria (SRB) included Desulfovibrio, Desulfomicrobium and Desulfococcus. This study showed that sulfate-rich AMD can be effectively treated by integrating hydrotalcite precipitation and a biological sulfate reducing FBR.
Collapse
Affiliation(s)
- Su Yan
- CSIRO Land and Water, 147 Underwood Avenue, Floreat, Western Australia (WA), 6014, Australia; Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ka Yu Cheng
- CSIRO Land and Water, 147 Underwood Avenue, Floreat, Western Australia (WA), 6014, Australia; School of Engineering and Information Technology, Murdoch University, Perth, WA, Australia
| | - Christina Morris
- CSIRO Land and Water, 147 Underwood Avenue, Floreat, Western Australia (WA), 6014, Australia
| | - Grant Douglas
- CSIRO Land and Water, 147 Underwood Avenue, Floreat, Western Australia (WA), 6014, Australia
| | - Maneesha P Ginige
- CSIRO Land and Water, 147 Underwood Avenue, Floreat, Western Australia (WA), 6014, Australia
| | - Guanyu Zheng
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lixiang Zhou
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Anna H Kaksonen
- CSIRO Land and Water, 147 Underwood Avenue, Floreat, Western Australia (WA), 6014, Australia; School of Biomedical Sciences, University of Western Australia, 35 Stirling Highway, Nedlands, WA, 6009, Australia.
| |
Collapse
|
18
|
Kim T, Noh J, Kwon BO, Lee C, Kim B, Kwon I, Hong S, Chang GS, Chang WK, Nam J, Khim JS. Natural purification capacity of tidal flats for organic matters and nutrients: A mesocosm study. MARINE POLLUTION BULLETIN 2020; 154:111046. [PMID: 32319891 DOI: 10.1016/j.marpolbul.2020.111046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 03/01/2020] [Accepted: 03/02/2020] [Indexed: 06/11/2023]
Abstract
The regulating services by natural tidal flats to purify organic pollutants are increasingly recognized, but a quantitative assessment is very limited. We developed a mesocosm system to determine removal efficiency of organic matters and nutrients by simulating a natural tidal condition. The tidal flat sediments significantly removed waterborne organic pollutants to background levels in ~2 and 6-7 days for COD and TP, respectively. This rapid removal of organic matters by natural sediments could be attributed to the microbe community degrading the corresponding pollutants. Temporal trend and degree of removal rates for COD and TP were similar between the bare tidal flat and the salt marsh. Meantime, the salt marsh environment removed waterborne DIP much quickly and also efficiently, implying a high affinity of halophytes on dissolved organic matters. Of note, sedimentary organic sink prevailed in defaunated condition under the smaller bioturbation effect. A mini-review on the purification capacity of natural and/or constructed coastal wetlands generally supported a high efficiency of vegetation to remove various sources of organic matters.
Collapse
Affiliation(s)
- Taewoo Kim
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea
| | - Junsung Noh
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea
| | - Bong-Oh Kwon
- Department of Marine Biotechnology, Kunsan National University, Kunsan 54150, Republic of Korea
| | - Changkeun Lee
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea
| | - Beomgi Kim
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea
| | - Inha Kwon
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea
| | - Seongjin Hong
- Department of Ocean Environmental Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Gap Soo Chang
- Department of Physics and Engineering Physics, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada
| | - Won Keun Chang
- Korea Maritime Institute, Busan 49111, Republic of Korea
| | - Jungho Nam
- Korea Maritime Institute, Busan 49111, Republic of Korea
| | - Jong Seong Khim
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
19
|
Breton-Deval L, Sanchez-Flores A, Juárez K, Vera-Estrella R. Integrative study of microbial community dynamics and water quality along The Apatlaco River. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 255:113158. [PMID: 31521989 DOI: 10.1016/j.envpol.2019.113158] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 08/21/2019] [Accepted: 09/01/2019] [Indexed: 06/10/2023]
Abstract
