1
|
Chen R, Wang X, Li N, Golubnitschaja O, Zhan X. Body fluid multiomics in 3PM-guided ischemic stroke management: health risk assessment, targeted protection against health-to-disease transition, and cost-effective personalized approach are envisaged. EPMA J 2024; 15:415-452. [PMID: 39239108 PMCID: PMC11371995 DOI: 10.1007/s13167-024-00376-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 08/13/2024] [Indexed: 09/07/2024]
Abstract
Because of its rapid progression and frequently poor prognosis, stroke is the third major cause of death in Europe and the first one in China. Many independent studies demonstrated sufficient space for prevention interventions in the primary care of ischemic stroke defined as the most cost-effective protection of vulnerable subpopulations against health-to-disease transition. Although several studies identified molecular patterns specific for IS in body fluids, none of these approaches has yet been incorporated into IS treatment guidelines. The advantages and disadvantages of individual body fluids are thoroughly analyzed throughout the paper. For example, multiomics based on a minimally invasive approach utilizing blood and its components is recommended for real-time monitoring, due to the particularly high level of dynamics of the blood as a body system. On the other hand, tear fluid as a more stable system is recommended for a non-invasive and patient-friendly holistic approach appropriate for health risk assessment and innovative screening programs in cost-effective IS management. This article details aspects essential to promote the practical implementation of highlighted achievements in 3PM-guided IS management. Supplementary Information The online version contains supplementary material available at 10.1007/s13167-024-00376-2.
Collapse
Affiliation(s)
- Ruofei Chen
- Shandong Provincial Key Laboratory of Precision Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, Shandong 250117 P. R. China
| | - Xiaoyan Wang
- Shandong Provincial Key Laboratory of Precision Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, Shandong 250117 P. R. China
| | - Na Li
- Shandong Provincial Key Laboratory of Precision Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, Shandong 250117 P. R. China
| | - Olga Golubnitschaja
- Predictive, Preventive and Personalised (3P) Medicine, University Hospital Bonn, Venusberg Campus 1, Rheinische Friedrich-Wilhelms-University of Bonn, Bonn, 53127 Germany
| | - Xianquan Zhan
- Shandong Provincial Key Laboratory of Precision Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, Shandong 250117 P. R. China
- Shandong Provincial Key Medical and Health Laboratory of Ovarian Cancer Multiomics, & Jinan Key Laboratory of Cancer Multiomics, Shandong First Medical University & Shandong Academy of Medical Sciences, 6699 Qingdao Road, Jinan, Shandong 250117 P. R. China
| |
Collapse
|
2
|
Franx B, Dijkhuizen RM, Dippel DWJ. Acute Ischemic Stroke in the Clinic and the Laboratory: Targets for Translational Research. Neuroscience 2024; 550:114-124. [PMID: 38670254 DOI: 10.1016/j.neuroscience.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/26/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024]
Abstract
Ischemic stroke research has enabled significant advancements in diagnosis, treatment, and management of this debilitating disease, yet challenges remain standing in the way of better patient prognoses. In this narrative review, a fictional case illustrates challenges and uncertainties that medical professionals still face - penumbra identification, lack of neuroprotective agents, side-effects of tissue plasminogen activator, dearth of molecular biomarkers, incomplete microvascular reperfusion or no-reflow, post-recanalization hyperperfusion, blood pressure management and procedural anesthetic effects. The current state of the field is broadly reviewed per topic, with the aim to introduce a broad audience (scientist and clinician alike) to recent successes in translational stroke research and pending scientific queries that are tractable for preclinical assessment. Opportunities for co-operation between clinical and experimental stroke experts are highlighted to increase the size and frequency of strides the field makes to improve our understanding of this disease and ways of treating it.
Collapse
Affiliation(s)
- Bart Franx
- Translational Neuroimaging Group, Center for Image Sciences, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands
| | - Rick M Dijkhuizen
- Translational Neuroimaging Group, Center for Image Sciences, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands
| | - Diederik W J Dippel
- Stroke Center, Dept of Neurology, Erasmus University Medical Center, Rotterdam, the Netherlands.
| |
Collapse
|
3
|
Dillon ST, Vasunilashorn SM, Otu HH, Ngo L, Fong T, Gu X, Cavallari M, Touroutoglou A, Shafi M, Inouye SK, Xie Z, Marcantonio ER, Libermann TA. Aptamer-Based Proteomics Measuring Preoperative Cerebrospinal Fluid Protein Alterations Associated with Postoperative Delirium. Biomolecules 2023; 13:1395. [PMID: 37759795 PMCID: PMC10526755 DOI: 10.3390/biom13091395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/09/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Delirium is a common postoperative complication among older patients with many adverse outcomes. Due to a lack of validated biomarkers, prediction and monitoring of delirium by biological testing is not currently feasible. Circulating proteins in cerebrospinal fluid (CSF) may reflect biological processes causing delirium. Our goal was to discover and investigate candidate protein biomarkers in preoperative CSF that were associated with the development of postoperative delirium in older surgical patients. We employed a nested case-control study design coupled with high multiplex affinity proteomics analysis to measure 1305 proteins in preoperative CSF. Twenty-four matched delirium cases and non-delirium controls were selected from the Healthier Postoperative Recovery (HiPOR) cohort, and the associations between preoperative protein levels and postoperative delirium were assessed using t-test statistics with further analysis by systems biology to elucidate delirium pathophysiology. Proteomics analysis identified 32 proteins in preoperative CSF that significantly associate with delirium (t-test p < 0.05). Due to the limited sample size, these proteins did not remain significant by multiple hypothesis testing using the Benjamini-Hochberg correction and q-value method. Three algorithms were applied to separate delirium cases from non-delirium controls. Hierarchical clustering classified 40/48 case-control samples correctly, and principal components analysis separated 43/48. The receiver operating characteristic curve yielded an area under the curve [95% confidence interval] of 0.91 [0.80-0.97]. Systems biology analysis identified several key pathways associated with risk of delirium: inflammation, immune cell migration, apoptosis, angiogenesis, synaptic depression and neuronal cell death. Proteomics analysis of preoperative CSF identified 32 proteins that might discriminate individuals who subsequently develop postoperative delirium from matched control samples. These proteins are potential candidate biomarkers for delirium and may play a role in its pathophysiology.
