1
|
Gao J, Zhang X, Ding J, Zhang H, Zhang X, Jiang J, Chen W. The characteristic expression of circulating MicroRNAs in osteoporosis: a systematic review and meta-analysis. Front Endocrinol (Lausanne) 2024; 15:1481649. [PMID: 39736860 PMCID: PMC11682891 DOI: 10.3389/fendo.2024.1481649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 11/18/2024] [Indexed: 01/01/2025] Open
Abstract
Objective To evaluate the characteristics of the circulating microRNA expression profiles in patients with osteoporosis. Methods A systematic literature search was performed using the Web of Science, PubMed, Embase, Cochrane Library, China National Knowledge Infrastructure (CNKI), VIP, and WANFANG databases from inception until 1 March 2024. The search strategy employed keywords, encompassing "osteoporosis", "bone loss", or "osteopenia" and "miRNA" or "microRNA". The Newcastle-Ottawa Scale (NOS) quality assessment scale was used to evaluate the methodological quality. Heterogeneity tests and statistical analyses of all data were performed by Stata 16.0. The differences in microRNA levels between groups were illustrated by the weighted mean difference (WMD) and 95% confidence interval (95% CI). Results A total of 27 studies were included and analyzed in the meta-analysis, with 2,263 participants. The results showed that miR-21-5p (WMD 0.88, 95% CI: 0.22 to 1.55), miR-125b-5p (WMD 6.63, 95% CI: 0.19 to 13.08), miR-483-5p(WMD 6.43, 95% CI: 3.26 to 9.61), miR-133a (WMD 1.43, 95% CI: 1.39 to 1.47), miR-422a (WMD 1, 95% CI: 0.28 to 1.72), and miR-214-3p (WMD 2.03, 95% CI: 0.14 to 3.92) were significantly upregulated, and miR-497-5p (WMD -0.57, 95% CI: -0.98 to -0.17) was significantly downregulated. Conclusion miR-21-5p, miR-125b-5p, miR-483-5p, miR-133a, miR-497-5p, miR-422a, and miR-214-3p might serve as potential diagnostic biomarkers for osteoporosis. In the future, integrating these miRNAs to build a diagnostic model might be a promising diagnosis strategy for osteoporosis. Systematic review registration https://www.crd.york.ac.uk/PROSPERO/ , identifier CRD42023481209.
Collapse
Affiliation(s)
- Jie Gao
- Department of Pharmacy, the Second Affiliated Hospital of Shandong First Medical University, Tai’an, China
| | - Xiuzhen Zhang
- Department of Pharmacy, the Second Affiliated Hospital of Shandong First Medical University, Tai’an, China
| | - Jing Ding
- Department of Pharmacy, the Second Affiliated Hospital of Shandong First Medical University, Tai’an, China
| | - Houli Zhang
- Department of Pharmacy, the Second Affiliated Hospital of Shandong First Medical University, Tai’an, China
| | - Xu Zhang
- Department of Pharmacy, the Second Affiliated Hospital of Shandong First Medical University, Tai’an, China
| | - Juan Jiang
- Department of Stomatology, the Second Affiliated Hospital of Shandong First Medical University, Tai’an, China
| | - Wenwen Chen
- Department of Pharmacy, the Second Affiliated Hospital of Shandong First Medical University, Tai’an, China
| |
Collapse
|
2
|
Balci S, Orucoglu N, Yildirim DD, Eroglan C, Cimen ÖB, Tamer L, Cimen MBY. The role of circulating miRNAs in the diagnosis of osteoporosis miRNAs in osteoporosis. REVISTA DA ASSOCIACAO MEDICA BRASILEIRA (1992) 2024; 70:e20231724. [PMID: 39292080 PMCID: PMC11404988 DOI: 10.1590/1806-9282.20231724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 06/26/2024] [Indexed: 09/19/2024]
Abstract
OBJECTIVE Osteoporosis, defined as a systemic skeletal disease, is characterized by increased bone fragility and fracture risk. Studies have shown that dysregulation of the functions of miRNAs or the mechanisms they mediate may be an important pathological factor in bone degeneration. Therefore, the aim of the study was to determine the role of miRNAs, which are thought to play a role in bone metabolism, in osteoporosis. METHODS The study included 48 patients who were diagnosed with osteoporosis according to the results of a bone mineral density assessment by quantitative computed tomography and 36 healthy individuals. MiRNAs from plasma samples obtained from blood samples taken into ethylenediaminetetraacetic acid (EDTA) tubes were isolated with the miRNA isolation kit and converted to cDNA. Expression analysis of miR-21-5p, miR-34a-5p, miR-210, miR-122-5p, miR-125b-5p, miR-133a, miR-143-3p, miR-146a, miR-155-5p, and miR-223 was performed on the real-time PCR (RT-PCR) device. RESULTS When miRNA expression levels in the patient group were compared with the control group, all miRNAs were found to be downregulated in the patients. When fold changes in expression levels in the patient group were examined, significant differences were found in miR-21-5p, miR-133a, mir143-3p, miR-210, and miR-223. In the receiver operating curve analysis, area under the curve=0.882 for the combination of miR-34, miR-125, miR-133, and miR-210. CONCLUSION In this study, it was determined that the combined effects of miRNAs, as well as their single effects, were effective in the development of osteoporosis. Therefore, a miRNA panel to be created can make a significant contribution to the development of novel diagnostic and treatment approaches for this disease.
Collapse
Affiliation(s)
- Senay Balci
- Mersin University, Medical Faculty, Department of Medical Biochemistry - Mersin, Turkey
| | - Nurdan Orucoglu
- Mersin University, Medical Faculty, Department of Rheumatology - Mersin, Turkey
| | | | - Cagri Eroglan
- Mersin University, Medical Faculty, Department of Medical Biochemistry - Mersin, Turkey
| | - Özlem Bolgen Cimen
- Mersin University, Medical Faculty, Department of Physical Medicine and Rehabilitation - Mersin, Turkey
| | - Lulufer Tamer
- Mersin University, Medical Faculty, Department of Medical Biochemistry - Mersin, Turkey
| | | |
Collapse
|
3
|
Choi JH, Sung SE, Kang KK, Lee S, Sung M, Park WT, Kim YI, Seo MS, Lee GW. Extracellular Vesicles from Human Adipose Tissue-Derived Mesenchymal Stem Cells Suppress RANKL-Induced Osteoclast Differentiation via miR122-5p. Biochem Genet 2024; 62:2830-2852. [PMID: 38017286 DOI: 10.1007/s10528-023-10569-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 10/26/2023] [Indexed: 11/30/2023]
Abstract
Researchers are increasingly interested in cell therapy using mesenchymal stem cells (MSCs) as an alternative remedy for osteoporosis, with fewer side effects. Thus, we isolated and characterized extracellular vesicles (EVs) from human adipose tissue-derived MSCs (hMSCs) and investigated their inhibitory effects on RANKL-induced osteoclast differentiation. Purified EVs were collected from the supernatant of hMSCs by tangential flow filtration. Characterization of EVs included typical evaluation of the size and concentration of EVs by nanoparticle tracking analysis and morphology analysis using transmission electron microscopy. hMSC-EVs inhibited RANKL-induced differentiation of bone marrow-derived macrophages (BMDMs) into osteoclasts in a dose-dependent manner. F-actin ring formation and bone resorption were also reduced by EV treatment of osteoclasts. In addition, EVs decreased RANKL-induced phosphorylation of p38 and JNK and expression of osteoclastogenesis-related genes in BMDMs treated with RANKL. To elucidate which part of the hMSC-EVs plays a role in the inhibition of osteoclast differentiation, we analyzed miRNA profiles in hMSC-EVs. The results showed that has-miR122-5p was present at significantly high read counts. Overexpression of miR122-5p in BMDMs significantly inhibited RANKL-induced osteoclast differentiation and induced defects in F-actin ring formation and bone resorption. Our results also revealed that RANKL-induced phosphorylation of p38 and JNK and osteoclast-specific gene expression was decreased by miR122-5p transfection, which was consistent with the results of hMSC-EVs. These findings suggest that hMSC-EVs containing miR122-5p inhibit RANKL-induced osteoclast differentiation via the downregulation of molecular mechanisms and could be a preventive candidate for destructive bone diseases.
Collapse
Affiliation(s)
- Joo-Hee Choi
- Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, 41061, Republic of Korea
| | - Soo-Eun Sung
- Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, 41061, Republic of Korea
| | - Kyung-Ku Kang
- Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, 41061, Republic of Korea
| | - Sijoon Lee
- Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, 41061, Republic of Korea
| | - Minkyoung Sung
- Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, 41061, Republic of Korea
| | - Wook-Tae Park
- Department of Orthopedic Surgery, Yeungnam University College of Medicine, Yeungnam University Medical Center, 170 Hyonchung-ro, Namgu, Daegu, 42415, Republic of Korea
| | | | - Min-Soo Seo
- Department of Veterinary Tissue Engineering, Laboratory of Veterinary Tissue Engineering, College of Veterinary Medicine, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, Republic of Korea.
| | - Gun Woo Lee
- Department of Orthopedic Surgery, Yeungnam University College of Medicine, Yeungnam University Medical Center, 170 Hyonchung-ro, Namgu, Daegu, 42415, Republic of Korea.
| |
Collapse
|
4
|
Jiménez-Ortega RF, Ortega-Meléndez AI, Patiño N, Rivera-Paredez B, Hidalgo-Bravo A, Velázquez-Cruz R. The Involvement of microRNAs in Bone Remodeling Signaling Pathways and Their Role in the Development of Osteoporosis. BIOLOGY 2024; 13:505. [PMID: 39056698 PMCID: PMC11273958 DOI: 10.3390/biology13070505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/26/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024]
Abstract
Bone remodeling, crucial for maintaining the balance between bone resorption and formation, relies on the coordinated activity of osteoclasts and osteoblasts. During osteoclastogenesis, hematopoietic stem cells (HSCs) differentiate into the osteoclast lineage through the signaling pathways OPG/RANK/RANKL. On the other hand, during osteoblastogenesis, mesenchymal stem cells (MSCs) differentiate into the osteoblast lineage through activation of the signaling pathways TGF-β/BMP/Wnt. Recent studies have shown that bone remodeling is regulated by post-transcriptional mechanisms including microRNAs (miRNAs). miRNAs are small, single-stranded, noncoding RNAs approximately 22 nucleotides in length. miRNAs can regulate virtually all cellular processes through binding to miRNA-response elements (MRE) at the 3' untranslated region (3'UTR) of the target mRNA. miRNAs are involved in controlling gene expression during osteogenic differentiation through the regulation of key signaling cascades during bone formation and resorption. Alterations of miRNA expression could favor the development of bone disorders, including osteoporosis. This review provides a general description of the miRNAs involved in bone remodeling and their significance in osteoporosis development.
