1
|
Penchovsky R, Georgieva AV, Dyakova V, Traykovska M, Pavlova N. Antisense and Functional Nucleic Acids in Rational Drug Development. Antibiotics (Basel) 2024; 13:221. [PMID: 38534656 DOI: 10.3390/antibiotics13030221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/25/2024] [Accepted: 02/26/2024] [Indexed: 03/28/2024] Open
Abstract
This review is focused on antisense and functional nucleic acid used for completely rational drug design and drug target assessment, aiming to reduce the time and money spent and increase the successful rate of drug development. Nucleic acids have unique properties that play two essential roles in drug development as drug targets and as drugs. Drug targets can be messenger, ribosomal, non-coding RNAs, ribozymes, riboswitches, and other RNAs. Furthermore, various antisense and functional nucleic acids can be valuable tools in drug discovery. Many mechanisms for RNA-based control of gene expression in both pro-and-eukaryotes and engineering approaches open new avenues for drug discovery with a critical role. This review discusses the design principles, applications, and prospects of antisense and functional nucleic acids in drug delivery and design. Such nucleic acids include antisense oligonucleotides, synthetic ribozymes, and siRNAs, which can be employed for rational antibacterial drug development that can be very efficient. An important feature of antisense and functional nucleic acids is the possibility of using rational design methods for drug development. This review aims to popularize these novel approaches to benefit the drug industry and patients.
Collapse
Affiliation(s)
- Robert Penchovsky
- Laboratory of Synthetic Biology and Bioinformatics, Faculty of Biology, Sofia University, "St. Kliment Ohridski", 8 Dragan Tzankov Blvd., 1164 Sofia, Bulgaria
| | - Antoniya V Georgieva
- Laboratory of Synthetic Biology and Bioinformatics, Faculty of Biology, Sofia University, "St. Kliment Ohridski", 8 Dragan Tzankov Blvd., 1164 Sofia, Bulgaria
| | - Vanya Dyakova
- Laboratory of Synthetic Biology and Bioinformatics, Faculty of Biology, Sofia University, "St. Kliment Ohridski", 8 Dragan Tzankov Blvd., 1164 Sofia, Bulgaria
| | - Martina Traykovska
- Laboratory of Synthetic Biology and Bioinformatics, Faculty of Biology, Sofia University, "St. Kliment Ohridski", 8 Dragan Tzankov Blvd., 1164 Sofia, Bulgaria
| | - Nikolet Pavlova
- Laboratory of Synthetic Biology and Bioinformatics, Faculty of Biology, Sofia University, "St. Kliment Ohridski", 8 Dragan Tzankov Blvd., 1164 Sofia, Bulgaria
| |
Collapse
|
2
|
Ramini D, Latini S, Giuliani A, Matacchione G, Sabbatinelli J, Mensà E, Bacalini MG, Garagnani P, Rippo MR, Bronte G, Bonafè M, Cardelli M, Olivieri F. Replicative Senescence-Associated LINE1 Methylation and LINE1-Alu Expression Levels in Human Endothelial Cells. Cells 2022; 11:cells11233799. [PMID: 36497059 PMCID: PMC9739197 DOI: 10.3390/cells11233799] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/22/2022] [Accepted: 11/25/2022] [Indexed: 11/29/2022] Open
Abstract
One of the main challenges of current research on aging is to identify the complex epigenetic mechanisms involved in the acquisition of the cellular senescent phenotype. Despite some evidence suggested that epigenetic changes of DNA repetitive elements, including transposable elements (TE) sequences, are associated with replicative senescence of fibroblasts, data on different types of cells are scarce. We previously analysed genome-wide DNA methylation of young and replicative senescent human endothelial cells (HUVECs), highlighting increased levels of demethylated sequences in senescent cells. Here, we aligned the most significantly demethylated single CpG sites to the reference genome and annotated their localization inside TE sequences and found a significant hypomethylation of sequences belonging to the Long-Interspersed Element-1 (LINE-1 or L1) subfamilies L1M, L1P, and L1HS. To verify the hypothesis that L1 demethylation could be associated with increased transcription/activation of L1s and/or Alu elements (non-autonomous retroelements that usually depend on L1 sequences for reverse transcription and retrotransposition), we quantified the RNA expression levels of both L1 (generic L1 elements or site-specific L1PA2 on chromosome 14) and Alu elements in young and senescent HUVECs and human dermal fibroblasts (NHDFs). The RNA expression of Alu and L1 sequences was significantly increased in both senescent HUVECs and NHDFs, whereas the RNA transcript of L1PA2 on chromosome 14 was not significantly modulated in senescent cells. Moreover, we found an increased amount of TE DNA copies in the cytoplasm of senescent HUVECs and NHDFs. Our results support the hypothesis that TE, which are significantly increased in senescent cells, could be retrotranscribed to DNA sequences.
