1
|
Liao CC, Magrath RD, Manser MB, Farine DR. The relative contribution of acoustic signals versus movement cues in group coordination and collective decision-making. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230184. [PMID: 38768199 PMCID: PMC11391321 DOI: 10.1098/rstb.2023.0184] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/30/2024] [Accepted: 03/04/2024] [Indexed: 05/22/2024] Open
Abstract
To benefit from group living, individuals need to maintain cohesion and coordinate their activities. Effective communication thus becomes critical, facilitating rapid coordination of behaviours and reducing consensus costs when group members have differing needs and information. In many bird and mammal species, collective decisions rely on acoustic signals in some contexts but on movement cues in others. Yet, to date, there is no clear conceptual framework that predicts when decisions should evolve to be based on acoustic signals versus movement cues. Here, we first review how acoustic signals and movement cues are used for coordinating activities. We then outline how information masking, discrimination ability (Weber's Law) and encoding limitations, as well as trade-offs between these, can identify which types of collective behaviours likely rely on acoustic signals or movement cues. Specifically, our framework proposes that behaviours involving the timing of events or expression of specific actions should rely more on acoustic signals, whereas decisions involving complex choices with multiple options (e.g. direction and destination) should generally use movement cues because sounds are more vulnerable to information masking and Weber's Law effects. We then discuss potential future avenues of enquiry, including multimodal communication and collective decision-making by mixed-species animal groups. This article is part of the theme issue 'The power of sound: unravelling how acoustic communication shapes group dynamic'.
Collapse
Affiliation(s)
- Chun-Chieh Liao
- Division of Ecology and Evolution, Research School of Biology, Australian National University , Canberra, ACT , 2600, Australia
| | - Robert D Magrath
- Division of Ecology and Evolution, Research School of Biology, Australian National University , Canberra, ACT , 2600, Australia
| | - Marta B Manser
- Department of Evolutionary Biology and Environmental Studies, University of Zurich , Zürich , 8057, Switzerland
| | - Damien R Farine
- Division of Ecology and Evolution, Research School of Biology, Australian National University , Canberra, ACT , 2600, Australia
- Department of Evolutionary Biology and Environmental Studies, University of Zurich , Zürich , 8057, Switzerland
- Department of Collective Behavior, Max Planck Institute of Animal Behavior , Radolfzell , 78315, Germany
| |
Collapse
|
2
|
Broad HR, Dibnah AJ, Smith AE, Thornton A. Anthropogenic disturbance affects calling and collective behaviour in corvid roosts. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230185. [PMID: 38768208 PMCID: PMC11391286 DOI: 10.1098/rstb.2023.0185] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 03/25/2024] [Accepted: 03/28/2024] [Indexed: 05/22/2024] Open
Abstract
Acoustic communication plays an important role in coordinating group dynamics and collective movements across a range of taxa. However, anthropogenic disturbance can inhibit the production or reception of acoustic signals. Here, we investigate the effects of noise and light pollution on the calling and collective behaviour of wild jackdaws (Corvus monedula), a highly social corvid species that uses vocalizations to coordinate collective movements at winter roosting sites. Using audio and video monitoring of roosts in areas with differing degrees of urbanization, we evaluate the influence of anthropogenic disturbance on vocalizations and collective movements. We found that when levels of background noise were higher, jackdaws took longer to settle following arrival at the roost in the evening and also called more during the night, suggesting that human disturbance may cause sleep disruption. High levels of overnight calling were, in turn, linked to disruption of vocal consensus decision-making and less cohesive group departures in the morning. These results raise the possibility that, by affecting cognitive and perceptual processes, human activities may interfere with animals' ability to coordinate collective behaviour. Understanding links between anthropogenic disturbance, communication, cognition and collective behaviour must be an important research priority in our increasingly urbanized world. This article is part of the theme issue 'The power of sound: unravelling how acoustic communication shapes group dynamics'.