Collapse
Affiliation(s)
- Rogelio F. Jiménez-Ortega
- Laboratorio de Genómica del Metabolismo Óseo, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City 14610, Mexico;
- Unidad de Acupuntura Humana Rehabilitatoria, Universidad Estatal del Valle de Ecatepec (UNEVE), Ecatepec de Morelos 55210, Mexico
| | - Alejandra I. Ortega-Meléndez
- Unidad Académica de Ciencias de la Salud, Universidad ETAC Campus Coacalco, Coacalco de Berriozábal 55700, Mexico;
| | - Nelly Patiño
- Unidad de Citometría de Flujo (UCiF), Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City 14610, Mexico;
| | - Berenice Rivera-Paredez
- Centro de Investigación en Políticas, Población y Salud, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
| | - Alberto Hidalgo-Bravo
- Departamento de Medicina Genómica, Instituto Nacional de Rehabilitación, Mexico City 14389, Mexico;
| | - Rafael Velázquez-Cruz
- Laboratorio de Genómica del Metabolismo Óseo, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City 14610, Mexico;
| |
Collapse
|
5
|
Yadav R, Srivastava RN, Kumar D, Sharma A, Srivastava SR, Pant S, Raj S, Mehdi AA, Parmar D. Role of Serum Micro-RNA-122-5p Expression as a Circulatory Biomarker in People Having Both Knee Osteoarthritis and Osteoporosis: A Case-Control Study. Cureus 2024; 16:e60844. [PMID: 38910745 PMCID: PMC11191674 DOI: 10.7759/cureus.60844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/22/2024] [Indexed: 06/25/2024] Open
Abstract
Background Although knee osteoarthritis (KOA) and osteoporosis (OP) manifest distinct pathophysiologies, they share numerous similarities. These health conditions are commonly found in older individuals, particularly among women. The objective of this study is to explore the expression of micro-RNA (miRNA) 122-5p (miR-122-5p) in people affected by both KOA and OP. The main aim is to identify diagnostic biomarkers and potential therapeutic targets, which could help develop personalized treatment approaches. Methods As part of the study, a total of 268 serum samples were collected from the participants, who were divided into four groups: KOA, OP, KOA and OP, and controls, with 67 subjects per group. The miRNA species-containing total RNA was isolated from the serum samples using an miRNeasy serum/plasma kit by QIAGEN (Hilden, Germany). The expression of miR-122-5p was examined in each group using real-time quantitative polymerase chain reaction. Results Expression of miR-122-5p in all three groups (KOA, OP, and common group of KOA and OP) was significantly upregulated, and the fold change value was much higher in the group having both diseases. Conclusions These results might contribute to the identification of cases at risk, early diagnosis, and development, and might also contribute to the development of therapeutic targets in subjects having both KOA and OP.
Collapse
Affiliation(s)
- Rashmi Yadav
- Department of Orthopedic Surgery, King George's Medical University, Lucknow, IND
| | | | - Dharmendra Kumar
- Department of Orthopedic Surgery, King George's Medical University, Lucknow, IND
| | - Amar Sharma
- Department of Orthopedic Surgery, King George's Medical University, Lucknow, IND
| | | | - Shatakshi Pant
- Department of Orthopedic Surgery, King George's Medical University, Lucknow, IND
| | - Saloni Raj
- Department of Epidemiology and Public Health, Westminster College, Utah, USA
| | - Abbas A Mehdi
- Department of Biochemistry, King George's Medical University, Lucknow, IND
| | - Devendra Parmar
- Department of Developmental Toxicology, Indian Institute of Toxicology Research, Lucknow, IND
| |
Collapse
|
6
|
Dai GC, Wang H, Ming Z, Lu PP, Li YJ, Gao YC, Shi L, Cheng Z, Liu XY, Rui YF. Heterotopic mineralization (ossification or calcification) in aged musculoskeletal soft tissues: A new candidate marker for aging. Ageing Res Rev 2024; 95:102215. [PMID: 38325754 DOI: 10.1016/j.arr.2024.102215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/21/2024] [Accepted: 02/01/2024] [Indexed: 02/09/2024]
Abstract
Aging can lead to various disorders in organisms and with the escalating impact of population aging, the incidence of age-related diseases is steadily increasing. As a major risk factor for chronic illnesses in humans, the prevention and postponement of aging have become focal points of research among numerous scientists. Aging biomarkers, which mirror molecular alterations at diverse levels in organs, tissues, and cells, can be used to monitor and evaluate biological changes associated with aging. Currently, aging biomarkers are primarily categorized into physiological traits, imaging characteristics, histological features, cellular-level alterations, and molecular-level changes that encompass the secretion of aging-related factors. However, in the context of the musculoskeletal soft tissue system, aging-related biological indicators primarily involve microscopic parameters at the cellular and molecular levels, resulting in inconvenience and uncertainty in the assessment of musculoskeletal soft tissue aging. To identify convenient and effective indicators, we conducted a comprehensive literature review to investigate the correlation between ectopic mineralization and age-related changes in the musculoskeletal soft tissue system. Here, we introduce the concept of ectopic mineralization as a macroscopic, reliable, and convenient biomarker for musculoskeletal soft tissue aging and present novel targets and strategies for the future management of age-related musculoskeletal soft tissue disorders.
Collapse
Affiliation(s)
- Guang-Chun Dai
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, No. 87 Ding Jia Qiao, Nanjing, Jiangsu 210009, PR China; Orthopaedic Trauma Institute, Southeast University, No. 87 Ding Jia Qiao, Nanjing, Jiangsu 210009, PR China; Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, No. 87 Ding Jia Qiao, Nanjing, Jiangsu 210009, PR China
| | - Hao Wang
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, No. 87 Ding Jia Qiao, Nanjing, Jiangsu 210009, PR China; Orthopaedic Trauma Institute, Southeast University, No. 87 Ding Jia Qiao, Nanjing, Jiangsu 210009, PR China; Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, No. 87 Ding Jia Qiao, Nanjing, Jiangsu 210009, PR China
| | - Zhang Ming
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, No. 87 Ding Jia Qiao, Nanjing, Jiangsu 210009, PR China; Orthopaedic Trauma Institute, Southeast University, No. 87 Ding Jia Qiao, Nanjing, Jiangsu 210009, PR China; Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, No. 87 Ding Jia Qiao, Nanjing, Jiangsu 210009, PR China
| | - Pan-Pan Lu
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, No. 87 Ding Jia Qiao, Nanjing, Jiangsu 210009, PR China; Orthopaedic Trauma Institute, Southeast University, No. 87 Ding Jia Qiao, Nanjing, Jiangsu 210009, PR China; Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, No. 87 Ding Jia Qiao, Nanjing, Jiangsu 210009, PR China
| | - Ying-Juan Li
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, No. 87 Ding Jia Qiao, Nanjing, Jiangsu 210009, PR China; Orthopaedic Trauma Institute, Southeast University, No. 87 Ding Jia Qiao, Nanjing, Jiangsu 210009, PR China; Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, No. 87 Ding Jia Qiao, Nanjing, Jiangsu 210009, PR China
| | - Yu-Cheng Gao
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, No. 87 Ding Jia Qiao, Nanjing, Jiangsu 210009, PR China; Orthopaedic Trauma Institute, Southeast University, No. 87 Ding Jia Qiao, Nanjing, Jiangsu 210009, PR China; Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, No. 87 Ding Jia Qiao, Nanjing, Jiangsu 210009, PR China
| | - Liu Shi
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, No. 87 Ding Jia Qiao, Nanjing, Jiangsu 210009, PR China; Orthopaedic Trauma Institute, Southeast University, No. 87 Ding Jia Qiao, Nanjing, Jiangsu 210009, PR China; Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, No. 87 Ding Jia Qiao, Nanjing, Jiangsu 210009, PR China
| | - Zhang Cheng
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, No. 87 Ding Jia Qiao, Nanjing, Jiangsu 210009, PR China; Orthopaedic Trauma Institute, Southeast University, No. 87 Ding Jia Qiao, Nanjing, Jiangsu 210009, PR China; Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, No. 87 Ding Jia Qiao, Nanjing, Jiangsu 210009, PR China
| | - Xiao-Yu Liu
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, No. 87 Ding Jia Qiao, Nanjing, Jiangsu 210009, PR China; Orthopaedic Trauma Institute, Southeast University, No. 87 Ding Jia Qiao, Nanjing, Jiangsu 210009, PR China; Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, No. 87 Ding Jia Qiao, Nanjing, Jiangsu 210009, PR China
| | - Yun-Feng Rui
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, No. 87 Ding Jia Qiao, Nanjing, Jiangsu 210009, PR China; Orthopaedic Trauma Institute, Southeast University, No. 87 Ding Jia Qiao, Nanjing, Jiangsu 210009, PR China; Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, No. 87 Ding Jia Qiao, Nanjing, Jiangsu 210009, PR China.