Collapse
Affiliation(s)
- Deborah Ramini
- Clinic of Laboratory and Precision Medicine, IRCCS INRCA, 60121 Ancona, Italy
| | - Silvia Latini
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, 60126 Ancona, Italy
| | - Angelica Giuliani
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, 60126 Ancona, Italy
- Correspondence: ; Tel.: +39-071-220-6243
| | - Giulia Matacchione
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, 60126 Ancona, Italy
| | - Jacopo Sabbatinelli
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, 60126 Ancona, Italy
- Laboratory Medicine Unit, Azienda Ospedaliero Universitaria delle Marche, 60126 Ancona, Italy
| | - Emanuela Mensà
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, 60126 Ancona, Italy
| | | | - Paolo Garagnani
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40126 Bologna, Italy
- Applied Biomedical Research Center (CRBA), S. Orsola-Malpighi Polyclinic, 40126 Bologna, Italy
- CNR Institute of Molecular Genetics “Luigi Luca Cavalli-Sforza”-Unit of Bologna, 40126 Bologna, Italy
- Department of Laboratory Medicine, Clinical Chemistry, Karolinska Institutet, Karolinska University Hospital, 141 86 Huddinge, Sweden
| | - Maria Rita Rippo
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, 60126 Ancona, Italy
| | - Giuseppe Bronte
- Clinic of Laboratory and Precision Medicine, IRCCS INRCA, 60121 Ancona, Italy
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, 60126 Ancona, Italy
| | - Massimiliano Bonafè
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40126 Bologna, Italy
| | - Maurizio Cardelli
- Advanced Technology Center for Aging Research, IRCCS INRCA, 60121 Ancona, Italy
| | - Fabiola Olivieri
- Clinic of Laboratory and Precision Medicine, IRCCS INRCA, 60121 Ancona, Italy
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, 60126 Ancona, Italy
| |
Collapse
|
3
|
Anindya R. Cytoplasmic DNA in cancer cells: Several pathways that potentially limit DNase2 and TREX1 activities. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119278. [PMID: 35489653 DOI: 10.1016/j.bbamcr.2022.119278] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 04/14/2022] [Accepted: 04/19/2022] [Indexed: 06/14/2023]
Abstract
The presence of DNA in the cytoplasm of tumor cells induces the dendritic cell to produce type-I IFNs. Classically, the presence of foreign DNA in host cells' cytoplasm during viral infection elicits cGAS-STING mediated type-I IFN signaling and cytokine production. It is likely that cytosolic DNA leads to senescence and immune surveillance in transformed cells during the early stages of carcinogenesis. However, multiple factors, such as loss of cell-cycle checkpoint, mitochondrial damage and chromosomal instability, can lead to persistent accumulation of DNA in the cytoplasm of metastatic tumor cells. That is why aberrant activation of the type I IFN pathway is frequently associated with highly aggressive tumors. Intriguingly, two powerful intracellular deoxyribonucleases, DNase2 and TREX1, can target the cytoplasmic DNA for degradation. Yet the tumor cells consistently accumulate cytoplasmic DNA. This review highlights recent work connecting the lack of DNase2 and TREX1 function to innate immune signaling. It also summarizes the possible mechanisms that limit the activity of DNase2 and TREX1 in tumor cells and contributes to chronic inflammation.
Collapse
Affiliation(s)
- Roy Anindya
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502284, India.
| |
Collapse
|
4
|
Lee JB, Khan DH, Hurren R, Xu M, Na Y, Kang H, Mirali S, Wang X, Gronda M, Jitkova Y, MacLean N, Arruda A, Alaniz Z, Konopleva MY, Andreeff M, Minden MD, Zhang L, Schimmer AD. Venetoclax enhances T cell-mediated antileukemic activity by increasing ROS production. Blood 2021; 138:234-245. [PMID: 34292323 PMCID: PMC8310428 DOI: 10.1182/blood.2020009081] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 03/04/2021] [Indexed: 01/13/2023] Open
Abstract
Venetoclax, a Bcl-2 inhibitor, in combination with the hypomethylating agent azacytidine, achieves complete remission with or without count recovery in ∼70% of treatment-naive elderly patients unfit for conventional intensive chemotherapy. However, the mechanism of action of this drug combination is not fully understood. We discovered that venetoclax directly activated T cells to increase their cytotoxicity against acute myeloid leukemia (AML) in vitro and in vivo. Venetoclax enhanced T-cell effector function by increasing reactive oxygen species generation through inhibition of respiratory chain supercomplexes formation. In addition, azacytidine induced a viral mimicry response in AML cells by activating the STING/cGAS pathway, thereby rendering the AML cells more susceptible to T cell-mediated cytotoxicity. Similar findings were seen in patients treated with venetoclax, as this treatment increased reactive oxygen species generation and activated T cells. Collectively, this study presents a new immune-mediated mechanism of action for venetoclax and azacytidine in the treatment of AML and highlights a potential combination of venetoclax and adoptive cell therapy for patients with AML.