Collapse
Affiliation(s)
- Hannah R Broad
- Centre for Ecology and Conservation, University of Exeter , Penryn TR10 9FE, UK
| | - Alex J Dibnah
- Centre for Ecology and Conservation, University of Exeter , Penryn TR10 9FE, UK
- Centre for Ecosystem Science, School of Biological, Earth and Environmental Sciences, University of New South Wales , Sydney, 2052 NSW, Australia
| | - Anna E Smith
- Centre for Ecology and Conservation, University of Exeter , Penryn TR10 9FE, UK
| | - Alex Thornton
- Centre for Ecology and Conservation, University of Exeter , Penryn TR10 9FE, UK
| |
Collapse
|
3
|
Kings M, Arbon JJ, McIvor GE, Whitaker M, Radford AN, Lerner J, Thornton A. Wild jackdaws can selectively adjust their social associations while preserving valuable long-term relationships. Nat Commun 2023; 14:5103. [PMID: 37696804 PMCID: PMC10495349 DOI: 10.1038/s41467-023-40808-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 08/09/2023] [Indexed: 09/13/2023] Open
Abstract
Influential theories of the evolution of cognition and cooperation posit that tracking information about others allows individuals to adjust their social associations strategically, re-shaping social networks to favour connections between compatible partners. Crucially, to our knowledge, this has yet to be tested experimentally in natural populations, where the need to maintain long-term, fitness-enhancing relationships may limit social plasticity. Using a social-network-manipulation experiment, we show that wild jackdaws (Corvus monedula) learned to favour social associations with compatible group members (individuals that provided greater returns from social foraging interactions), but resultant change in network structure was constrained by the preservation of valuable pre-existing relationships. Our findings provide insights into the cognitive basis of social plasticity and the interplay between individual decision-making and social-network structure.
Collapse
Affiliation(s)
- Michael Kings
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Treliever Road, Penryn, TR10 9FE, UK.
| | - Josh J Arbon
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Treliever Road, Penryn, TR10 9FE, UK.
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK.
| | - Guillam E McIvor
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Treliever Road, Penryn, TR10 9FE, UK
| | - Martin Whitaker
- technologywithin, Chevron Business Park, Limekiln Lane, Holbury, Southampton, SO45 2QL, UK
| | - Andrew N Radford
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
| | - Jürgen Lerner
- Department of Computer and Information Science, University of Konstanz, 78457, Konstanz, Germany
- HumTec Institute, RWTH Aachen University, 52062, Aachen, Germany
| | - Alex Thornton
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Treliever Road, Penryn, TR10 9FE, UK.
| |
Collapse
|
4
|
O'Coin D, Mclvor GE, Thornton A, Ouellette NT, Ling H. Velocity correlations in jackdaw flocks in different ecological contexts. Phys Biol 2022; 20. [PMID: 36541516 DOI: 10.1088/1478-3975/aca862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 12/01/2022] [Indexed: 12/03/2022]
Abstract
Velocity correlation is an important feature for animal groups performing collective motions. Previous studies have mostly focused on the velocity correlation in a single ecological context. It is unclear whether correlation characteristics vary in a single species in different contexts. Here, we studied the velocity correlations in jackdaw flocks in two different contexts: transit flocks where birds travel from one location to another, and mobbing flocks where birds respond to an external stimulus. We found that in both contexts, although the interaction rules are different, the velocity correlations remain scale-free, i.e. the correlation length (the distance over which the velocity of two individuals is similar) increases linearly with the group size. Furthermore, we found that the correlation length is independent of the group density for transit flocks, but increases with increasing group density in mobbing flocks. This result confirms a previous observation that birds obey topological interactions in transit flocks, but switch to metric interactions in mobbing flocks. Finally, in both contexts, the impact of group polarization on correlation length is not significant. Our results suggest that wild animals are always able to respond coherently to perturbations regardless of context.