Collapse
Affiliation(s)
- Simon T. Dillon
- Division of Interdisciplinary Medicine and Biotechnology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA; (S.T.D.); (X.G.)
- Beth Israel Deaconess Medical Center Genomics, Proteomics, Bioinformatics and Systems Biology Center, Boston, MA 02215, USA
- Harvard Medical School, Boston, MA 02215, USA; (S.M.V.); (L.N.); (T.F.); (M.C.); (A.T.); (M.S.); (Z.X.); (E.R.M.)
| | - Sarinnapha M. Vasunilashorn
- Harvard Medical School, Boston, MA 02215, USA; (S.M.V.); (L.N.); (T.F.); (M.C.); (A.T.); (M.S.); (Z.X.); (E.R.M.)
- Divisions of General Medicine, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
- Departments of Epidemiology and Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Hasan H. Otu
- Department of Electrical and Computer Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA;
| | - Long Ngo
- Harvard Medical School, Boston, MA 02215, USA; (S.M.V.); (L.N.); (T.F.); (M.C.); (A.T.); (M.S.); (Z.X.); (E.R.M.)
- Divisions of General Medicine, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Tamara Fong
- Harvard Medical School, Boston, MA 02215, USA; (S.M.V.); (L.N.); (T.F.); (M.C.); (A.T.); (M.S.); (Z.X.); (E.R.M.)
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
- Aging Brain Center, Marcus Institute for Aging Research, Hebrew Senior Life, Boston, MA 02131, USA;
| | - Xuesong Gu
- Division of Interdisciplinary Medicine and Biotechnology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA; (S.T.D.); (X.G.)
- Beth Israel Deaconess Medical Center Genomics, Proteomics, Bioinformatics and Systems Biology Center, Boston, MA 02215, USA
- Harvard Medical School, Boston, MA 02215, USA; (S.M.V.); (L.N.); (T.F.); (M.C.); (A.T.); (M.S.); (Z.X.); (E.R.M.)
| | - Michele Cavallari
- Harvard Medical School, Boston, MA 02215, USA; (S.M.V.); (L.N.); (T.F.); (M.C.); (A.T.); (M.S.); (Z.X.); (E.R.M.)
- Center for Neurological Imaging, Department of Radiology, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Alexandra Touroutoglou
- Harvard Medical School, Boston, MA 02215, USA; (S.M.V.); (L.N.); (T.F.); (M.C.); (A.T.); (M.S.); (Z.X.); (E.R.M.)
- Frontotemporal Disorders Unit, Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Mouhsin Shafi
- Harvard Medical School, Boston, MA 02215, USA; (S.M.V.); (L.N.); (T.F.); (M.C.); (A.T.); (M.S.); (Z.X.); (E.R.M.)
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
- Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Sharon K. Inouye
- Aging Brain Center, Marcus Institute for Aging Research, Hebrew Senior Life, Boston, MA 02131, USA;
- Divisions of Gerontology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Zhongcong Xie
- Harvard Medical School, Boston, MA 02215, USA; (S.M.V.); (L.N.); (T.F.); (M.C.); (A.T.); (M.S.); (Z.X.); (E.R.M.)
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Edward R. Marcantonio
- Harvard Medical School, Boston, MA 02215, USA; (S.M.V.); (L.N.); (T.F.); (M.C.); (A.T.); (M.S.); (Z.X.); (E.R.M.)
- Divisions of General Medicine, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
- Divisions of Gerontology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Towia A. Libermann
- Division of Interdisciplinary Medicine and Biotechnology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA; (S.T.D.); (X.G.)
- Beth Israel Deaconess Medical Center Genomics, Proteomics, Bioinformatics and Systems Biology Center, Boston, MA 02215, USA
- Harvard Medical School, Boston, MA 02215, USA; (S.M.V.); (L.N.); (T.F.); (M.C.); (A.T.); (M.S.); (Z.X.); (E.R.M.)
| |
Collapse
|
4
|
Neves D, Salazar IL, Almeida RD, Silva RM. Molecular mechanisms of ischemia and glutamate excitotoxicity. Life Sci 2023; 328:121814. [PMID: 37236602 DOI: 10.1016/j.lfs.2023.121814] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 05/05/2023] [Accepted: 05/23/2023] [Indexed: 05/28/2023]
Abstract
Excitotoxicity is classically defined as the neuronal damage caused by the excessive release of glutamate, and subsequent activation of excitatory plasma membrane receptors. In the mammalian brain, this phenomenon is mainly driven by excessive activation of glutamate receptors (GRs). Excitotoxicity is common to several chronic disorders of the Central Nervous System (CNS) and is considered the primary mechanism of neuronal loss of function and cell death in acute CNS diseases (e.g. ischemic stroke). Multiple mechanisms and pathways lead to excitotoxic cell damage including pro-death signaling cascade events downstream of glutamate receptors, calcium (Ca2+) overload, oxidative stress, mitochondrial impairment, excessive glutamate in the synaptic cleft as well as altered energy metabolism. Here, we review the current knowledge on the molecular mechanisms that underlie excitotoxicity, emphasizing the role of Nicotinamide Adenine Dinucleotide (NAD) metabolism. We also discuss novel and promising therapeutic strategies to treat excitotoxicity, highlighting recent clinical trials. Finally, we will shed light on the ongoing search for stroke biomarkers, an exciting and promising field of research, which may improve stroke diagnosis, prognosis and allow better treatment options.