Collapse
Affiliation(s)
| | - Dilshad H Khan
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Rose Hurren
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Mingjing Xu
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Yoosu Na
- Toronto General Hospital Research Institute and
| | - Hyeonjeong Kang
- Toronto General Hospital Research Institute and
- Department of Laboratory Medicine and Department of Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Sara Mirali
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Xiaoming Wang
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Marcela Gronda
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Yulia Jitkova
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Neil MacLean
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Andrea Arruda
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Zoe Alaniz
- Department of Molecular Hematology and Therapy, and
| | - Marina Y Konopleva
- Department of Leukemia, The University of Texas MD Anderson Cancer Center; Houston, TX; and
| | | | - Mark D Minden
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Li Zhang
- Toronto General Hospital Research Institute and
- Department of Laboratory Medicine and Department of Pathobiology, University of Toronto, Toronto, ON, Canada
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Aaron D Schimmer
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| |
Collapse
|
5
|
Asada K, Sakaue F, Nagata T, Zhang JC, Yoshida-Tanaka K, Abe A, Nawa M, Nishina K, Yokota T. Short DNA/RNA heteroduplex oligonucleotide interacting proteins are key regulators of target gene silencing. Nucleic Acids Res 2021; 49:4864-4876. [PMID: 33928345 PMCID: PMC8136785 DOI: 10.1093/nar/gkab258] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 03/25/2021] [Accepted: 04/23/2021] [Indexed: 01/31/2023] Open
Abstract
Antisense oligonucleotide (ASO)-based therapy is one of the next-generation therapy, especially targeting neurological disorders. Many cases of ASO-dependent gene expression suppression have been reported. Recently, we developed a tocopherol conjugated DNA/RNA heteroduplex oligonucleotide (Toc-HDO) as a new type of drug. Toc-HDO is more potent, stable, and efficiently taken up by the target tissues compared to the parental ASO. However, the detailed mechanisms of Toc-HDO, including its binding proteins, are unknown. Here, we developed native gel shift assays with fluorescence-labeled nucleic acids samples extracted from mice livers. These assays revealed two Toc-HDO binding proteins, annexin A5 (ANXA5) and carbonic anhydrase 8 (CA8). Later, we identified two more proteins, apurinic/apyrimidinic endodeoxyribonuclease 1 (APEX1) and flap structure-specific endonuclease 1 (FEN1) by data mining. shRNA knockdown studies demonstrated that all four proteins regulated Toc-HDO activity in Hepa1-6, mouse hepatocellular cells. In vitro binding assays and fluorescence polarization assays with purified recombinant proteins characterized the identified proteins and pull-down assays with cell lysates demonstrated the protein binding to the Toc-HDO and ASO in a biological environment. Taken together, our findings provide a brand new molecular biological insight as well as future directions for HDO-based disease therapy.