The increasing demand for clean water resources for human consumption, is raising concerning about the sustainable worldwide provisioning. In Mexico, rivers near to high-density urbanizations are subject to irrational exploitation where polluted water is a risk for human health. Therefore, the aims of this study are to analyze water quality parameters and bacterial community dynamics to understand the relation between them, in the Apatlaco river, which presents a clear environmental perturbance. Parameters such as total coliforms, chemical oxygen demand, harness, ammonium, nitrite, nitrate, total Kjeldahl nitrogen, dissolved oxygen, total phosphorus, total dissolved solids, and temperature were analyzed in 17 sampling points along the river. The high pollution level was registered in the sampling point 10 with 480 mg/L chemical oxygen demand, 7 mg/L nitrite, 34 mg/L nitrate, 2 mg/L dissolved oxygen, and 299 mg/L of total dissolved solids. From these sites, we selected four samples for DNA extraction and performed a metagenomic analysis using a whole metagenome shotgun approach, to compare the microbial communities between polluted and non-polluted sites. In general, Proteobacteria was the most representative phylum in all sites. However, the clean water reference point was enriched with microorganism from the Limnohabitans genus, a planktonic bacterium widespread in freshwater ecosystems. Nevertheless, in the polluted sampled sites, we found a high abundance of potential opportunistic pathogen genera such as Acinetobacter, Arcobacter, and Myroides, among others. This suggests that in addition to water contamination, an imminent human health risk due to pathogenic bacteria can potentially affect a population of ∼1.6 million people dwelling nearby. These results will contribute to the knowledge regarding anthropogenic pollution on the microbial population dynamic and how they affect human health and life quality.
Collapse
Affiliation(s)
- Luz Breton-Deval
- Cátedras-Conacyt, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Colonia Chamilpa, Cuernavaca, Morelos 62210, Mexico.
| | - Alejandro Sanchez-Flores
- Unidad Universitaria de Secuenciación Masiva y Bioinformática, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Katy Juárez
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Colonia Chamilpa, Cuernavaca, Morelos 62210, Mexico
| | - Rosario Vera-Estrella
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Colonia Chamilpa, Cuernavaca, Morelos 62210, Mexico
| |
Collapse
|
20
|
ElNaker NA, Hasan SW, Yousef AF. Impact of current density on the function and microbial community structure in electro-bioreactors. JOURNAL OF HAZARDOUS MATERIALS 2019; 368:877-884. [PMID: 30241761 DOI: 10.1016/j.jhazmat.2018.09.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 09/04/2018] [Accepted: 09/05/2018] [Indexed: 06/08/2023]
Abstract
The assessment of bacterial communities in wastewater electro-bioreactors has garnered attention to improve efficiency of wastewater treatment plant (WWTP) processes. This study evaluated the effects of applying different current densities on the function and microbial community structure of an electro-bioreactor by measuring nutrient removal efficiency and analyzing 16S rRNA gene high-throughput sequencing. The electro-bioreactors at current density of 3, 5 and 7 A/m2 resulted in an enrichment of operational taxonomic units belonging to distinct functional bacterial families such as (Nitrospiraceae: 8.5, 12.5 and 12.6% relative abundance, respectively) and (Rhodocyclaceae: 8.1, 8.8 and 9.7% relative abundance, respectively), leading to efficient N-removal (>98%) and P-removal (>98%) higher than the control bioreactor (9.6 and 5.0%, respectively). Applying different electric currents proved to affect microbial community composition in electro-bioreactors. The results reported here could prove to be valuable for process control, optimization and improving WWTPs design and operation.
Collapse
Affiliation(s)
- Nancy A ElNaker
- Center for Membrane and Advanced Water Technology, Department of Chemical Engineering, Khalifa University of Science and Technology, Masdar City Campus, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Department of Physics, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Shadi W Hasan
- Center for Membrane and Advanced Water Technology, Department of Chemical Engineering, Khalifa University of Science and Technology, Masdar City Campus, P.O. Box 127788, Abu Dhabi, United Arab Emirates.
| | - Ahmed F Yousef
- Department of Chemistry, Khalifa University of Science and Technology, Main Campus, PO Box 127788, Abu Dhabi, United Arab Emirates.
| |
Collapse
|