Collapse
Affiliation(s)
- Diogo Neves
- iBiMED - Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Ivan L Salazar
- Multidisciplinary Institute of Ageing, MIA - Portugal, University of Coimbra, Coimbra, Portugal
| | - Ramiro D Almeida
- iBiMED - Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, Aveiro, Portugal; CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.
| | - Raquel M Silva
- iBiMED - Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, Aveiro, Portugal; Universidade Católica Portuguesa, Faculdade de Medicina Dentária, Centro de Investigação Interdisciplinar em Saúde, Viseu, Portugal.
| |
Collapse
|
5
|
Liu Y, Ding R, Li M, Ou W, Zhang X, Yang W, Huang X, Chai H, Wang Q. TMT proteomics analysis of cerebrospinal fluid from patients with cerebral venous sinus thrombosis. J Proteomics 2023; 275:104820. [PMID: 36646273 DOI: 10.1016/j.jprot.2023.104820] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 01/15/2023]
Abstract
CVST is a type of venous stroke that mainly affects young adults with no reliable diagnostic markers and effective treatment strategies for secondary pathologies. However, the underlying pathological molecular mechanisms remain unclear. Here, we systematically analyzed the molecule profiling of the cerebrospinal fluid (CSF) in CVST patients via tandem mass tag (TMT)-based proteomics for the first time, aiming to reveal the pathogenesis and provide evidence for the diagnosis and treatment of CVST. Five CVST patients and five control patients were selected, and CSF samples were analyzed by TMT proteomics. Differentially expressed proteins (DEPs) were acquired and bioinformatics analysis was performed. Besides, parallel reaction monitoring (PRM) was utilized to validate the DEPs. 468 differentially expressed proteins were screened, 185 of which were up-regulated and 283 were down-regulated (fold change >1.2, P < 0.05). Bioinformatics analysis displayed that these proteins were significantly enriched in multiple pathways related to a variety of pathophysiological processes. PRM verification showed that apolipoprotein E, MMP-2, neuroserpin, clusterin, and several other molecules were down-regulated. These identified proteins reveal unique pathophysiological characteristics secondary to CVST. Further characterization of these proteins in future research could enable their application as potential therapeutic targets and biomarkers in CVST therapy. SIGNIFICANCE: Cerebral venous sinus thrombosis (CVST) is an underrated and potentially fatal cause of stroke with a reported mortality of 5-10% worldwide. Currently, in addition to anticoagulant and thrombolytic therapy, effective treatments targeting the injured brain parenchyma after CVST remain limited. Besides, accurate diagnostic markers are still sorely lacking. In the present study, we will detect the alterations of the CSF protein spectrum of CVST patients by TMT technique, screen differentially expressed proteins, analyze the functions of these signals through bioinformatics methods, and finally validate the key molecules through parallel reaction monitoring (PRM) technique. Collectively, the study aimed to offer a reference for the discovery of specific protein/pathway alterations in the CSF of CVST patients and further reveal the underlying pathogenesis, thereby providing evidence for the diagnosis and treatment of CVST.
Collapse
Affiliation(s)
- Yaqi Liu
- Neurosurgery Center, Department of Cerebrovascular Surgery, Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, Guangdong, China. Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, 510280, Guangdong, China.; Department of cerebrovascular surgery, The Third Affiliated Hospital of Sun Yat-Sen University, No 600 Tianhe Road, Guangzhou 510630, Guangdong, China
| | - Rui Ding
- Department of cerebrovascular surgery, The Third Affiliated Hospital of Sun Yat-Sen University, No 600 Tianhe Road, Guangzhou 510630, Guangdong, China; Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Meng Li
- Department of hyperbaric oxygen, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, Guangdong, China
| | - Weiyang Ou
- Neurosurgery Center, Department of Cerebrovascular Surgery, Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, Guangdong, China. Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, 510280, Guangdong, China
| | - Xifang Zhang
- Dongguan Kanghua Hospital, 1000# Dongguan Avenue, Dongguan 523000, Guangdong Province, China
| | - Weijie Yang
- Department of cerebrovascular surgery, The Third Affiliated Hospital of Sun Yat-Sen University, No 600 Tianhe Road, Guangzhou 510630, Guangdong, China
| | - Xiaofei Huang
- Department of cerebrovascular surgery, The Third Affiliated Hospital of Sun Yat-Sen University, No 600 Tianhe Road, Guangzhou 510630, Guangdong, China
| | - Huihui Chai
- Department of cerebrovascular surgery, The Third Affiliated Hospital of Sun Yat-Sen University, No 600 Tianhe Road, Guangzhou 510630, Guangdong, China.
| | - Qiujing Wang
- Neurosurgery Center, Department of Cerebrovascular Surgery, Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, Guangdong, China. Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, 510280, Guangdong, China.; Department of cerebrovascular surgery, The Third Affiliated Hospital of Sun Yat-Sen University, No 600 Tianhe Road, Guangzhou 510630, Guangdong, China.