| |
Collapse
|
7
|
Raimondi L, De Luca A, Gallo A, Perna F, Cuscino N, Cordaro A, Costa V, Bellavia D, Faldini C, Scilabra SD, Giavaresi G, Toscano A. Investigating the Differential Circulating microRNA Expression in Adolescent Females with Severe Idiopathic Scoliosis: A Proof-of-Concept Observational Clinical Study. Int J Mol Sci 2024; 25:570. [PMID: 38203740 PMCID: PMC10779108 DOI: 10.3390/ijms25010570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
Adolescent Idiopathic Scoliosis (AIS) is the most common form of three-dimensional spinal disorder in adolescents between the ages of 10 and 18 years of age, most commonly diagnosed in young women when severe disease occurs. Patients with AIS are characterized by abnormal skeletal growth and reduced bone mineral density. The etiology of AIS is thought to be multifactorial, involving both environmental and genetic factors, but to date, it is still unknown. Therefore, it is crucial to further investigate the molecular pathogenesis of AIS and to identify biomarkers useful for predicting curve progression. In this perspective, the relative abundance of a panel of microRNAs (miRNAs) was analyzed in the plasma of 20 AIS patients and 10 healthy controls (HC). The data revealed a significant group of circulating miRNAs dysregulated in AIS patients compared to HC. Further bioinformatic analyses evidenced a more restricted expression of some miRNAs exclusively in severe AIS females. These include some members of the miR-30 family, which are considered promising regulators for treating bone diseases. We demonstrated circulating extracellular vesicles (EVs) from severe AIS females contained miR-30 family members and decreased the osteogenic differentiation of mesenchymal stem cells. Proteomic analysis of EVs highlighted the expression of proteins associated with orthopedic disease. This study provides preliminary evidence of a miRNAs signature potentially associated with severe female AIS and suggests the corresponding vesicular component may affect cellular mechanisms crucial in AIS, opening the scenario for in-depth studies on prognostic differences related to gender and grade.
Collapse
Affiliation(s)
- Lavinia Raimondi
- Scienze e Tecnologie Chirurgiche, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano, 1/10, 40136 Bologna, Italy; (L.R.)
| | - Angela De Luca
- Scienze e Tecnologie Chirurgiche, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano, 1/10, 40136 Bologna, Italy; (L.R.)
| | - Alessia Gallo
- Dipartimento di Ricerca, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), 90127 Palermo, Italy
| | - Fabrizio Perna
- Ortopedia Generale, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano, 1/10, 40136 Bologna, Italy (A.T.)
| | - Nicola Cuscino
- Dipartimento di Ricerca, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), 90127 Palermo, Italy
| | - Aurora Cordaro
- Scienze e Tecnologie Chirurgiche, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano, 1/10, 40136 Bologna, Italy; (L.R.)
| | - Viviana Costa
- Scienze e Tecnologie Chirurgiche, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano, 1/10, 40136 Bologna, Italy; (L.R.)
| | - Daniele Bellavia
- Scienze e Tecnologie Chirurgiche, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano, 1/10, 40136 Bologna, Italy; (L.R.)
| | - Cesare Faldini
- Clinica Ortopedica e Traumatologica I, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano, 1/10, 40136 Bologna, Italy
| | - Simone Dario Scilabra
- Fondazione Ri.MED, Dipartimento di Ricerca IRCCS ISMETT, Via Ernesto Tricomi 5, 90145 Palermo, Italy
| | - Gianluca Giavaresi
- Scienze e Tecnologie Chirurgiche, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano, 1/10, 40136 Bologna, Italy; (L.R.)
| | - Angelo Toscano
- Ortopedia Generale, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano, 1/10, 40136 Bologna, Italy (A.T.)
| |
Collapse
|
8
|
Baniasadi M, Talebi S, Mokhtari K, Zabolian AH, Khosroshahi EM, Entezari M, Dehkhoda F, Nabavi N, Hashemi M. Role of non-coding RNAs in osteoporosis. Pathol Res Pract 2024; 253:155036. [PMID: 38134836 DOI: 10.1016/j.prp.2023.155036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/10/2023] [Accepted: 12/10/2023] [Indexed: 12/24/2023]
Abstract
Osteoporosis, a prevalent bone disorder influenced by genetic and environmental elements, significantly increases the likelihood of fractures and bone weakness, greatly affecting the lives of those afflicted. Yet, the exact epigenetic processes behind the onset of osteoporosis are still unclear. Growing research indicates that epigenetic changes could act as vital mediators that connect genetic tendencies and environmental influences, thereby increasing the risk of osteoporosis and bone fractures. Within these epigenetic factors, certain types of RNA, such as microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), have been recognized as key regulatory elements. These RNA types wield significant influence on gene expression through epigenetic regulation, directing various biological functions essential to bone metabolism. This extensive review compiles current research uncovering the complex ways in which miRNAs, lncRNAs, and circRNAs are involved in the development of osteoporosis, especially in osteoblasts and osteoclasts. Gaining a more profound understanding of the roles these three RNA classes play in osteoporosis could reveal new diagnostic methods and treatment approaches for this incapacitating condition. In conclusion, this review delves into the complex domain of epigenetic regulation via non-coding RNA in osteoporosis. It sheds light on the complex interactions and mechanisms involving miRNAs, lncRNAs, and circRNAs within osteoblasts and osteoclasts, offering an in-depth understanding of the less explored aspects of osteoporosis pathogenesis. These insights not only reveal the complexity of the disease but also offer significant potential for developing new diagnostic methods and targeted treatments. Therefore, this review marks a crucial step in deciphering the elusive complexities of osteoporosis, leading towards improved patient care and enhanced quality of life.
Collapse
Affiliation(s)
- Mojtaba Baniasadi
- Department of Orthopedics, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sina Talebi
- Department of Orthopedics, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Khatere Mokhtari
- Department of Cellular and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran; Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan,Iran
| | - Amir Hossein Zabolian
- Department of Orthopedics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elahe Mohandesi Khosroshahi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Farshid Dehkhoda
- Department of Orthopedics, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Noushin Nabavi
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
9
|
Philippe S, Delay M, Macian N, Morel V, Pickering ME. Common miRNAs of Osteoporosis and Fibromyalgia: A Review. Int J Mol Sci 2023; 24:13513. [PMID: 37686318 PMCID: PMC10488272 DOI: 10.3390/ijms241713513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
A significant clinical association between osteoporosis (OP) and fibromyalgia (FM) has been shown in the literature. Given the need for specific biomarkers to improve OP and FM management, common miRNAs might provide promising tracks for future prevention and treatment. The aim of this review is to identify miRNAs described in OP and FM, and dysregulated in the same direction in both pathologies. The PubMed database was searched until June 2023, with a clear mention of OP, FM, and miRNA expression. Clinical trials, case-control, and cross-sectional studies were included. Gray literature was not searched. Out of the 184 miRNAs found in our research, 23 are shared by OP and FM: 7 common miRNAs are dysregulated in the same direction for both pathologies (3 up-, 4 downregulated). The majority of these common miRNAs are involved in the Wnt pathway and the cholinergic system and a possible link has been highlighted. Further studies are needed to explore this relationship. Moreover, the harmonization of technical methods is necessary to confirm miRNAs shared between OP and FM.
Collapse
Affiliation(s)
- Soline Philippe
- Platform of Clinical Investigation Department, Inserm CIC 1405, University Hospital Clermont-Ferrand, F-63000 Clermont-Ferrand, France; (S.P.); (M.D.); (N.M.); (V.M.)
| | - Marine Delay
- Platform of Clinical Investigation Department, Inserm CIC 1405, University Hospital Clermont-Ferrand, F-63000 Clermont-Ferrand, France; (S.P.); (M.D.); (N.M.); (V.M.)
- Inserm 1107, Neuro-Dol, University Clermont Auvergne, F-63000 Clermont-Ferrand, France
| | - Nicolas Macian
- Platform of Clinical Investigation Department, Inserm CIC 1405, University Hospital Clermont-Ferrand, F-63000 Clermont-Ferrand, France; (S.P.); (M.D.); (N.M.); (V.M.)
| | - Véronique Morel
- Platform of Clinical Investigation Department, Inserm CIC 1405, University Hospital Clermont-Ferrand, F-63000 Clermont-Ferrand, France; (S.P.); (M.D.); (N.M.); (V.M.)
| | - Marie-Eva Pickering
- Rheumatology Department, University Hospital Clermont-Ferrand, F-63000 Clermont-Ferrand, France
| |
Collapse
|
10
|
An F, Wang X, Wang C, Liu Y, Sun B, Zhang J, Gao P, Yan C. Research progress on the role of lncRNA-miRNA networks in regulating adipogenic and osteogenic differentiation of bone marrow mesenchymal stem cells in osteoporosis. Front Endocrinol (Lausanne) 2023; 14:1210627. [PMID: 37645421 PMCID: PMC10461560 DOI: 10.3389/fendo.2023.1210627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 07/26/2023] [Indexed: 08/31/2023] Open
Abstract
Osteoporosis (OP) is characterized by a decrease in osteoblasts and an increase in adipocytes in the bone marrow compartment, alongside abnormal bone/fat differentiation, which ultimately results in imbalanced bone homeostasis. Bone marrow mesenchymal stem cells (BMSCs) can differentiate into osteoblasts and adipocytes to maintain bone homeostasis. Several studies have shown that lncRNAs are competitive endogenous RNAs that form a lncRNA-miRNA network by targeting miRNA for the regulation of bone/fat differentiation in BMSCs; this mechanism is closely related to the corresponding treatment of OP and is important in the development of novel OP-targeted therapies. However, by reviewing the current literature, it became clear that there are limited summaries discussing the effects of the lncRNA-miRNA network on osteogenic/adipogenic differentiation in BMSCs. Therefore, this article provides a review of the current literature to explore the impact of the lncRNA-miRNA network on the osteogenic/adipogenic differentiation of BMSCs, with the aim of providing a new theoretical basis for the treatment of OP.