Collapse
Affiliation(s)
- Ken Asada
- Department of Neurology and Neurological Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
- Center for Brain Integration Research, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Fumika Sakaue
- Department of Neurology and Neurological Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
- Center for Brain Integration Research, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Tetsuya Nagata
- Department of Neurology and Neurological Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
- Center for Brain Integration Research, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Ji-chun Zhang
- Department of Neurology and Neurological Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
- Center for Brain Integration Research, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Kie Yoshida-Tanaka
- Department of Neurology and Neurological Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
- Center for Brain Integration Research, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Aya Abe
- Department of Neurology and Neurological Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
- Center for Brain Integration Research, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Makiko Nawa
- Laboratory of Cytometry and Proteome Research, Nanken-Kyoten and Research Core Center, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Kazutaka Nishina
- Department of Neurology and Neurological Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
- Center for Brain Integration Research, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Takanori Yokota
- Department of Neurology and Neurological Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
- Center for Brain Integration Research, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| |
Collapse
|
6
|
Ono D, Asada K, Yui D, Sakaue F, Yoshioka K, Nagata T, Yokota T. Separation-related rapid nuclear transport of DNA/RNA heteroduplex oligonucleotide: unveiling distinctive intracellular trafficking. MOLECULAR THERAPY-NUCLEIC ACIDS 2020; 23:1360-1370. [PMID: 33738132 PMCID: PMC7933600 DOI: 10.1016/j.omtn.2020.11.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 11/28/2020] [Indexed: 12/13/2022]
Abstract
DNA/RNA heteroduplex oligonucleotide (HDO), composed of DNA/locked nucleic acid (LNA) antisense oligonucleotide (ASO) and complementary RNA, is a next-generation antisense therapeutic agent. HDO is superior to the parental ASO in delivering to target tissues, and it exerts a more potent gene-silencing effect. In this study, we aimed to elucidate the intracellular trafficking mechanism of HDO-dependent gene silencing. HDO was more preferably transferred to the nucleus after transfection compared to the parental ASO. To determine when and where HDO is separated into the antisense strand (AS) and complementary strand (CS), we performed live-cell time-lapse imaging and fluorescence resonance energy transfer (FRET) assays. These assays demonstrated that HDO had a different intracellular trafficking mechanism than ASO. After endocytosis, HDO was separated in the early endosomes, and both AS and CS were released into the cytosol. AS was more efficiently transported to the nucleus than CS. Separation, endosomal release, and initiation of nuclear transport were a series of time-locked events occurring at a median of 30 s. CS cleavage was associated with efficient nuclear distribution and gene silencing in the nucleus. Understanding the unique intracellular silencing mechanisms of HDO will help us design more efficient drugs and might also provide insight into innate DNA/RNA cellular biology.
Collapse
Affiliation(s)
- Daisuke Ono
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences and Center for Brain Integration Research, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo 113-8519, Japan
| | - Ken Asada
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences and Center for Brain Integration Research, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo 113-8519, Japan
| | - Daishi Yui
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences and Center for Brain Integration Research, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo 113-8519, Japan
| | - Fumika Sakaue
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences and Center for Brain Integration Research, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo 113-8519, Japan
| | - Kotaro Yoshioka
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences and Center for Brain Integration Research, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo 113-8519, Japan
| | - Tetsuya Nagata
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences and Center for Brain Integration Research, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo 113-8519, Japan
| | - Takanori Yokota
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences and Center for Brain Integration Research, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo 113-8519, Japan
| |
Collapse
|
7
|
DNA Damage Regulates Senescence-Associated Extracellular Vesicle Release via the Ceramide Pathway to Prevent Excessive Inflammatory Responses. Int J Mol Sci 2020; 21:ijms21103720. [PMID: 32466233 PMCID: PMC7279173 DOI: 10.3390/ijms21103720] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/15/2020] [Accepted: 05/19/2020] [Indexed: 12/18/2022] Open
Abstract
DNA damage, caused by various oncogenic stresses, can induce cell death or cellular senescence as an important tumor suppressor mechanism. Senescent cells display the features of a senescence-associated secretory phenotype (SASP), secreting inflammatory proteins into surrounding tissues, and contributing to various age-related pathologies. In addition to this inflammatory protein secretion, the release of extracellular vesicles (EVs) is also upregulated in senescent cells. However, the molecular mechanism underlying this phenomenon remains unclear. Here, we show that DNA damage activates the ceramide synthetic pathway, via the downregulation of sphingomyelin synthase 2 (SMS2) and the upregulation of neutral sphingomyelinase 2 (nSMase2), leading to an increase in senescence-associated EV (SA-EV) biogenesis. The EV biogenesis pathway, together with the autophagy-mediated degradation pathway, functions to block apoptosis by removing cytoplasmic DNA fragments derived from chromosomal DNA or bacterial infections. Our data suggest that this SA-EV pathway may play a prominent role in cellular homeostasis, particularly in senescent cells. In summary, DNA damage provokes SA-EV release by activating the ceramide pathway to protect cells from excessive inflammatory responses.