| |
Collapse
|
6
|
Yao RQ, Chen F, Liu J, Li FQ, Wang SS, Zhang YY, Lu YY, Hu FF. β2-Microglobulin exacerbates neuroinflammation, brain damage, and cognitive impairment after stroke in rats. Neural Regen Res 2023; 18:603-608. [DOI: 10.4103/1673-5374.350204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
7
|
Jin P, Munson JM. Fluids and flows in brain cancer and neurological disorders. WIREs Mech Dis 2023; 15:e1582. [PMID: 36000149 PMCID: PMC9869390 DOI: 10.1002/wsbm.1582] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 06/21/2022] [Accepted: 06/27/2022] [Indexed: 01/31/2023]
Abstract
Interstitial fluid (IF) and cerebrospinal fluid (CSF) are an integral part of the brain, serving to cushion and protect the brain parenchymal cells against damage and aid in their function. The brain IF contains various ions, nutrients, waste products, peptides, hormones, and neurotransmitters. IF moves primarily by pressure-dependent bulk flow through brain parenchyma, draining into the ventricular CSF. The brain ventricles and subarachnoid spaces are filled with CSF which circulates through the perivascular spaces. It also flows into the IF space regulated, in part, by aquaporin channels, removing waste solutes through a process of IF-CSF mixing. During disease development, the composition, flow, and volume of these fluids changes and can lead to brain cell dysfunction. With the improvement of imaging technology and the help of genomic profiling, more information has been and can be obtained from brain fluids; however, the role of CSF and IF in brain cancer and neurobiological disease is still limited. Here we outline recent advances of our knowledge of brain fluid flow in cancer and neurodegenerative disease based on our understanding of its dynamics and composition. This article is categorized under: Cancer > Biomedical Engineering Neurological Diseases > Biomedical Engineering.
Collapse
Affiliation(s)
- Peng Jin
- Fralin Biomedical Research Institute, Department of Biomedical Engineering and Mechanics Virginia Polytechnic Institute and State University Roanoke Virginia USA
| | - Jennifer M. Munson
- Fralin Biomedical Research Institute, Department of Biomedical Engineering and Mechanics Virginia Polytechnic Institute and State University Roanoke Virginia USA
| |
Collapse
|
8
|
Li W, Shao C, Zhou H, Du H, Chen H, Wan H, He Y. Multi-omics research strategies in ischemic stroke: A multidimensional perspective. Ageing Res Rev 2022; 81:101730. [PMID: 36087702 DOI: 10.1016/j.arr.2022.101730] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 08/23/2022] [Accepted: 09/03/2022] [Indexed: 01/31/2023]
Abstract
Ischemic stroke (IS) is a multifactorial and heterogeneous neurological disorder with high rate of death and long-term impairment. Despite years of studies, there are still no stroke biomarkers for clinical practice, and the molecular mechanisms of stroke remain largely unclear. The high-throughput omics approach provides new avenues for discovering biomarkers of IS and explaining its pathological mechanisms. However, single-omics approaches only provide a limited understanding of the biological pathways of diseases. The integration of multiple omics data means the simultaneous analysis of thousands of genes, RNAs, proteins and metabolites, revealing networks of interactions between multiple molecular levels. Integrated analysis of multi-omics approaches will provide helpful insights into stroke pathogenesis, therapeutic target identification and biomarker discovery. Here, we consider advances in genomics, transcriptomics, proteomics and metabolomics and outline their use in discovering the biomarkers and pathological mechanisms of IS. We then delineate strategies for achieving integration at the multi-omics level and discuss how integrative omics and systems biology can contribute to our understanding and management of IS.
Collapse
Affiliation(s)
- Wentao Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Chongyu Shao
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Huifen Zhou
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Haixia Du
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Haiyang Chen
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Haitong Wan
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Yu He
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| |
Collapse
|
9
|
Cullell N, Soriano-Tárraga C, Gallego-Fábrega C, Cárcel-Márquez J, Muiño E, Llucià-Carol L, Lledós M, Esteller M, de Moura MC, Montaner J, Rosell A, Delgado P, Martí-Fábregas J, Krupinski J, Roquer J, Jiménez-Conde J, Fernández-Cadenas I. Altered methylation pattern in EXOC4 is associated with stroke outcome: an epigenome-wide association study. Clin Epigenetics 2022; 14:124. [PMID: 36180927 PMCID: PMC9526296 DOI: 10.1186/s13148-022-01340-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 09/13/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND AND PURPOSE The neurological course after stroke is highly variable and is determined by demographic, clinical and genetic factors. However, other heritable factors such as epigenetic DNA methylation could play a role in neurological changes after stroke. METHODS We performed a three-stage epigenome-wide association study to evaluate DNA methylation associated with the difference between the National Institutes of Health Stroke Scale (NIHSS) at baseline and at discharge (ΔNIHSS) in ischaemic stroke patients. DNA methylation data in the Discovery (n = 643) and Replication (n = 62) Cohorts were interrogated with the 450 K and EPIC BeadChip. Nominal CpG sites from the Discovery (p value < 10-06) were also evaluated in a meta-analysis of the Discovery and Replication cohorts, using a random-fixed effect model. Metabolic pathway enrichment was calculated with methylGSA. We integrated the methylation data with 1305 plasma protein expression levels measured by SOMAscan in 46 subjects and measured RNA expression with RT-PCR in a subgroup of 13 subjects. Specific cell-type methylation was assessed using EpiDISH. RESULTS The meta-analysis revealed an epigenome-wide significant association in EXOC4 (p value = 8.4 × 10-08) and in MERTK (p value = 1.56 × 10-07). Only the methylation in EXOC4 was also associated in the Discovery and in the Replication Cohorts (p value = 1.14 × 10-06 and p value = 1.3 × 10-02, respectively). EXOC4 methylation negatively correlated with the long-term outcome (coefficient = - 4.91) and showed a tendency towards a decrease in EXOC4 expression (rho = - 0.469, p value = 0.091). Pathway enrichment from the meta-analysis revealed significant associations related to the endocytosis and deubiquitination processes. Seventy-nine plasma proteins were differentially expressed in association with EXOC4 methylation. Pathway analysis of these proteins showed an enrichment in natural killer (NK) cell activation. The cell-type methylation analysis in blood also revealed a differential methylation in NK cells. CONCLUSIONS DNA methylation of EXOC4 is associated with a worse neurological course after stroke. The results indicate a potential modulation of pathways involving endocytosis and NK cells regulation.