Collapse
Affiliation(s)
- Fangyu An
- Teaching Experiment Training Center, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Xiaxia Wang
- School of Tradional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Chunmei Wang
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Ying Liu
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Bai Sun
- School of Tradional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Jie Zhang
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Peng Gao
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Chunlu Yan
- School of Tradional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| |
Collapse
|
11
|
Kaur J, Saul D, Doolittle ML, Farr JN, Khosla S, Monroe DG. MicroRNA- 19a- 3p Decreases with Age in Mice and Humans and Inhibits Osteoblast Senescence. JBMR Plus 2023; 7:e10745. [PMID: 37283656 PMCID: PMC10241091 DOI: 10.1002/jbm4.10745] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/23/2023] [Accepted: 03/27/2023] [Indexed: 06/08/2023] Open
Abstract
Aging is a major risk factor for most chronic diseases, including osteoporosis, and is characterized by an accumulation of senescent cells in various tissues. MicroRNAs (miRNAs) are critical regulators of bone aging and cellular senescence. Here, we report that miR-19a-3p decreases with age in bone samples from mice as well as in posterior iliac crest bone biopsies of younger versus older healthy women. miR-19a-3p also decreased in mouse bone marrow stromal cells following induction of senescence using etoposide, H2O2, or serial passaging. To explore the transcriptomic effects of miR-19a-3p, we performed RNA sequencing of mouse calvarial osteoblasts transfected with control or miR-19a-3p mimics and found that miR-19a-3p overexpression significantly altered the expression of various senescence, senescence-associated secretory phenotype-related, and proliferation genes. Specifically, miR-19a-3p overexpression in nonsenescent osteoblasts significantly suppressed p16 Ink4a and p21 Cip1 gene expression and increased their proliferative capacity. Finally, we established a novel senotherapeutic role for this miRNA by treating miR-19a-3p expressing cells with H2O2 to induce senescence. Interestingly, these cells exhibited lower p16 Ink4a and p21 Cip1 expression, increased proliferation-related gene expression, and reduced SA-β-Gal+ cells. Our results thus establish that miR-19a-3p is a senescence-associated miRNA that decreases with age in mouse and human bones and is a potential senotherapeutic target for age-related bone loss. © 2023 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Japneet Kaur
- Division of Endocrinology, Department of MedicineMayo Clinic College of MedicineRochesterMNUSA
- Robert and Arlene Kogod Center on AgingMayo ClinicRochesterMNUSA
| | - Dominik Saul
- Division of Endocrinology, Department of MedicineMayo Clinic College of MedicineRochesterMNUSA
- Robert and Arlene Kogod Center on AgingMayo ClinicRochesterMNUSA
| | - Madison L. Doolittle
- Division of Endocrinology, Department of MedicineMayo Clinic College of MedicineRochesterMNUSA
- Robert and Arlene Kogod Center on AgingMayo ClinicRochesterMNUSA
| | - Joshua N. Farr
- Division of Endocrinology, Department of MedicineMayo Clinic College of MedicineRochesterMNUSA
- Robert and Arlene Kogod Center on AgingMayo ClinicRochesterMNUSA
| | - Sundeep Khosla
- Division of Endocrinology, Department of MedicineMayo Clinic College of MedicineRochesterMNUSA
- Robert and Arlene Kogod Center on AgingMayo ClinicRochesterMNUSA
| | - David G. Monroe
- Division of Endocrinology, Department of MedicineMayo Clinic College of MedicineRochesterMNUSA
- Robert and Arlene Kogod Center on AgingMayo ClinicRochesterMNUSA
| |
Collapse
|
12
|
Huber J, Longaker MT, Quarto N. Circulating and extracellular vesicle-derived microRNAs as biomarkers in bone-related diseases. Front Endocrinol (Lausanne) 2023; 14:1168898. [PMID: 37293498 PMCID: PMC10244776 DOI: 10.3389/fendo.2023.1168898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 03/31/2023] [Indexed: 06/10/2023] Open
Abstract
MicroRNAs (miRNA) are small non-coding RNA molecules that regulate posttranscriptional gene expression by repressing messengerRNA-targets. MiRNAs are abundant in many cell types and are secreted into extracellular fluids, protected from degradation by packaging in extracellular vesicles. These circulating miRNAs are easily accessible, disease-specific and sensitive to small changes, which makes them ideal biomarkers for diagnostic, prognostic, predictive or monitoring purposes. Specific miRNA signatures can be reflective of disease status and development or indicators of poor treatment response. This is especially important in malignant diseases, as the ease of accessibility of circulating miRNAs circumvents the need for invasive tissue biopsy. In osteogenesis, miRNAs can act either osteo-enhancing or osteo-repressing by targeting key transcription factors and signaling pathways. This review highlights the role of circulating and extracellular vesicle-derived miRNAs as biomarkers in bone-related diseases, with a specific focus on osteoporosis and osteosarcoma. To this end, a comprehensive literature search has been performed. The first part of the review discusses the history and biology of miRNAs, followed by a description of different types of biomarkers and an update of the current knowledge of miRNAs as biomarkers in bone related diseases. Finally, limitations of miRNAs biomarker research and future perspectives will be presented.
Collapse
Affiliation(s)
- Julika Huber
- Hagey Laboratory for Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, United States
- Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, United States
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, United States
- Department of Plastic Surgery, University Hospital Bergmannsheil Bochum, Bochum, Germany
| | - Michael T. Longaker
- Hagey Laboratory for Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, United States
- Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, United States
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, United States
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Natalina Quarto
- Hagey Laboratory for Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, United States
- Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, United States
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
13
|
Doghish AS, Elballal MS, Elazazy O, Elesawy AE, Shahin RK, Midan HM, Sallam AAM, Elbadry AM, Mohamed AK, Ishak NW, Hassan KA, Ayoub AM, Shalaby RE, Elrebehy MA. miRNAs as potential game-changers in bone diseases: Future medicinal and clinical uses. Pathol Res Pract 2023; 245:154440. [PMID: 37031531 DOI: 10.1016/j.prp.2023.154440] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/30/2023] [Accepted: 04/02/2023] [Indexed: 04/08/2023]
Abstract
MicroRNAs (miRNAs), short, highly conserved non-coding RNA, influence gene expression by sequential mechanisms such as mRNA breakdown or translational repression. Many biological processes depend on these regulating substances, thus changes in their expression have an impact on the maintenance of cellular homeostasis and result in the emergence of a variety of diseases. Relevant studies have shown in recent years that miRNAs are involved in many stages of bone development and growth. Additionally, abnormal production of miRNA in bone tissues has been closely associated with the development of numerous bone disorders, such as osteonecrosis, bone cancer, and bone metastases. Many pathological processes, including bone loss, metastasis, the proliferation of osteosarcoma cells, and differentiation of osteoblasts and osteoclasts, are under the control of miRNAs. By bringing together the most up-to-date information on the clinical relevance of miRNAs in such diseases, this study hopes to further the study of the biological features of miRNAs in bone disorders and explore their potential as a therapeutic target.
Collapse
|
14
|
Sharing Circulating Micro-RNAs between Osteoporosis and Sarcopenia: A Systematic Review. Life (Basel) 2023; 13:life13030602. [PMID: 36983758 PMCID: PMC10051676 DOI: 10.3390/life13030602] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 02/24/2023] Open
Abstract
Background: Osteosarcopenia, a combination of osteopenia/osteoporosis and sarcopenia, is a common condition among older adults. While numerous studies and meta-analyses have been conducted on osteoporosis biomarkers, biomarker utility in osteosarcopenia still lacks evidence. Here, we carried out a systematic review to explore and analyze the potential clinical of circulating microRNAs (miRs) shared between osteoporosis/osteopenia and sarcopenia. Methods: We performed a systematic review on PubMed, Scopus, and Embase for differentially expressed miRs (p-value < 0.05) in (i) osteoporosis and (ii) sarcopenia. Following screening for title and abstract and deduplication, 83 studies on osteoporosis and 11 on sarcopenia were identified for full-text screening. Full-text screening identified 54 studies on osteoporosis, 4 on sarcopenia, and 1 on both osteoporosis and sarcopenia. Results: A total of 69 miRs were identified for osteoporosis and 14 for sarcopenia. There were 9 shared miRs, with evidence of dysregulation (up- or down-regulation), in both osteoporosis and sarcopenia: miR-23a-3p, miR-29a, miR-93, miR-133a and b, miR-155, miR-206, miR-208, miR-222, and miR-328, with functions and targets implicated in the pathogenesis of osteosarcopenia. However, there was little agreement in the results across studies and insufficient data for miRs in sarcopenia, and only three miRs, miR-155, miR-206, and miR-328, showed the same direction of dysregulation (down-regulation) in both osteoporosis and sarcopenia. Additionally, for most identified miRs there has been no replication by more than one study, and this is particularly true for all miRs analyzed in sarcopenia. The study quality was typically rated intermediate/high risk of bias. The large heterogeneity of the studies made it impossible to perform a meta-analysis. Conclusions: The findings of this review are particularly novel, as miRs have not yet been explored in the context of osteosarcopenia. The dysregulation of miRs identified in this review may provide important clues to better understand the pathogenesis of osteosarcopenia, while also laying the foundations for further studies to lead to effective screening, monitoring, or treatment strategies.