Collapse
Affiliation(s)
- Daniel O'Coin
- Department of Mechanical Engineering, University of Massachusetts Dartmouth, North Dartmouth, MA, United States of America
| | - Guillam E Mclvor
- Center for Ecology and Conservation, University of Exeter, Penryn, United Kingdom
| | - Alex Thornton
- Center for Ecology and Conservation, University of Exeter, Penryn, United Kingdom
| | - Nicholas T Ouellette
- Department of Civil and Environmental Engineering, Stanford University, Stanford, CA, United States of America
| | - Hangjian Ling
- Department of Mechanical Engineering, University of Massachusetts Dartmouth, North Dartmouth, MA, United States of America
| |
Collapse
|
5
|
Nesting jackdaws’ responses to human voices vary with local disturbance levels and the gender of the speaker. Anim Behav 2022. [DOI: 10.1016/j.anbehav.2022.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
6
|
Hagen EH. The Biological Roots of Music and Dance : Extending the Credible Signaling Hypothesis to Predator Deterrence. HUMAN NATURE (HAWTHORNE, N.Y.) 2022; 33:261-279. [PMID: 35986877 DOI: 10.1007/s12110-022-09429-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/28/2022] [Indexed: 12/14/2022]
Abstract
After they diverged from panins, hominins evolved an increasingly committed terrestrial lifestyle in open habitats that exposed them to increased predation pressure from Africa's formidable predator guild. In the Pleistocene, Homo transitioned to a more carnivorous lifestyle that would have further increased predation pressure. An effective defense against predators would have required a high degree of cooperation by the smaller and slower hominins. It is in the interest of predator and potential prey to avoid encounters that will be costly for both. A wide variety of species, including carnivores and apes and other primates, have therefore evolved visual and auditory signals that deter predators by credibly signaling detection and/or the ability to effectively defend themselves. In some cooperative species, these predator deterrent signals involve highly synchronized visual and auditory displays among group members. Hagen and Bryant (Human Nature, 14(1), 21-51, 2003) proposed that synchronized visual and auditory displays credibly signal coalition quality. Here, this hypothesis is extended to include credible signals to predators that they have been detected and would be met with a highly coordinated defensive response, thereby deterring an attack. Within-group signaling functions are also proposed. The evolved cognitive abilities underlying these behaviors were foundations for the evolution of fully human music and dance.
Collapse
Affiliation(s)
- Edward H Hagen
- Department of Anthropology, Washington State University, 14204 NE Salmon Creek Ave, Vancouver, WA, 98686, USA.
| |
Collapse
|
7
|
Woods RD, Swaddle JP, Bearhop S, Colhoun K, Gaze WH, Kay SM, McDonald RA. A Sonic Net deters European starlings
Sturnus vulgaris
from maize silage stores. WILDLIFE SOC B 2022. [DOI: 10.1002/wsb.1340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Richard D. Woods
- Environment and Sustainability Institute University of Exeter, Penryn Cornwall TR10 9FE UK
| | - John P. Swaddle
- Institute for Integrative Conservation William & Mary Williamsburg VA 23187 USA
| | - Stuart Bearhop
- Centre for Ecology and Conservation University of Exeter, Penryn Cornwall TR10 9FE UK
| | - Kendrew Colhoun
- KRC Ecological Ltd. 33 Hilltown Road, Bryansford Northern Ireland BT33 0PZ UK
| | - William H. Gaze
- European Centre for Environment and Human Health University of Exeter, Penryn Cornwall TR10 9FE UK
| | - Suzanne M. Kay
- Environment and Sustainability Institute University of Exeter, Penryn Cornwall TR10 9FE UK
| | - Robbie A. McDonald
- Environment and Sustainability Institute University of Exeter, Penryn Cornwall TR10 9FE UK
| |
Collapse
|
8
|
Vocal recognition of distance calls in a group-living basal bird: the greylag goose, Anser anser. Anim Behav 2022. [DOI: 10.1016/j.anbehav.2022.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
9
|
Testing the maintenance of natural responses to survival-relevant calls in the conservation breeding population of a critically endangered corvid (Corvus hawaiiensis). Behav Ecol Sociobiol 2022. [DOI: 10.1007/s00265-022-03130-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
10
|