Collapse
Affiliation(s)
- Natalia Cullell
- Stroke Pharmacogenomics and Genetics, IIB-Sant Pau, Institut de Recerca de Sant Pau, Hospital Sant Pau, C/Sant Antoni Mª Claret,167, 08025, Barcelona, Spain
- Neurology, Hospital Universitari MútuaTerrassa/Fundacio Docència i Recerca MutuaTerrassa, Terrassa, Spain
- Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain
| | - Carolina Soriano-Tárraga
- Neurology, Hospital del Mar, Neurovascular Research Group, IMIM, Universitat Autònoma de Barcelona/DCEXS-Universitat Pompeu Fabra, Barcelona, Spain
- Department of Psychiatry, Washington University School of Medicine, Saint Louis, Missouri, USA
- NeuroGenomics and Informatics, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Cristina Gallego-Fábrega
- Stroke Pharmacogenomics and Genetics, IIB-Sant Pau, Institut de Recerca de Sant Pau, Hospital Sant Pau, C/Sant Antoni Mª Claret,167, 08025, Barcelona, Spain
| | - Jara Cárcel-Márquez
- Stroke Pharmacogenomics and Genetics, IIB-Sant Pau, Institut de Recerca de Sant Pau, Hospital Sant Pau, C/Sant Antoni Mª Claret,167, 08025, Barcelona, Spain
| | - Elena Muiño
- Stroke Pharmacogenomics and Genetics, IIB-Sant Pau, Institut de Recerca de Sant Pau, Hospital Sant Pau, C/Sant Antoni Mª Claret,167, 08025, Barcelona, Spain
| | - Laia Llucià-Carol
- Stroke Pharmacogenomics and Genetics, IIB-Sant Pau, Institut de Recerca de Sant Pau, Hospital Sant Pau, C/Sant Antoni Mª Claret,167, 08025, Barcelona, Spain
| | - Miquel Lledós
- Stroke Pharmacogenomics and Genetics, IIB-Sant Pau, Institut de Recerca de Sant Pau, Hospital Sant Pau, C/Sant Antoni Mª Claret,167, 08025, Barcelona, Spain
| | - Manel Esteller
- Cancer Epigenetics & Biology Program (PEBC), L'Hospitalet, Spain
- Department of Physiological Sciences II, School of Medicine, Universitat de Barcelona, Barcelona, Spain
- Institució Catalana de Recerca I Estudis Avançats (ICREA), Barcelona, Spain
| | | | - Joan Montaner
- Neurovascular Research Laboratory, Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain
- Department of Neurology, Hospital Universitario Virgen Macarena Sevilla, Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC, Universidad de Sevilla, Sevilla, Spain
| | - Anna Rosell
- Neurovascular Research Laboratory, Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain
| | - Pilar Delgado
- Neurovascular Research Laboratory, Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain
| | | | - Jerzy Krupinski
- Neurology, Hospital Universitari MútuaTerrassa/Fundacio Docència i Recerca MutuaTerrassa, Terrassa, Spain
- Centre for Bioscience, School of HealthCare Science, Manchester Metropolitan University, Manchester, UK
| | - Jaume Roquer
- Neurology, Hospital del Mar, Neurovascular Research Group, IMIM, Universitat Autònoma de Barcelona/DCEXS-Universitat Pompeu Fabra, Barcelona, Spain
| | - Jordi Jiménez-Conde
- Neurology, Hospital del Mar, Neurovascular Research Group, IMIM, Universitat Autònoma de Barcelona/DCEXS-Universitat Pompeu Fabra, Barcelona, Spain
| | - Israel Fernández-Cadenas
- Stroke Pharmacogenomics and Genetics, IIB-Sant Pau, Institut de Recerca de Sant Pau, Hospital Sant Pau, C/Sant Antoni Mª Claret,167, 08025, Barcelona, Spain.
| |
Collapse
|
10
|
Dias A, Silva L, Moura J, Gabriel D, Maia LF. Fluid biomarkers in stroke: From animal models to clinical care. Acta Neurol Scand 2022; 146:332-347. [PMID: 35838031 DOI: 10.1111/ane.13668] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 06/17/2022] [Accepted: 06/24/2022] [Indexed: 12/12/2022]
Abstract
Stroke is a leading cause of death and disability worldwide. Stroke prevention, early diagnosis, and efficient acute treatment are priorities to successfully impact stroke death and disability. Fluid biomarkers may improve stroke differential diagnostic, patient stratification for acute treatment, and post-stroke individualized rehabilitation. In the present work, we characterized the use of stroke animal models in fluid biomarker research through a systematic review of PubMed and Scopus databases, followed by a literature review on the translation to the human stroke care setting and future perspectives in the field. We found increasing numbers of publications but with limited translation to the clinic. Animal studies are very heterogeneous, do not account for several human features present in stroke, and, importantly, only a minority of such studies used human cohorts to validate biomarker findings. Clinical studies have found appealing candidates, both protein and circulating nucleic acids, to contribute to a more personalized stroke care pathway. Still, brain tissue complexity and the fact that different brain pathologies share lesion biomarkers make this task challenging due to biomarker low specificity. Moreover, the study design and lack of validation cohorts may have precluded a formal integration of biomarkers in different steps of stroke diagnosis and treatment. To overcome such issues, recent pivotal studies on biomarker dynamics in individual patients are providing added value to diagnosis and anticipating patients' early prognosis. Presently, the most consistent protein biomarkers for stroke diagnosis and short- and long-term prognosis are associated with tissue damage at neuronal (TAU), axonal (NFL), or astroglial (GFAP and S100β) levels. Most promising nucleic acids are microRNAs (miR), due to their stability in plasma and ease of access. Still, clinical validation and standardized quantitation place them a step behind compared protein as stroke biomarkers. Ultimately, the definition of clinically relevant biomarker panels and optimization of fast and sensitive biomarker measurements in the blood, together with their combination with clinical and neuroimaging data, will pave the way toward personalized stroke care.