Collapse
|
15
|
Oxidative Stress and Inflammation in Osteoporosis: Molecular Mechanisms Involved and the Relationship with microRNAs. Int J Mol Sci 2023; 24:ijms24043772. [PMID: 36835184 PMCID: PMC9963528 DOI: 10.3390/ijms24043772] [Citation(s) in RCA: 73] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/10/2023] [Accepted: 02/11/2023] [Indexed: 02/16/2023] Open
Abstract
Osteoporosis is characterized by the alteration of bone homeostasis due to an imbalance between osteoclastic bone resorption and osteoblastic bone formation. Estrogen deficiency causes bone loss and postmenopausal osteoporosis, the pathogenesis of which also involves oxidative stress, inflammatory processes, and the dysregulation of the expression of microRNAs (miRNAs) that control gene expression at post-transcriptional levels. Oxidative stress, due to an increase in reactive oxygen species (ROS), proinflammatory mediators and altered levels of miRNAs enhance osteoclastogenesis and reduce osteoblastogenesis through mechanisms involving the activation of MAPK and transcription factors. The present review summarizes the principal molecular mechanisms involved in the role of ROS and proinflammatory cytokines on osteoporosis. Moreover, it highlights the interplay among altered miRNA levels, oxidative stress, and an inflammatory state. In fact, ROS, by activating the transcriptional factors, can affect miRNA expression, and miRNAs can regulate ROS production and inflammatory processes. Therefore, the present review should help in identifying targets for the development of new therapeutic approaches to osteoporotic treatment and improve the quality of life of patients.
Collapse
|
16
|
Lombardi G, Delvin E. Micro-RNA: A Future Approach to Personalized Diagnosis of Bone Diseases. Calcif Tissue Int 2023; 112:271-287. [PMID: 35182198 DOI: 10.1007/s00223-022-00959-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 02/07/2022] [Indexed: 01/25/2023]
Abstract
Osteoporosis is a highly prevalent bone disease worldwide and the most studied bone-associated pathological condition. Although its diagnosis makes use of advanced and clinically relevant imaging and biochemical tools, the information suffers from several limitations and has little or no prognostic value. In this context, circulating micro-RNAs represent a potentially attractive alternative or a useful addition to the diagnostic arsenal and offer a greater prognostic potential than the conventional approaches. These short non-coding RNA molecules act as inhibitors of gene expression by targeting messenger RNAs with different degrees of complementarity, establishing a complex multilevel network, the basis for the fine modulation of gene expression that finally regulates every single activity of a cell. Micro-RNAs may passively and/or actively be released in the circulation by source cells, and being measurable in biological fluids, their concentrations may be associated to specific pathophysiological conditions. Mounting, despite debatable, evidence supports the use of micro-RNAs as markers of bone cell metabolic activity and bone diseases. Indeed, several micro-RNAs have been associated with bone mineral density, fractures and osteoporosis. However, concerns such as absence of comparability between studies and, the lack of standardization and harmonization of the methods, limit their application. In this review, we describe the pathophysiological bases of the association between micro-RNAs and the deregulation of bone cells activity and the processes that led to the identification of potential micro-RNA-based markers associated with metabolic bone diseases.
Collapse
Affiliation(s)
- Giovanni Lombardi
- Laboratory of Experimental Biochemistry & Molecular Biology, IRCCS Istituto Ortopedico Galeazzi, Via Riccardo Galeazzi 4, 20161, Milano, Italy.
- Department of Athletics, Strength and Conditioning, Poznań University of Physical Education, Królowej Jadwigi 27/39, 61-871, Poznań, Poland.
| | - Edgard Delvin
- Ste-Justine University Hospital Research Centre & Department of Biochemistry, Université de Montreal, Montreal, QC, H3T 1C5, Canada
| |
Collapse
|
17
|
Lin Y, Dai H, Yu G, Song C, Liu J, Xu J. Inhibiting KCNMA1-AS1 promotes osteogenic differentiation of HBMSCs via miR-1303/cochlin axis. J Orthop Surg Res 2023; 18:73. [PMID: 36717952 PMCID: PMC9885668 DOI: 10.1186/s13018-023-03538-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 01/13/2023] [Indexed: 01/31/2023] Open
Abstract
OBJECTIVE Osteoporosis is a progressive systemic skeletal disorder. Multiple profiling studies have contributed to characterizing biomarkers and therapeutic targets for osteoporosis. However, due to the limitation of the platform of miRNA sequencing, only a part of miRNA can be sequenced based on one platform. MATERIALS AND METHODS In this study, we performed miRNA sequencing in osteoporosis bone samples based on a novel platform Illumina Hiseq 2500. Bioinformatics analysis was performed to construct osteoporosis-related competing endogenous RNA (ceRNA) networks. Gene interference and osteogenic induction were used to examine the effect of identified ceRNA networks on osteogenic differentiation of human bone marrow-derived mesenchymal stem cells (HBMSCs). RESULTS miR-1303 was lowly expressed, while cochlin (COCH) and KCNMA1-AS1 were highly expressed in the osteoporosis subjects. COCH knockdown improved the osteogenic differentiation of HBMSCs. Meanwhile, COCH inhibition compensated for the suppression of osteogenic differentiation of HBMSCs by miR-1303 knockdown. Further, KCNMA1-AS1 knockdown promoted osteogenic differentiation of HBMSCs through downregulating COCH by sponging miR-1303. CONCLUSIONS Our findings suggest that the KCNMA1-AS1/miR-1303/COCH axis is a promising biomarker and therapeutic target for osteoporosis.
Collapse
Affiliation(s)
- Yuan Lin
- grid.415108.90000 0004 1757 9178Department of Orthopedics, Fujian Provincial Hospital, Fuzhou, China ,grid.256112.30000 0004 1797 9307Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Hanhao Dai
- grid.256112.30000 0004 1797 9307Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Guoyu Yu
- grid.415108.90000 0004 1757 9178Department of Orthopedics, Fujian Provincial Hospital, Fuzhou, China ,grid.265021.20000 0000 9792 1228Clinical College of Orthopedics, Tianjin Medical University, Tianjin, China
| | - Chao Song
- grid.256112.30000 0004 1797 9307Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Jun Liu
- grid.265021.20000 0000 9792 1228Clinical College of Orthopedics, Tianjin Medical University, Tianjin, China ,grid.33763.320000 0004 1761 2484Department of Joints, Tianjin Hospital, Tianjin University, Tianjin, China
| | - Jie Xu
- grid.415108.90000 0004 1757 9178Department of Orthopedics, Fujian Provincial Hospital, Fuzhou, China ,grid.256112.30000 0004 1797 9307Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| |
Collapse
|
18
|
Zhao SL, Wen ZX, Mo XY, Zhang XY, Li HN, Cheung WH, Fu D, Zhang SH, Wan Y, Chen BL. Bone-Metabolism-Related Serum microRNAs to Diagnose Osteoporosis in Middle-Aged and Elderly Women. Diagnostics (Basel) 2022; 12:2872. [PMID: 36428932 PMCID: PMC9689310 DOI: 10.3390/diagnostics12112872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/17/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
Objective: Postmenopausal osteoporosis (PMOP), a chronic systemic metabolic disease prevalent in middle-aged and elderly women, heavily relies on bone mineral density (BMD) measurement as the diagnostic indicator. In this study, we investigated serum microRNAs (miRNAs) as a possible screening tool for PMOP. Methods: This investigation recruited 83 eligible participants from 795 community-dwelling postmenopausal women between June 2020 and August 2021. The miRNA expression profiles in the serum of PMOP patients were evaluated via miRNA microarray (six PMOP patients and four postmenopausal women without osteoporosis (n-PMOP) as controls). Subsequently, results were verified in independent sample sets (47 PMOP patients and 26 n-PMOP controls) using quantitative real-time PCR. In addition, the target genes and main functions of the differentially expressed miRNAs were explored by bioinformatics analysis. Results: Four highly expressed miRNAs in the serum of patients (hsa-miR-144-5p, hsa-miR-506-3p, hsa-miR-8068, and hsa-miR-6851-3p) showed acceptable disease-independent discrimination performance (area under the curve range: 0.747-0.902) in the training set and verification set, outperforming traditional bone turnover markers. Among four key miRNAs, hsa-miR-144-5p is the only one that can simultaneously predict changes in BMD in lumbar spine 1-4, total hip, and femoral neck (β = -0.265, p = 0.022; β = -0.301, p = 0.005; and β = -0.324, p = 0.003, respectively). Bioinformatics analysis suggested that the differentially expressed miRNAs were targeted mainly to YY1, VIM, and YWHAE genes, which are extensively involved in bone metabolism processes. Conclusions: Bone-metabolism-related serum miRNAs, such as hsa-miR-144-5p, hsa-miR-506-3p, hsa-miR-8068, and hsa-miR-6851-3p, can be used as novel biomarkers for PMOP diagnosis independent of radiological findings and traditional bone turnover markers. Further study of these miRNAs and their target genes may provide new insights into the epigenetic regulatory mechanisms of the onset and progression of the disease.