Gallego-Abenza M, Blum CR, Bugnyar T. Who is crying wolf? Seasonal effect on antipredator response to age-specific alarm calls in common ravens, Corvus corax. Learn Behav 2021; 49:159-167. [PMID: 33420703 PMCID: PMC7979661 DOI: 10.3758/s13420-020-00455-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2020] [Indexed: 11/12/2022]
Abstract
Communication about threats including those posed by the presence of predators occurs mainly through acoustic signals called alarm calls. The comprehension of these calls by receivers and their rapid antipredator response are crucial in terms of survival. However, to avoid overreaction, individuals should evaluate whether or not an antipredator response is needed by paying attention to who is calling. For instance, we could expect adults to be more experienced with predator encounters than juveniles and thus elicit stronger antipredator responses in others when alarming. Similarly, we could expect a stronger response to alarm calls when more than one individual is calling. To test these assumptions, we applied a playback experiment to wild ravens, in which we manipulated the age class (adult or juvenile) and the number (one or two) of the callers. Our results revealed a seasonal effect of age class but no effect of number of callers. Specifically, the ravens responded with stronger antipredator behaviour (vigilance posture) towards alarm calls from adults as compared to juveniles in summer and autumn, but not in spring. We discuss alternative interpretations for this unexpected seasonal pattern and argue for more studies on call-based communication in birds to understand what type of information is relevant under which conditions.
Collapse
Affiliation(s)
- Mario Gallego-Abenza
- Department of Behavioural and Cognitive Biology, University of Vienna, Vienna, Austria.
- Konrad Lorenz Forschungsstelle, Core Facility for Behaviour and Cognition, University of Vienna, Grünau im Almtal, Austria.
| | - Christian R Blum
- Department of Behavioural and Cognitive Biology, University of Vienna, Vienna, Austria
| | - Thomas Bugnyar
- Department of Behavioural and Cognitive Biology, University of Vienna, Vienna, Austria
- Konrad Lorenz Forschungsstelle, Core Facility for Behaviour and Cognition, University of Vienna, Grünau im Almtal, Austria
| |
Collapse
|
11
|
Dutour M, Kalb N, Salis A, Randler C. Number of callers may affect the response to conspecific mobbing calls in great tits (Parus major). Behav Ecol Sociobiol 2021. [DOI: 10.1007/s00265-021-02969-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
12
|
Galezo AA, Foroughirad V, Krzyszczyk E, Frère CH, Mann J. Juvenile social dynamics reflect adult reproductive strategies in bottlenose dolphins. Behav Ecol 2020. [DOI: 10.1093/beheco/araa068] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Abstract
The juvenile period is a challenging life-history stage, especially in species with a high degree of fission–fusion dynamics, such as bottlenose dolphins, where maternal protection is virtually absent. Here, we examined how juvenile male and female bottlenose dolphins navigate this vulnerable period. Specifically, we examined their grouping patterns, activity budget, network dynamics, and social associations in the absence of adults. We found that juveniles live in highly dynamic groups, with group composition changing every 10 min on average. Groups were generally segregated by sex, and segregation was driven by same-sex preference rather than opposite-sex avoidance. Juveniles formed strong associations with select individuals, especially kin and same-sex partners, and both sexes formed cliques with their preferred partners. Sex-specific strategies in the juvenile period reflected adult reproductive strategies, in which the exploration of potential social partners may be more important for males (which form long-term alliances in adulthood) than females (which preferentially associate with kin in adulthood). Females spent more time alone and were more focused on foraging than males, but still formed close same-sex associations, especially with kin. Males cast a wider social net than females, with strong same-sex associations and many male associates. Males engaged in more affiliative behavior than females. These results are consistent with the social bonds and skills hypothesis and suggest that delayed sexual maturity in species with relational social complexity may allow individuals to assess potential associates and explore a complex social landscape without the risks associated with sexual maturity (e.g., adult reproductive competition; inbreeding).