Collapse
Affiliation(s)
- Alexandre Dias
- Department of Neurology, Centro Hospitalar Universitário do Porto, Porto, Portugal.,i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal.,IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, Portugal
| | - Lénia Silva
- Department of Neurology, Centro Hospitalar Universitário do Porto, Porto, Portugal
| | - João Moura
- Department of Neurology, Centro Hospitalar Universitário do Porto, Porto, Portugal
| | - Denis Gabriel
- Department of Neurology, Centro Hospitalar Universitário do Porto, Porto, Portugal
| | - Luis F Maia
- Department of Neurology, Centro Hospitalar Universitário do Porto, Porto, Portugal.,i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal.,Instituto de Ciências Biomédicas Abel Salazar, University of Porto, Porto, Portugal.,IBMC - Instituto de Biologia Molecular e Celular, University of Porto, Porto, Portugal
| |
Collapse
|
11
|
Abstract
Stroke remains a leading cause of death and disability, with limited therapeutic options and suboptimal tools for diagnosis and prognosis. High throughput technologies such as proteomics generate large volumes of experimental data at once, thus providing an advanced opportunity to improve the status quo by facilitating identification of novel therapeutic targets and molecular biomarkers. Proteomics studies in animals are largely designed to decipher molecular pathways and targets altered in brain tissue after stroke, whereas studies in human patients primarily focus on biomarker discovery in biofluids and, more recently, in thrombi and extracellular vesicles. Here, we offer a comprehensive review of stroke proteomics studies conducted in both animal and human specimen and present our view on limitations, challenges, and future perspectives in the field. In addition, as a unique resource for the scientific community, we provide extensive lists of all proteins identified in proteomic studies as altered by stroke and perform postanalysis of animal data to reveal stroke-related cellular processes and pathways.
Collapse
Affiliation(s)
- Karin Hochrainer
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY (K.H.)
| | - Wei Yang
- Center for Perioperative Organ Protection, Department of Anesthesiology, Duke University School of Medicine, Durham, NC (W.Y.)
| |
Collapse
|
12
|
Tazoe J, Lu CF, Hsieh BY, Chen CY, Kao YCJ. Altered diffusivity of the subarachnoid cisterns in the rat brain following neurological disorders. Biomed J 2022; 46:134-143. [PMID: 35066210 PMCID: PMC10104961 DOI: 10.1016/j.bj.2022.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 12/20/2021] [Accepted: 01/10/2022] [Indexed: 11/02/2022] Open
Abstract
BACKGROUND Although changes in diffusion characteristics of the brain parenchyma in neurological disorders are widely studied and used in clinical practice, the change in diffusivity in the cerebrospinal fluid (CSF) system is rarely reported. In this study, free water diffusion in the subarachnoid cisterns and ventricles of the rat brain was examined using diffusion magnetic resonance imaging (MRI), and the effects of neurological disorders on diffusivity in CSF system were investigated. METHODS Diffusion MRI and T2-weighted images were obtained in the intact rats, 24 h after ischemic stroke, and 50 days after mild traumatic brain injury (mTBI). We conducted the assessment of diffusivity in the rat brain in the subarachnoid cisterns around the midbrain, as well as the lateral ventricles. One-way ANOVA and Kruskal-Wallis test were used to evaluate the change in mean diffusivity (MD) and MD histogram, respectively, in CSF system following different neurological disease. RESULTS A significant decrease in the mean MD value of the subarachnoid cisterns was observed in the stroke rats compared with the intact and mTBI rats (p < 0.005). In addition, the skewness (p < 0.002), maximum MD (p < 0.002), and MD percentiles (p < 0.002) in the stroke rats differed significantly from those in the intact and mTBI rats. By contrast, no difference was observed in the mean MD value of the lateral ventricles among three groups of rats. We proposed that the assessment of the subarachnoid cisterns, rather than the lateral ventricles, in the rat brain would be useful in providing diffusion information in the CSF system. CONCLUSIONS Alterations in MD parameters of the subarachnoid cisterns after stroke provide evidence that brain injury may alter the characteristics of free water diffusion not only in the brain parenchyma but also in the CSF system.
Collapse
|
13
|
Leira Y, Mascarenhas P, Blanco J, Sobrino T, Mendes JJ, Machado V, Botelho J. Network Protein Interaction in the Link between Stroke and Periodontitis Interplay: A Pilot Bioinformatic Analysis. Genes (Basel) 2021; 12:genes12050787. [PMID: 34065604 PMCID: PMC8160956 DOI: 10.3390/genes12050787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/10/2021] [Accepted: 05/19/2021] [Indexed: 12/11/2022] Open
Abstract
The clinical interaction between stroke and periodontitis has been consistently studied and confirmed. Hence, exploring potentially new protein interactions in this association using bioinformatic strategies presents potential interest. In this exploratory study, we conducted a protein-protein network interaction (PPI) search with documented encoded proteins for both stroke and periodontitis. Genes of interest were collected via GWAS database. The STRING database was used to predict the PPI networks, first in a sensitivity purpose (confidence cut-off of 0.7), and then with a highest confidence cut-off (0.9). Genes over-representation was inspected in the final network. As a result, we foresee a prospective protein network of interaction between stroke and periodontitis. Inflammation, pro-coagulant/pro-thrombotic state and, ultimately, atheroma plaque rupture is the main biological mechanism derived from the network. These pilot results may pave the way to future molecular and therapeutic studies to further comprehend the mechanisms between these two conditions.