Collapse
Affiliation(s)
- Sheng-Li Zhao
- Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Guangzhou 510080, China
| | - Zhen-Xing Wen
- Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Guangzhou 510080, China
| | - Xiao-Yi Mo
- Department of Orthopaedics, Guangzhou First People’s Hospital, Guangzhou 510180, China
| | - Xiao-Yan Zhang
- Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Hao-Nan Li
- Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Guangzhou 510080, China
| | - Wing-Hoi Cheung
- Department of Orthopaedics and Traumatology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR 999077, China
| | - Dan Fu
- Department of Orthopedics, Kiang Wu Hospital, Macau SAR 999078, China
| | - Shi-Hong Zhang
- Department of Laboratry Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Yong Wan
- Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Guangzhou 510080, China
| | - Bai-Ling Chen
- Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Guangzhou 510080, China
| |
Collapse
|
19
|
Wang R, Wang Y, Zai W, Xu N. Bibliometric and visual analysis of mesenchymal stem cells in the treatment of osteoporosis based on CiteSpace software. Medicine (Baltimore) 2022; 101:e31859. [PMID: 36401376 PMCID: PMC9678533 DOI: 10.1097/md.0000000000031859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND The focus of research in the treatment of osteoporosis (OP) has evolved from promoting bone formation and inhibiting bone resorption to current stem cell therapy. Due to their multipotent differentiation properties, mesenchymal stem cells (MSCs) can repair degenerated bones through transplantation, and have become a new method for the treatment of OP. METHODS Relevant literatures included in the Web of Science database core collection database from 2012 to 2021 were retrieved. CiteSpace software was used to analyze the cooperative relationship among authors, journals, institutions, and countries, and to analyze the co-citation situation of the literature. And performed co-occurrence analysis, cluster analysis and burst analysis of keywords, draw visual maps and analyzed the results. RESULTS A total of 2100 papers were included, and the number of papers published from 2012 to 2021 was on the rise. A total of 484 authors were included, and 176 authors published more than 3 papers. The high-yield authors were mainly represented by YAN JIN and BO GAO. A total of 99 journals were included, and the journal with the most publications was J BONE MINER RES. A total of 787 institutions were included, and the institution with the largest number of publications was Shanghai Jiao Tong University. A total of 65 countries were included. The country with the largest number of publications was China, and the United States had the highest centrality. The co-citation analysis of the literature found 2 articles with high citation frequency and high centrality. The main research direction was the mechanism of MSCs in the treatment of osteoporosis. A total of 133 keywords were included, and the hot keywords were osteogenic differentiation, expression, proliferation, bone marrow, etc. CONCLUSIONS The research hotspots in this field mainly focused on the mechanism of bone regeneration, proliferation and osteogenic differentiation of bone marrow MSCs, and the expression of osteogenic-related genes. The future research trends in this field are predicted to be the mechanism of action of microRNA and long non-coding RNA on MSCs and their relationship with OP, the mechanism of MSCs adipogenic and osteogenic differentiation, and tissue engineering scaffolds applications.
Collapse
Affiliation(s)
- Runfang Wang
- Medical School of Rehabilitation, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yueying Wang
- Medical School of Rehabilitation, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Weiyi Zai
- Medical School of Rehabilitation, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ning Xu
- Medical School of Rehabilitation, Shandong University of Traditional Chinese Medicine, Jinan, China
- *Correspondence: Ning Xu, Medical School of Rehabilitation, Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province 250355, China (e-mail: )
| |
Collapse
|
20
|
Smout D, Van Craenenbroeck AH, Jørgensen HS, Evenepoel P. MicroRNAs: emerging biomarkers and therapeutic targets of bone fragility in chronic kidney disease. Clin Kidney J 2022; 16:408-421. [PMID: 36865016 PMCID: PMC9972833 DOI: 10.1093/ckj/sfac219] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Indexed: 11/12/2022] Open
Abstract
Bone fragility is highly prevalent, yet underdiagnosed in patients with chronic kidney disease. Incomplete understanding of the pathophysiology and limitations of current diagnostics contribute to therapeutic hesitation, if not nihilism. This narrative review addresses the question of whether microRNAs (miRNAs) may improve therapeutic decision making in osteoporosis and renal osteodystrophy. miRNAs are key epigenetic regulators of bone homeostasis and show promise as both therapeutic targets and as biomarkers, primarily of bone turnover. Experimental studies show that miRNAs are involved in several osteogenic pathways. Clinical studies exploring the usefulness of circulating miRNAs for fracture risk stratification and for guiding and monitoring therapy are few and, so far, provide inconclusive results. Likely, (pre)analytical heterogeneity contributes to these equivocal results. In conclusion, miRNAs are promising in metabolic bone disease, both as a diagnostic tool and as therapeutic targets, but not yet ready for clinical prime time.
Collapse
Affiliation(s)
- Dieter Smout
- Department of Microbiology, Immunology and Transplantation; Nephrology and Renal Transplantation Research Group, KU Leuven, Leuven, Belgium,Department of Medicine, Division of Nephrology, University Hospitals Leuven, Leuven, Belgium
| | - Amaryllis H Van Craenenbroeck
- Department of Microbiology, Immunology and Transplantation; Nephrology and Renal Transplantation Research Group, KU Leuven, Leuven, Belgium,Department of Medicine, Division of Nephrology, University Hospitals Leuven, Leuven, Belgium
| | - Hanne Skou Jørgensen
- Department of Microbiology, Immunology and Transplantation; Nephrology and Renal Transplantation Research Group, KU Leuven, Leuven, Belgium,Department of Renal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | | |
Collapse
|
21
|
Yin Z, Shen J, Wang Q, Wen L, Qu W, Zhang Y. miR-215-5p regulates osteoporosis development and osteogenic differentiation by targeting XIAP. BMC Musculoskelet Disord 2022; 23:789. [PMID: 35978328 PMCID: PMC9387055 DOI: 10.1186/s12891-022-05731-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 08/04/2022] [Indexed: 11/20/2022] Open
Abstract
Background Osteoporosis (OP) is a metabolic disease that involves microstructure destruction and fracture damage. The present study probed into the significance of miR-215-5p in OP progression. Methods Serum samples were collected from surgical patients and healthy controls. qRT-PCR analysis was utilized to determine the miR-215-5p level in clinical samples and human bone mesenchymal stem cells (hBMSCs) induced by β-glycerol phosphate. A dual luciferase reporter assay was exploited to examine the targeted relationship between miR-215-5p and XIAP. The mineralization and calcium deposition of hBMSCs were assessed by detection of ALP activity, Alizarin red staining, and osteoblast marker expression. Protein expression was determined by western blot analysis. Results MiR-215-5p was significantly reduced in patients with OP and increased in hBMSCs treated with β-glycerophosphate. Enhanced miR-215-5p level triggered augment in osteoblast markers (Alkaline phosphatase/ ALP, Osteocalcin/ OCN, and Runt-Related Transcription Factor 2/ Runx2), which was accompanied by the increase of ALP activity in hBMSCs and accumulation of Calcium. Functional experiments show that XIAP was a target of miR-215-5p and negatively modulated by miR-215-5p. XIAP expression levels were increased in OP samples, and decreased XIAP in β-glycerophosphate-treated hBMSCs inhibited its’ osteogenic differentiation. Functional loss and acquisition experiments depicted that miR-215-5p promoted the differentiation of hBMSCs by inhibiting the XIAP level, playing a protective role in the pathogenesis of OP. Conclusions β-glycerophosphate promoted the osteogenic differentiation of hBMSCs, increased miR-215-5p level, and decreased XIAP. miR-215-5p stimulated osteogenic differentiation of hBMSCs by targeting XIAP, shedding new insights for the detection and therapy of OP. Supplementary Information The online version contains supplementary material available at 10.1186/s12891-022-05731-w.
Collapse
Affiliation(s)
- Zilong Yin
- Department of Orthopaedics, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Jian Shen
- Department of Orthopaedics, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Qiang Wang
- Department of Orthopaedics, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Liangyuan Wen
- Department of Orthopaedics, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Wenjing Qu
- Department of Surgery, Tongzhou Maternal and Child Health Hospital of Beijing, 124 Yuqiao Middle Road, Tongzhou District, Beijing, 101100, People's Republic of China.
| | - Yaonan Zhang
- Department of Orthopaedics, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| |
Collapse
|
22
|
Ciuffi S, Marini F, Fossi C, Donati S, Giusti F, Botta A, Masi L, Isaia G, Marcocci C, Migliaccio S, Minisola S, Nuti R, Tarantino U, Iantomasi T, Brandi ML. Circulating MicroRNAs as Biomarkers of Osteoporosis and Fragility Fractures. J Clin Endocrinol Metab 2022; 107:2267-2285. [PMID: 35532548 DOI: 10.1210/clinem/dgac293] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Indexed: 11/19/2022]
Abstract
CONTEXT Measurement of circulating microRNAs (miRNAs) as potential biomarkers of fragility fracture risk has recently become a subject of investigation. OBJECTIVE Measure by next-generation sequencing (NGS), global miRNA expression in serum samples of osteoporotic subjects vs individuals with normal bone mineral density (BMD). DESIGN Samples were collected from patients with different bone phenotypes and/or fragility fractures who did not receive any antiresorptive and/or bone-forming drug at the time of blood collection. SETTING Samples and data were collected at 7 medical centers in Italy. PATIENTS NGS prescreening: 50 osteoporotic patients vs 30 individuals with normal BMD. Droplet digital polymerase chain reaction (ddPCR) validation: 213 patients with different bone phenotypes, including the NGS-analyzed cohort. RESULTS NGS identified 5 miRNAs (miR-8085, miR-320a-3p, miR-23a-3p, miR-4497, miR-145-5p) differentially expressed in osteoporosis cases without fractures vs controls. ddPCR validation confirmed lower c-miR-23a-3p expression in osteoporotic patients, with or without fracture, than in osteopenic and normal subjects and increased c-miR-320a-3p expression in osteoporotic patients with fracture and lower expression in osteoporotic patients without fracture. ddPCR analysis showed a significantly increased expression of miR-21-5p in osteoporotic patients, with or without fracture, than in osteopenic and normal subjects, not evidenced by the NGS prescreening. DISCUSSION Our study confirmed levels of c-miR-23a-3p and c-miR-21-5p as able to distinguish osteoporotic patients and subjects with normal BMD. Increased levels of c-miR-320a-3p specifically associated with fractures, independently by BMD, suggesting c-miR-320a-3p as a prognostic indicator of fracture risk in osteoporotic patients, to be confirmed in prospective studies on incident fractures.