Collapse
Affiliation(s)
- Allison A Galezo
- Department of Biology, Duke University, Durham, NC, USA
- Department of Biology, Georgetown University, Washington, DC, USA
| | - Vivienne Foroughirad
- Department of Biology, Georgetown University, Washington, DC, USA
- Division of Marine Science and Conservation, DukeUniversity Marine Laboratory, Beaufort, NC, USA
| | - Ewa Krzyszczyk
- Center for Marine Resource Studies, The School for Field Studies, Beverly, MA, USA
| | - Céline H Frère
- Global Change Ecology Research Group, University of the Sunshine Coast, Sippy Downs, QLD, Australia
| | - Janet Mann
- Department of Biology, Georgetown University, Washington, DC, USA
- Department of Psychology, Georgetown University, Washington, DC, USA
| |
Collapse
|
13
|
Gill LF, van Schaik J, von Bayern AMP, Gahr ML. Genetic monogamy despite frequent extrapair copulations in "strictly monogamous" wild jackdaws. Behav Ecol 2020; 31:247-260. [PMID: 32372855 PMCID: PMC7191249 DOI: 10.1093/beheco/arz185] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 09/29/2019] [Accepted: 10/05/2019] [Indexed: 11/23/2022] Open
Abstract
"Monogamy" refers to different components of pair exclusiveness: the social pair, sexual partners, and the genetic outcome of sexual encounters. Avian monogamy is usually defined socially or genetically, whereas quantifications of sexual behavior remain scarce. Jackdaws (Corvus monedula) are considered a rare example of strict monogamy in songbirds, with lifelong pair bonds and little genetic evidence for extrapair (EP) offspring. Yet jackdaw copulations, although accompanied by loud copulation calls, are rarely observed because they occur visually concealed inside nest cavities. Using full-day nest-box video surveillance and on-bird acoustic bio-logging, we directly observed jackdaw sexual behavior and compared it to the corresponding genetic outcome obtained via molecular parentage analysis. In the video-observed nests, we found genetic monogamy but frequently detected forced EP sexual behavior, accompanied by characteristic male copulation calls. We, thus, challenge the long-held notion of strict jackdaw monogamy at the sexual level. Our data suggest that male mate guarding and frequent intrapair copulations during the female fertile phase, as well as the forced nature of the copulations, could explain the absence of EP offspring. Because EP copulation behavior appeared to be costly for both sexes, we suggest that immediate fitness benefits are an unlikely explanation for its prevalence. Instead, sexual conflict and dominance effects could interact to shape the spatiotemporal pattern of EP sexual behavior in this species. Our results call for larger-scale investigations of jackdaw sexual behavior and parentage and highlight the importance of combining social, sexual, and genetic data sets for a more complete understanding of mating systems.
Collapse
Affiliation(s)
- Lisa F Gill
- Department of Behavioural Neurobiology, Max Planck Institute for Ornithology, Eberhard-Gwinner-Strasse, Seewiesen, Germany
| | - Jaap van Schaik
- Department of Applied Zoology and Nature Conservation, University of Greifswald, Greifswald, Germany
| | - Auguste M P von Bayern
- Department of Behavioural Neurobiology, Max Planck Institute for Ornithology, Eberhard-Gwinner-Strasse, Seewiesen, Germany
- Department of Biology II, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Manfred L Gahr
- Department of Behavioural Neurobiology, Max Planck Institute for Ornithology, Eberhard-Gwinner-Strasse, Seewiesen, Germany
| |
Collapse
|
14
|
Behavioural plasticity and the transition to order in jackdaw flocks. Nat Commun 2019; 10:5174. [PMID: 31729384 PMCID: PMC6858344 DOI: 10.1038/s41467-019-13281-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 10/25/2019] [Indexed: 12/04/2022] Open
Abstract
Collective behaviour is typically thought to arise from individuals following fixed interaction rules. The possibility that interaction rules may change under different circumstances has thus only rarely been investigated. Here we show that local interactions in flocks of wild jackdaws (Corvus monedula) vary drastically in different contexts, leading to distinct group-level properties. Jackdaws interact with a fixed number of neighbours (topological interactions) when traveling to roosts, but coordinate with neighbours based on spatial distance (metric interactions) during collective anti-predator mobbing events. Consequently, mobbing flocks exhibit a dramatic transition from disordered aggregations to ordered motion as group density increases, unlike transit flocks where order is independent of density. The relationship between group density and group order during this transition agrees well with a generic self-propelled particle model. Our results demonstrate plasticity in local interaction rules and have implications for both natural and artificial collective systems. Modelling collective behaviour in different circumstances remains a challenge because of uncertainty related to interaction rule changes. Here, the authors report plasticity in local interaction rules in flocks of wild jackdaws with implications for both natural and artificial collective systems.