Collapse
Affiliation(s)
- Yago Leira
- Periodontology Unit, Faculty of Odontology and Medicine, Medical-Surgical Research Group, Health Research Institute of Santiago de Compostela, University of Santiago de Compostela, 15706 Santiago de Compostela, Spain; (Y.L.); (J.B.)
- Clinical Neurosciences Research Laboratory, Health Research Institute of Santiago de Compostela, University Clinical Hospital, 15706 Santiago de Compostela, Spain;
- Periodontology Unit, UCL Eastman Dental Institute & NIHR UCLH Biomedical Research Centre, University College London, London WC1E 6BT, UK
| | - Paulo Mascarenhas
- Center for Medical Genetics and Pediatric Nutrition Egas Moniz, Instituto Universitário Egas Moniz (IUEM), 2829-511 Caparica, Portugal;
- Evidence-Based Hub, Clinical Research Unit (CRU), Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Egas Moniz—Cooperativa de Ensino Superior, CRL, 2829-511 Caparica, Portugal; (J.J.M.); (V.M.)
| | - Juan Blanco
- Periodontology Unit, Faculty of Odontology and Medicine, Medical-Surgical Research Group, Health Research Institute of Santiago de Compostela, University of Santiago de Compostela, 15706 Santiago de Compostela, Spain; (Y.L.); (J.B.)
| | - Tomás Sobrino
- Clinical Neurosciences Research Laboratory, Health Research Institute of Santiago de Compostela, University Clinical Hospital, 15706 Santiago de Compostela, Spain;
| | - José João Mendes
- Evidence-Based Hub, Clinical Research Unit (CRU), Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Egas Moniz—Cooperativa de Ensino Superior, CRL, 2829-511 Caparica, Portugal; (J.J.M.); (V.M.)
| | - Vanessa Machado
- Evidence-Based Hub, Clinical Research Unit (CRU), Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Egas Moniz—Cooperativa de Ensino Superior, CRL, 2829-511 Caparica, Portugal; (J.J.M.); (V.M.)
- Periodontology Department, Clinical Research Unit (CRU), Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Egas Moniz—Cooperata de Ensino Superior, CRL, 2829-511 Caparica, Portugal
| | - João Botelho
- Evidence-Based Hub, Clinical Research Unit (CRU), Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Egas Moniz—Cooperativa de Ensino Superior, CRL, 2829-511 Caparica, Portugal; (J.J.M.); (V.M.)
- Periodontology Department, Clinical Research Unit (CRU), Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Egas Moniz—Cooperata de Ensino Superior, CRL, 2829-511 Caparica, Portugal
- Correspondence:
| |
Collapse
|
14
|
Shen W, Jin L, Zhu A, Lin Y, Pan G, Zhou S, Cheng J, Zhang J, Tu F, Liu C, Xie Q, Chen X. Treadmill exercise enhances synaptic plasticity in the ischemic penumbra of MCAO mice by inducing the expression of Camk2a via CYFIP1 upregulation. Life Sci 2021; 270:119033. [PMID: 33497737 DOI: 10.1016/j.lfs.2021.119033] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/29/2020] [Accepted: 01/01/2021] [Indexed: 10/22/2022]
Abstract
AIMS Physical exercise is beneficial to the recovery of patients with ischemic stroke. However, the underlying mechanism by which exercise promotes dendritic remodeling and synaptic plasticity is still obscure. This study explored the mechanism by which treadmill exercise enhances synaptic plasticity and dendritic remodeling in the ischemic penumbra. MAIN METHODS A middle cerebral artery occlusion (MCAO) model was generated in C57BL/6 mice, and lentivirus-mediated cytoplasmic FMRP-associated protein 1 (CYFIP1) shRNA expression was utilized to confirm the role of CYFIP1 in the exercise-induced increase in synaptic plasticity and dendritic remodeling. Neurological deficits were measured using the Zea Longa scale. Hematoxylin-eosin (H&E) staining and Nissl staining were performed to assess cerebral ischemic injury. Golgi-Cox staining was used to observe changes in dendritic remodeling and synaptic plasticity. Transmission electron microscopy (TEM) was performed to observe the synaptic ultrastructure. Molecular mechanisms were explored using immunofluorescence staining and western blotting. KEY FINDINGS Treadmill training enhanced synaptic plasticity in the penumbra. Additionally, we observed significant increases in the expression of CYFIP1 and calcium/calmodulin-dependent kinase 2a (Camk2a); enhanced neurological recovery and a decreased infarct volume. However, the injection of a lentivirus containing CYFIP1 shRNA into the lateral ventricle exerted negative effects on synaptic plasticity. Moreover, the exercise-induced neuroprotective effects were abolished by lentivirus-mediated CYFIP1 shRNA expression, consistent with the downregulation of Camk2a expression and the deterioration of neurological function. SIGNIFICANCE Treadmill training enhances synaptic plasticity and dendritic remodeling in the ischemic penumbra by inducing the expression of Camk2a via upregulation of CYFIP1.