Collapse
Affiliation(s)
- Simone Ciuffi
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio," University of Study of Florence, Florence, Italy
| | - Francesca Marini
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio," University of Study of Florence, Florence, Italy
- FirmoLab, F.I.R.M.O. Italian Foundation for the Research on Bone Diseases, Florence, Italy
| | - Caterina Fossi
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio," University of Study of Florence, Florence, Italy
| | - Simone Donati
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio," University of Study of Florence, Florence, Italy
| | - Francesca Giusti
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio," University of Study of Florence, Florence, Italy
| | - Annalisa Botta
- Department of Biomedicine and Prevention, Medical Genetics Section, University of Rome "Tor Vergata," Rome, Italy
| | - Laura Masi
- AOU Careggi, SOD Malattie del Metabolismo Minerale ed Osseo, Florence, Italy
| | - Giancarlo Isaia
- Department of Medical Science, Gerontology Section, University of Turin, Turin, Italy
| | - Claudio Marcocci
- Department of Clinical and Experimental Medicine, Endocrinology Unit II, University of Pisa and University Hospital of Pisa, Pisa, Italy
| | - Silvia Migliaccio
- Department of Movement, Human and Health Sciences, University of "Foro Italico" of Rome, Rome, Italy
| | - Salvatore Minisola
- Dipartimento di Scienze Cliniche, Internistiche, anestesiologiche e cardiovascolari: "Sapienza," Università di Roma, Rome, Italy
| | - Ranuccio Nuti
- Department of Medicine, Surgery and Neuroscience, University of Siena, Policlinico Le Scotte, Siena, Italy
| | - Umberto Tarantino
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata" Rome, Italy
| | - Teresa Iantomasi
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio," University of Study of Florence, Florence, Italy
| | - Maria Luisa Brandi
- FirmoLab, F.I.R.M.O. Italian Foundation for the Research on Bone Diseases, Florence, Italy
| |
Collapse
|
23
|
Pao SI, Lin LT, Chen YH, Chen CL, Chen JT. MicroRNA-4516 suppresses proliferative vitreoretinopathy development via negatively regulating OTX1. PLoS One 2022; 17:e0270526. [PMID: 35771766 PMCID: PMC9246108 DOI: 10.1371/journal.pone.0270526] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 06/11/2022] [Indexed: 11/18/2022] Open
Abstract
Proliferative vitreoretinopathy (PVR) progression is associated with TGF-β2-induced epithelial–mesenchymal transition (EMT) in retinal pigment epithelial (RPE) cells. In cancer cells, miR-4516 downregulates orthodenticle homeobox 1 (OTX1)-mediated cell invasion. Moreover, OTX1 is shown to be involved in invasion and EMT. The purpose of this study was to assess whether microRNA (miR-4516) suppresses EMT in RPE cells. EMT features were assessed using Western blotting, immunocytochemical staining, scratch-wound healing, modified Boyden chamber assay, and collagen gel contraction assay. For in vivo testing, a rabbit model was used, which involved induction of PVR by injection of transfected spontaneously arising RPE (ARPE) cells into the vitreous chamber. The putative target of miR-4516 was identified by luciferase reporter assay. Results showed that TGF-β2-induced transdifferentiation and migration of RPE cells was inhibited by miR-4516 delivery. Overexpression of miR-4516 led to upregulation of zonula occludens-1, downregulation of α-smooth muscle actin and vimentin, and cell contractility—all EMT features—in the TGF-β2-treated ARPE-19 cells. MiR-4516 regulated OTX1 expression negatively by binding to its 3’-UTR. TGF-β2-induced phosphorylated ERK was inhibited in miR-4516-overexpressing ARPE-19 cells. MiR-4516 suppressed experimental PVR in vitro and in vivo. In conclusion, the overexpression of miR-4516 suppresses TGF-β2-induced EMT in a PVR model, and its role in PVR depends on OTX1/ERK. Further research is needed to develop a feasible treatment method to prevent and treat PVR.
Collapse
Affiliation(s)
- Shu-I Pao
- Department of Ophthalmology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Le-Tien Lin
- Department of Ophthalmology, Tri-Service General Hospital Songshan Branch, National Defense Medical Center, Taipei, Taiwan
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Yi-Hao Chen
- Department of Ophthalmology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Ching-Long Chen
- Department of Ophthalmology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Jiann-Torng Chen
- Department of Ophthalmology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
24
|
Kaur J, Saul D, Doolittle ML, Rowsey JL, Vos SJ, Farr JN, Khosla S, Monroe DG. Identification of a suitable endogenous control miRNA in bone aging and senescence. Gene X 2022; 835:146642. [PMID: 35700807 PMCID: PMC9533812 DOI: 10.1016/j.gene.2022.146642] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/15/2022] [Accepted: 06/02/2022] [Indexed: 11/04/2022] Open
Abstract
MicroRNAs (miRNAs) are promising tools as biomarkers and therapeutic agents in various chronic diseases such as osteoporosis, cancers, type I and II diabetes, and cardiovascular diseases. Considering the rising interest in the regulatory role of miRNAs in bone metabolism, aging, and cellular senescence, accurate normalization of qPCR-based miRNA expression data using an optimal endogenous control becomes crucial. We used a systematic approach to select candidate endogenous control miRNAs that exhibit high stability with aging from our miRNA sequence data and literature search. Validation of miRNA expression was performed using qPCR and their comprehensive stability was assessed using the RefFinder tool which is based on four statistical algorithms: GeNorm, NormFinder, BestKeeper, and comparative delta CT. The selected endogenous control was then validated for its stability in mice and human bone tissues, and in bone marrow stromal cells (BMSCs) following induction of senescence and senolytic treatment. Finally, the utility of selected endogenous control versus U6 was tested by using each as a normalizer to measure the expression of miR-34a, a miRNA known to increase with age and senescence. Our results show that Let-7f did not change across the groups with aging, senescence or senolytic treatment, and was the most stable miRNA, whereas U6 was the least stable. Moreover, using Let-7f as a normalizer resulted in significantly increased expression of miR-34a with aging and senescence and decreased expression following senolytic treatment. However, the expression pattern for miR-34a reversed for each of these conditions when U6 was used as a normalizer. We show that optimal endogenous control miRNAs, such as Let-7f, are essential for accurate normalization of miRNA expression data to increase the reliability of results and prevent misinterpretation. Moreover, we present a systematic strategy that is transferrable and can easily be used to identify endogenous control miRNAs in other biological systems and conditions.
Collapse
Affiliation(s)
- Japneet Kaur
- Department of Medicine, Division of Endocrinology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA; Robert and Arlene Kogod Center on Aging, Rochester, MN 55905, USA
| | - Dominik Saul
- Department of Medicine, Division of Endocrinology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA; Robert and Arlene Kogod Center on Aging, Rochester, MN 55905, USA
| | - Madison L Doolittle
- Department of Medicine, Division of Endocrinology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA; Robert and Arlene Kogod Center on Aging, Rochester, MN 55905, USA
| | - Jennifer L Rowsey
- Department of Medicine, Division of Endocrinology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA; Robert and Arlene Kogod Center on Aging, Rochester, MN 55905, USA
| | - Stephanie J Vos
- Department of Medicine, Division of Endocrinology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA; Robert and Arlene Kogod Center on Aging, Rochester, MN 55905, USA
| | - Joshua N Farr
- Department of Medicine, Division of Endocrinology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA; Robert and Arlene Kogod Center on Aging, Rochester, MN 55905, USA
| | - Sundeep Khosla
- Department of Medicine, Division of Endocrinology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA; Robert and Arlene Kogod Center on Aging, Rochester, MN 55905, USA
| | - David G Monroe
- Department of Medicine, Division of Endocrinology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA; Robert and Arlene Kogod Center on Aging, Rochester, MN 55905, USA.
| |
Collapse
|
25
|
Carro Vázquez D, Emini L, Rauner M, Hofbauer C, Grillari J, Diendorfer AB, Eastell R, Hofbauer LC, Hackl M. Effect of Anti-Osteoporotic Treatments on Circulating and Bone MicroRNA Patterns in Osteopenic ZDF Rats. Int J Mol Sci 2022; 23:6534. [PMID: 35742976 PMCID: PMC9224326 DOI: 10.3390/ijms23126534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/03/2022] [Accepted: 06/08/2022] [Indexed: 02/05/2023] Open
Abstract
Bone fragility is an adverse outcome of type 2 diabetes mellitus (T2DM). The underlying molecular mechanisms have, however, remained largely unknown. MicroRNAs (miRNAs) are short non-coding RNAs that control gene expression in health and disease states. The aim of this study was to investigate the genome-wide regulation of miRNAs in T2DM bone disease by analyzing serum and bone tissue samples from a well-established rat model of T2DM, the Zucker Diabetic Fatty (ZDF) model. We performed small RNA-sequencing analysis to detect dysregulated miRNAs in the serum and ulna bone of the ZDF model under placebo and also under anti-sclerostin, PTH, and insulin treatments. The dysregulated circulating miRNAs were investigated for their cell-type enrichment to identify putative donor cells and were used to construct gene target networks. Our results show that unique sets of miRNAs are dysregulated in the serum (n = 12, FDR < 0.2) and bone tissue (n = 34, FDR < 0.2) of ZDF rats. Insulin treatment was found to induce a strong dysregulation of circulating miRNAs which are mainly involved in metabolism, thereby restoring seven circulating miRNAs in the ZDF model to normal levels. The effects of anti-sclerostin treatment on serum miRNA levels were weaker, but affected miRNAs were shown to be enriched in bone tissue. PTH treatment did not produce any effect on circulating or bone miRNAs in the ZDF rats. Altogether, this study provides the first comprehensive insights into the dysregulation of bone and serum miRNAs in the context of T2DM and the effect of insulin, PTH, and anti-sclerostin treatments on circulating miRNAs.