Collapse
|
15
|
Ling H, Mclvor GE, Westley J, van der Vaart K, Yin J, Vaughan RT, Thornton A, Ouellette NT. Collective turns in jackdaw flocks: kinematics and information transfer. J R Soc Interface 2019; 16:20190450. [PMID: 31640502 PMCID: PMC6833319 DOI: 10.1098/rsif.2019.0450] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 10/01/2019] [Indexed: 11/12/2022] Open
Abstract
The rapid, cohesive turns of bird flocks are one of the most vivid examples of collective behaviour in nature, and have attracted much research. Three-dimensional imaging techniques now allow us to characterize the kinematics of turning and their group-level consequences in precise detail. We measured the kinematics of flocks of wild jackdaws executing collective turns in two contexts: during transit to roosts and anti-predator mobbing. All flocks reduced their speed during turns, probably because of constraints on individual flight capability. Turn rates increased with the angle of the turn so that the time to complete turns remained constant. We also find that context may alter where turns are initiated in the flocks: for transit flocks in the absence of predators, initiators were located throughout the flocks, but for mobbing flocks with a fixed ground-based predator, they were always located at the front. Moreover, in some transit flocks, initiators were far apart from each other, potentially because of the existence of subgroups and variation in individual interaction ranges. Finally, we find that as the group size increased the information transfer speed initially increased, but rapidly saturated to a constant value. Our results highlight previously unrecognized complexity in turning kinematics and information transfer in social animals.
Collapse
Affiliation(s)
- Hangjian Ling
- Department of Civil and Environmental Engineering, Stanford University, Stanford, CA, USA
- Department of Mechanical Engineering, University of Massachusetts Dartmouth, North Dartmouth, MA, USA
| | - Guillam E. Mclvor
- Centre for Ecology and Conservation, University of Exeter, Penryn, UK
| | - Joseph Westley
- Centre for Ecology and Conservation, University of Exeter, Penryn, UK
| | - Kasper van der Vaart
- Department of Civil and Environmental Engineering, Stanford University, Stanford, CA, USA
| | - Jennifer Yin
- Department of Civil and Environmental Engineering, Stanford University, Stanford, CA, USA
| | - Richard T. Vaughan
- School of Computing Science, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Alex Thornton
- Centre for Ecology and Conservation, University of Exeter, Penryn, UK
| | - Nicholas T. Ouellette
- Department of Civil and Environmental Engineering, Stanford University, Stanford, CA, USA
| |
Collapse
|
16
|
Coomes JR, McIvor GE, Thornton A. Evidence for individual discrimination and numerical assessment in collective antipredator behaviour in wild jackdaws ( Corvus monedula). Biol Lett 2019; 15:20190380. [PMID: 31573430 PMCID: PMC6832194 DOI: 10.1098/rsbl.2019.0380] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Collective responses to threats occur throughout the animal kingdom but little is known about the cognitive processes underpinning them. Antipredator mobbing is one such response. Approaching a predator may be highly risky, but the individual risk declines and the likelihood of repelling the predator increases in larger mobbing groups. The ability to appraise the number of conspecifics involved in a mobbing event could therefore facilitate strategic decisions about whether to join. Mobs are commonly initiated by recruitment calls, which may provide valuable information to guide decision-making. We tested whether the number of wild jackdaws responding to recruitment calls was influenced by the number of callers. As predicted, playbacks simulating three or five callers tended to recruit more individuals than playbacks of one caller. Recruitment also substantially increased if recruits themselves produced calls. These results suggest that jackdaws use individual vocal discrimination to assess the number of conspecifics involved in initiating mobbing events, and use this information to guide their responses. Our results show support for the use of numerical assessment in antipredator mobbing responses and highlight the need for a greater understanding of the cognitive processes involved in collective behaviour.