Collapse
Affiliation(s)
- Weimin Shen
- Physical Medicine and Rehabilitation Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, No. 109, Xueyuanxi Road, Wenzhou, Zhejiang, China
| | - Lingqin Jin
- Physical Medicine and Rehabilitation Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, No. 109, Xueyuanxi Road, Wenzhou, Zhejiang, China
| | - Anqi Zhu
- Physical Medicine and Rehabilitation Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, No. 109, Xueyuanxi Road, Wenzhou, Zhejiang, China
| | - Yao Lin
- Physical Medicine and Rehabilitation Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, No. 109, Xueyuanxi Road, Wenzhou, Zhejiang, China
| | - Guoyuan Pan
- Physical Medicine and Rehabilitation Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, No. 109, Xueyuanxi Road, Wenzhou, Zhejiang, China
| | - Shanshan Zhou
- Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jingyan Cheng
- The Second Hospital Affiliated to Anhui University of Chinese Medicine, No.300, Shouchun Road, Hefei, Anhui, China
| | - Jieqiong Zhang
- Physical Medicine and Rehabilitation Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, No. 109, Xueyuanxi Road, Wenzhou, Zhejiang, China
| | - Fengxia Tu
- Physical Medicine and Rehabilitation Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, No. 109, Xueyuanxi Road, Wenzhou, Zhejiang, China
| | - Chan Liu
- Physical Medicine and Rehabilitation Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, No. 109, Xueyuanxi Road, Wenzhou, Zhejiang, China
| | - Qingfeng Xie
- Physical Medicine and Rehabilitation Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, No. 109, Xueyuanxi Road, Wenzhou, Zhejiang, China.
| | - Xiang Chen
- Physical Medicine and Rehabilitation Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, No. 109, Xueyuanxi Road, Wenzhou, Zhejiang, China.
| |
Collapse
|
15
|
Application of an Aptamer-Based Proteomics Assay (SOMAscan™) in Rat Cerebrospinal Fluid. Methods Mol Biol 2020; 2044:221-231. [PMID: 31432415 DOI: 10.1007/978-1-4939-9706-0_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The exploration of the cerebrospinal fluid (CSF) through proteomics techniques might help in the search of molecular biomarkers relevant to neurological pathologies. Aiming this, we describe here a commercially available multiplexed proteomics technology based on the use of modified aptamers (SOMAscan™ assay). From our experience in exploring the rat CSF proteome, we detail the basic principles of this oligonucleotide-based proteomics approach, as well as the main data-processing steps to obtain relative quantitative values for proteins that could discriminate among different brain conditions, as an attempt in the search of neurological biomarkers. Finally, we give some tips on performing the SOMAscan assay and key recommendations on the verification analyses of the resulting candidate biomarkers.
Collapse
|
16
|
Multilevel omics for the discovery of biomarkers and therapeutic targets for stroke. Nat Rev Neurol 2020; 16:247-264. [PMID: 32322099 DOI: 10.1038/s41582-020-0350-6] [Citation(s) in RCA: 183] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2020] [Indexed: 02/07/2023]
Abstract
Despite many years of research, no biomarkers for stroke are available to use in clinical practice. Progress in high-throughput technologies has provided new opportunities to understand the pathophysiology of this complex disease, and these studies have generated large amounts of data and information at different molecular levels. The integration of these multi-omics data means that thousands of proteins (proteomics), genes (genomics), RNAs (transcriptomics) and metabolites (metabolomics) can be studied simultaneously, revealing interaction networks between the molecular levels. Integrated analysis of multi-omics data will provide useful insight into stroke pathogenesis, identification of therapeutic targets and biomarker discovery. In this Review, we detail current knowledge on the pathology of stroke and the current status of biomarker research in stroke. We summarize how proteomics, metabolomics, transcriptomics and genomics are all contributing to the identification of new candidate biomarkers that could be developed and used in clinical stroke management.
Collapse
|
17
|
Zheng F, Zhou YT, Zeng YF, Liu T, Yang ZY, Tang T, Luo JK, Wang Y. Proteomics Analysis of Brain Tissue in a Rat Model of Ischemic Stroke in the Acute Phase. Front Mol Neurosci 2020; 13:27. [PMID: 32174813 PMCID: PMC7057045 DOI: 10.3389/fnmol.2020.00027] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 02/04/2020] [Indexed: 12/11/2022] Open
Abstract
Background: Stroke is a leading health issue, with high morbidity and mortality rates worldwide. Of all strokes, approximately 80% of cases are ischemic stroke (IS). However, the underlying mechanisms of the occurrence of acute IS remain poorly understood because of heterogeneous and multiple factors. More potential biomarkers are urgently needed to reveal the deeper pathogenesis of IS. Methods: We identified potential biomarkers in rat brain tissues of IS using an iTRAQ labeling approach coupled with LC-MS/MS. Furthermore, bioinformatrics analyses including GO, KEGG, DAVID, and Cytoscape were used to present proteomic profiles and to explore the disease mechanisms. Additionally, Western blotting for target proteins was conducted for further verification. Results: We identified 4,578 proteins using the iTRAQ-based proteomics method. Of these proteins, 282 differentiated proteins, comprising 73 upregulated and 209 downregulated proteins, were observed. Further bioinformatics analysis suggested that the candidate proteins were mainly involved in energy liberation, intracellular protein transport, and synaptic plasticity regulation during the acute period. KEGG pathway enrichment analysis indicated a series of representative pathological pathways, including energy metabolite, long-term potentiation (LTP), and neurodegenerative disease-related pathways. Moreover, Western blotting confirmed the associated candidate proteins, which refer to oxidative responses and synaptic plasticity. Conclusions: Our findings highlight the identification of candidate protein biomarkers and provide insight into the biological processes involved in acute IS.
Collapse
Affiliation(s)
- Fei Zheng
- College of Electrical and Information Engineering, Hunan University, Changsha, China
| | - Yan-Tao Zhou
- College of Electrical and Information Engineering, Hunan University, Changsha, China
| | - Yi-Fu Zeng
- College of Electrical and Information Engineering, Hunan University, Changsha, China
| | - Tao Liu
- Laboratory of Ethnopharmacology, Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Zhao-Yu Yang
- Laboratory of Ethnopharmacology, Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Tao Tang
- Laboratory of Ethnopharmacology, Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Jie-Kun Luo
- Laboratory of Ethnopharmacology, Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Yang Wang
- Laboratory of Ethnopharmacology, Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|