Collapse
|
8
|
Hooy RM, Massaccesi G, Rousseau KE, Chattergoon MA, Sohn J. Allosteric coupling between Mn2+ and dsDNA controls the catalytic efficiency and fidelity of cGAS. Nucleic Acids Res 2020; 48:4435-4447. [PMID: 32170294 PMCID: PMC7192592 DOI: 10.1093/nar/gkaa084] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/24/2020] [Accepted: 03/11/2020] [Indexed: 12/21/2022] Open
Abstract
Cyclic-G/AMP (cGAMP) synthase (cGAS) triggers host innate immune responses against cytosolic double-stranded (ds)DNA arising from genotoxic stress and pathogen invasion. The canonical activation mechanism of cGAS entails dsDNA-binding and dimerization. Here, we report an unexpected activation mechanism of cGAS in which Mn2+ activates monomeric cGAS without dsDNA. Importantly, the Mn2+-mediated activation positively couples with dsDNA-dependent activation in a concerted manner. Moreover, the positive coupling between Mn2+ and dsDNA length-dependent activation requires the cognate ATP/GTP substrate pair, while negative-cooperativity suppresses Mn2+ utilization by either ATP or GTP alone. Additionally, while Mn2+ accelerates the overall catalytic activity, dsDNA length-dependent dimerization specifically accelerates the cyclization of cGAMP. Together, we demonstrate how the intrinsic allostery of cGAS efficiently yet precisely tunes its activity.
Collapse
Affiliation(s)
- Richard M Hooy
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Guido Massaccesi
- Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Kimberly E Rousseau
- Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Michael A Chattergoon
- Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jungsan Sohn
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
9
|
Broecker F, Moelling K. Evolution of Immune Systems From Viruses and Transposable Elements. Front Microbiol 2019; 10:51. [PMID: 30761103 PMCID: PMC6361761 DOI: 10.3389/fmicb.2019.00051] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Accepted: 01/14/2019] [Indexed: 12/20/2022] Open
Abstract
Virus-derived sequences and transposable elements constitute a substantial portion of many cellular genomes. Recent insights reveal the intimate evolutionary relationship between these sequences and various cellular immune pathways. At the most basic level, superinfection exclusion may be considered a prototypical virus-mediated immune system that has been described in both prokaryotes and eukaryotes. More complex immune mechanisms fully or partially derived from mobile genetic elements include CRISPR-Cas of prokaryotes and the RAG1/2 system of vertebrates, which provide immunological memory of foreign genetic elements and generate antibody and T cell receptor diversity, respectively. In this review, we summarize the current knowledge on the contribution of mobile genetic elements to the evolution of cellular immune pathways. A picture is emerging in which the various cellular immune systems originate from and are spread by viruses and transposable elements. Immune systems likely evolved from simple superinfection exclusion to highly complex defense strategies.
Collapse
Affiliation(s)
- Felix Broecker
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Karin Moelling
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland.,Max Planck Institute for Molecular Genetics, Berlin, Germany
| |
Collapse
|
10
|
Heil M, Vega-Muñoz I. Nucleic Acid Sensing in Mammals and Plants: Facts and Caveats. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 345:225-285. [PMID: 30904194 DOI: 10.1016/bs.ircmb.2018.10.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The accumulation of nucleic acids in aberrant compartments is a signal of danger: fragments of cytosolic or extracellular self-DNA indicate cellular dysfunctions or disruption, whereas cytosolic fragments of nonself-DNA or RNA indicate infections. Therefore, nucleic acids trigger immunity in mammals and plants. In mammals, endosomal Toll-like receptors (TLRs) sense single-stranded (ss) or double-stranded (ds) RNA or CpG-rich DNA, whereas various cytosolic receptors sense dsDNA. Although a self/nonself discrimination could favor targeted immune responses, no sequence-specific sensing of nucleic acids has been reported for mammals. Specific immune responses to extracellular self-DNA versus DNA from related species were recently reported for plants, but the underlying mechanism remains unknown. The subcellular localization of mammalian receptors can favor self/nonself discrimination based on the localization of DNA fragments. However, autoantibodies and diverse damage-associated molecular patterns (DAMPs) shuttle DNA through membranes, and most of the mammalian receptors share downstream signaling elements such as stimulator of interferon genes (STING) and the master transcription regulators, nuclear factor (NF)-κB, and interferon regulatory factor 3 (IRF3). The resulting type I interferon (IFN) response stimulates innate immunity against multiple threats-from infection to physical injury or endogenous DNA damage-all of which lead to the accumulation of eDNA or cytoplasmatic dsDNA. Therefore, no or only low selective pressures might have favored a strict self/nonself discrimination in nucleic acid sensing. We conclude that the discrimination between self- and nonself-DNA is likely to be less strict-and less important-than assumed originally.
Collapse
Affiliation(s)
- Martin Heil
- Departmento de Ingeniería Genética, CINVESTAV-Irapuato, Irapuato, Guanajuato, Mexico.
| | - Isaac Vega-Muñoz
- Departmento de Ingeniería Genética, CINVESTAV-Irapuato, Irapuato, Guanajuato, Mexico
| |
Collapse
|