Collapse
Affiliation(s)
- Jenny R Coomes
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Penryn, Cornwall TR10 9FE, UK.,School of BEES, University College Cork, North Mall, Cork T23 N73K, Republic of Ireland
| | - Guillam E McIvor
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Penryn, Cornwall TR10 9FE, UK
| | - Alex Thornton
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Penryn, Cornwall TR10 9FE, UK
| |
Collapse
|
17
|
Hare JF, Sarà M, Hare AJ, Campobello D. Asymmetrical interspecific communication of predatory threat in mixed‐species colonies of lesser kestrels (
Falco naumanni
) and jackdaws (
Corvus monedula
). Ethology 2019. [DOI: 10.1111/eth.12926] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- James F. Hare
- Department of Biological Sciences University of Manitoba Winnipeg Manitoba Canada
| | - Maurizio Sarà
- Section of Animal Biology, Department STEBICEF University of Palermo Palermo Italy
| | - Alexander J. Hare
- Department of Biological Sciences University of Manitoba Winnipeg Manitoba Canada
- Department of Integrative Biology University of Guelph Guelph Ontario Canada
| | - Daniela Campobello
- Section of Animal Biology, Department STEBICEF University of Palermo Palermo Italy
| |
Collapse
|
18
|
Lee VE, Régli N, McIvor GE, Thornton A. Social learning about dangerous people by wild jackdaws. ROYAL SOCIETY OPEN SCIENCE 2019; 6:191031. [PMID: 31598321 PMCID: PMC6774944 DOI: 10.1098/rsos.191031] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 08/12/2019] [Indexed: 05/18/2023]
Abstract
For animals that live alongside humans, people can present both an opportunity and a threat. Previous studies have shown that several species can learn to discriminate between individual people and assess risk based on prior experience. To avoid potentially costly encounters, it may also pay individuals to learn about dangerous people based on information from others. Social learning about anthropogenic threats is likely to be beneficial in habitats dominated by human activity, but experimental evidence is limited. Here, we tested whether wild jackdaws (Corvus monedula) use social learning to recognize dangerous people. Using a within-subjects design, we presented breeding jackdaws with an unfamiliar person near their nest, combined with conspecific alarm calls. Subjects that heard alarm calls showed a heightened fear response in subsequent encounters with the person compared to a control group, reducing their latency to return to the nest. This study provides important evidence that animals use social learning to assess the level of risk posed by individual humans.
Collapse
Affiliation(s)
- Victoria E. Lee
- College of Life and Environmental Sciences, University of Exeter, Penryn Campus, Penryn, Cornwall TR10 9FE, UK
| | - Noémie Régli
- Faculté des Sciences et Techniques, Université Jean Monnet, 23 Rue du Dr Paul Michelon, 42100 Saint-Étienne, France
| | - Guillam E. McIvor
- College of Life and Environmental Sciences, University of Exeter, Penryn Campus, Penryn, Cornwall TR10 9FE, UK
| | - Alex Thornton
- College of Life and Environmental Sciences, University of Exeter, Penryn Campus, Penryn, Cornwall TR10 9FE, UK
| |
Collapse
|
19
|
Lee VE, McIvor GE, Thornton A. Testing relationship recognition in wild jackdaws (Corvus monedula). Sci Rep 2019; 9:6710. [PMID: 31040366 PMCID: PMC6491552 DOI: 10.1038/s41598-019-43247-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 04/16/2019] [Indexed: 01/01/2023] Open
Abstract
According to the social intelligence hypothesis, understanding the challenges faced by social animals is key to understanding the evolution of cognition. In structured social groups, recognising the relationships of others is often important for predicting the outcomes of interactions. Third-party relationship recognition has been widely investigated in primates, but studies of other species are limited. Furthermore, few studies test for third-party relationship recognition in the wild, where cognitive abilities are deployed in response to natural socio-ecological pressures. Here, we used playback experiments to investigate whether wild jackdaws (Corvus monedula) track changes in their own relationships and the relationships of others. Females were presented with 'infidelity simulations': playbacks of their male partner copulating with a neighbouring female, and their male neighbour copulating with another female, against a congruent control. Our results showed substantial inter-individual variation in responses, but females did not respond more strongly to infidelity playbacks, indicating that jackdaws may not attend and/or respond to relationship information in this experimental context. Our results highlight the need for further study of relationship recognition and other cognitive traits that facilitate group-living in the wild, particularly in non-primates and in a wider range of social systems.
Collapse
Affiliation(s)
- Victoria E Lee
- College of Life and Environmental Sciences, University of Exeter, Penryn Campus, Penryn, Cornwall, TR10 9FE, UK.
| | - Guillam E McIvor
- College of Life and Environmental Sciences, University of Exeter, Penryn Campus, Penryn, Cornwall, TR10 9FE, UK
| | - Alex Thornton
- College of Life and Environmental Sciences, University of Exeter, Penryn Campus, Penryn, Cornwall, TR10 9FE, UK
| |
Collapse
|
20
|
Greggor AL, McIvor GE, Clayton NS, Thornton A. Wild jackdaws are wary of objects that violate expectations of animacy. ROYAL SOCIETY OPEN SCIENCE 2018; 5:181070. [PMID: 30473852 PMCID: PMC6227974 DOI: 10.1098/rsos.181070] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 09/24/2018] [Indexed: 05/10/2023]
Abstract
Nature is composed of self-propelled, animate agents and inanimate objects. Laboratory studies have shown that human infants and a few species discriminate between animate and inanimate objects. This ability is assumed to have evolved to support social cognition and filial imprinting, but its ecological role for wild animals has never been examined. An alternative, functional explanation is that discriminating stimuli based on their potential for animacy helps animals distinguish between harmless and threatening stimuli. Using remote-controlled experimental stimulus presentations, we tested if wild jackdaws (Corvus monedula) respond fearfully to stimuli that violate expectations for movement. Breeding pairs (N = 27) were presented at their nests with moving and non-moving models of ecologically relevant stimuli (birds, snakes and sticks) that differed in threat level and propensity for independent motion. Jackdaws were startled by movement regardless of stimulus type and produced more alarm calls when faced with animate objects. However, they delayed longest in entering their nest-box after encountering a stimulus that should not move independently, suggesting they recognized the movement as unexpected. How jackdaws develop expectations about object movement is not clear, but our results suggest that discriminating between animate and inanimate stimuli may trigger information gathering about potential threats.
Collapse
Affiliation(s)
- Alison L. Greggor
- Department of Psychology, University of Cambridge, Cambridge CB2 3EB, UK
- Institute for Conservation Research, San Diego Zoo Global, Escondido, CA 92027, USA
- Author for correspondence: Alison L. Greggor e-mail:
| | - Guillam E. McIvor
- Centre for Ecology and Conservation, University of Exeter, Penryn TR10 9FE, UK
| | - Nicola S. Clayton
- Department of Psychology, University of Cambridge, Cambridge CB2 3EB, UK
| | - Alex Thornton
- Centre for Ecology and Conservation, University of Exeter, Penryn TR10 9FE, UK
- Author for correspondence: Alex Thornton e-mail:
| |
Collapse
|