Collapse
Affiliation(s)
- David Carro Vázquez
- TAmiRNA GmbH, Department of Research, Leberstrasse 20, 1110 Vienna, Austria; (D.C.V.); (A.B.D.)
| | - Lejla Emini
- Center for Healthy Aging and Department of Medicine III, Technische Universität Dresden, 01069 Dresden, Germany; (L.E.); (M.R.); (C.H.); (L.C.H.)
| | - Martina Rauner
- Center for Healthy Aging and Department of Medicine III, Technische Universität Dresden, 01069 Dresden, Germany; (L.E.); (M.R.); (C.H.); (L.C.H.)
| | - Christine Hofbauer
- Center for Healthy Aging and Department of Medicine III, Technische Universität Dresden, 01069 Dresden, Germany; (L.E.); (M.R.); (C.H.); (L.C.H.)
| | - Johannes Grillari
- Ludwig Boltzmann Institute for Traumatology in Cooperation with AUVA, Ludwig Boltzmann Society, 1200 Vienna, Austria;
- Institute of Molecular Biotechnology, University of Natural Resources and Life Sciences, 1180 Vienna, Austria
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Andreas B. Diendorfer
- TAmiRNA GmbH, Department of Research, Leberstrasse 20, 1110 Vienna, Austria; (D.C.V.); (A.B.D.)
| | - Richard Eastell
- Academic Unit of Bone Metabolism and Mellanby Centre for Bone Research, University of Sheffield, Sheffield S10 2RX, UK;
| | - Lorenz C. Hofbauer
- Center for Healthy Aging and Department of Medicine III, Technische Universität Dresden, 01069 Dresden, Germany; (L.E.); (M.R.); (C.H.); (L.C.H.)
| | - Matthias Hackl
- TAmiRNA GmbH, Department of Research, Leberstrasse 20, 1110 Vienna, Austria; (D.C.V.); (A.B.D.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| |
Collapse
|
26
|
Yang JJ, Peng WX, Zhang MB. LncRNA KCNQ1OT1 promotes osteogenic differentiation via miR-205-5p/RICTOR axis. Exp Cell Res 2022; 415:113119. [PMID: 35341776 DOI: 10.1016/j.yexcr.2022.113119] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 11/17/2022]
Abstract
Osteoporosis is a prevalent degenerative disease that is characterized by decreased bone density and strength, resulting in gradually increasing bone fragility. Osteoporosis is caused by an imbalance between osteoblastic bone formation and osteoclastic bone resorption. Recently, increasing evidence has suggested that long non-coding RNAs (lncRNAs) participate in the occurrence and development of osteoporosis. Herein, we explored the role of lncRNA KCNQ1OT1 in osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs). QPCR results indicated that KCNQ1OT1 and RICTOR were down-regulated, while miR-205-5p was up-regulated in the osteoporotic patients, as compared with non-osteoporotic controls. During the osteogenic differentiation of BMSCs, the expression of KCNQ1OT1 and RICTOR was upregulated, whereas miR-205-5p was downregulated. The interaction among KCNQ1OT1, miR-205-5p and RICTOR was validated by dual luciferase reporter system. KCNQ1OT1 promoted RICTOR expression via inhibiting miR-205-5p, therefore promoting osteogenesis as demonstrated by ALP assay, alizarin red staining and the increased expression of osteogenic markers (OPN, RUNX2 and OCN). Furthermore, KCNQ1OT1 overexpression or miR-205-5p inhibition could promote ALP activity and mineralization of BMSCs, while overexpressed miR-205-5p could reverse the effects of overexpressed KCNQ1OT1, and knockdown of RICTOR could reverse the effects of miR-205-5p inhibition. In conclusion, our study illustrated that KCNQ1OT1 might inhibit miR-205-5p in BMSCs, thus upregulating the expression of RICTOR and promoting osteogenic differentiation.
Collapse
Affiliation(s)
- Jing-Jin Yang
- Department of Endocrinology, The First People's Hospital of Huaihua, HuaiHua, 418000, Hunan Province, PR China.
| | - Wei-Xia Peng
- Department of Endocrinology, Yiyang Central Hospital, YiYang, 413000, Hunan Province, PR China
| | - Mei-Biao Zhang
- Department of Endocrinology, The First People's Hospital of Huaihua, HuaiHua, 418000, Hunan Province, PR China
| |
Collapse
|
27
|
Huang X, Jie S, Li W, Li H, Ni J, Liu C. miR-122-5p targets GREM2 to protect against glucocorticoid-induced endothelial damage through the BMP signaling pathway. Mol Cell Endocrinol 2022; 544:111541. [PMID: 34973370 DOI: 10.1016/j.mce.2021.111541] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 12/22/2021] [Accepted: 12/27/2021] [Indexed: 01/05/2023]
Abstract
Glucocorticoid (GC)-induced osteonecrosis of the femoral head (ONFH) accounts for a big portion of non-traumatic ONFH; nevertheless, the pathogenesis has not yet been fully understood. GC-induced endothelial dysfunction might be a major contributor to ONFH progression. The Gene Expression Omnibus (GEO) dataset was analyzed to identify deregulated miRNAs in ONFH; among deregulated miRNAs, the physiological functions of miR-122-5p on ONFH and endothelial dysfunction remain unclear. In the present study, miR-122-5p showed to be under-expressed within GC-induced ONFH femoral head tissues and GC-stimulated bone microvascular endothelial cells (BMECs). In human umbilical vein endothelial cells (HUVECs) and BMECs, GC stimulation significantly repressed cell viability, promoted cell apoptosis and increased the mRNA expression of proinflammatory cytokines, such as TNF-α, IL-1β, and IFN-γ. After overexpressing miR-122-5p, GC-induced endothelial injuries were attenuated, as manifested by rescued cell viability, cell migration, and tube formation capacity. Regarding the BMP signaling, GC decreased the protein levels of BMP-2/6/7 and SMAD-1/5/8, whereas miR-122-5p overexpression significantly attenuated the inhibitory effects of GC on these proteins. Online tool and experimental analyses revealed the direct binding between miR-122-5p and GREM2, a specific antagonist of BMP-2. In contrast to miR-122-5p overexpression, GREM2 overexpression aggravated GC-induced endothelial injury; GREM2 silencing partially eliminated the effects of miR-122-5p inhibition on GC-stimulated HUVECs and BMECs. Finally, GREM2 silencing reversed the suppressive effects of GC on BMP-2/6/7 and SMAD-1/5/8, and attenuated the effects of miR-122-5p inhibition on these proteins upon GC stimulation. Conclusively, the present study demonstrates a miR-122-5p/GREM2 axis modulating the GC-induced endothelial damage via the BMP/SMAD signaling. Considering the critical role of endothelial function in ONFH pathogenesis, the in vivo role and clinical application of the miR-122-5p/GREM2 axis is worthy of further investigation.
Collapse
Affiliation(s)
- Xianzhe Huang
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Shuo Jie
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Wenzhao Li
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Hui Li
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Jiangdong Ni
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Chan Liu
- Department of International Medical, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.
| |
Collapse
|
28
|
Bravo Vázquez LA, Moreno Becerril MY, Mora Hernández EO, de León Carmona GG, Aguirre Padilla ME, Chakraborty S, Bandyopadhyay A, Paul S. The Emerging Role of MicroRNAs in Bone Diseases and Their Therapeutic Potential. MOLECULES (BASEL, SWITZERLAND) 2021; 27:molecules27010211. [PMID: 35011442 PMCID: PMC8746945 DOI: 10.3390/molecules27010211] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/16/2021] [Accepted: 12/24/2021] [Indexed: 01/24/2023]
Abstract
MicroRNAs (miRNAs) are a class of small (20-24 nucleotides), highly conserved, non-coding RNA molecules whose main function is the post-transcriptional regulation of gene expression through sequence-specific manners, such as mRNA degradation or translational repression. Since these key regulatory molecules are implicated in several biological processes, their altered expression affects the preservation of cellular homeostasis and leads to the development of a wide range of pathologies. Over the last few years, relevant investigations have elucidated that miRNAs participate in different stages of bone growth and development. Moreover, the abnormal expression of these RNA molecules in bone cells and tissues has been significantly associated with the progression of numerous bone diseases, including osteoporosis, osteosarcoma, osteonecrosis and bone metastasis, among others. In fact, miRNAs regulate multiple pathological mechanisms, including altering either osteogenic or osteoblast differentiation, metastasis, osteosarcoma cell proliferation, and bone loss. Therefore, in this present review, aiming to impulse the research arena of the biological implications of miRNA transcriptome in bone diseases and to explore their potentiality as a theragnostic target, we summarize the recent findings associated with the clinical significance of miRNAs in these ailments.
Collapse
Affiliation(s)
- Luis Alberto Bravo Vázquez
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Querétaro, Av. Epigmenio González, No. 500 Fracc. San Pablo, Querétaro 76130, Mexico; (L.A.B.V.); (M.Y.M.B.); (G.G.d.L.C.); (M.E.A.P.)
| | - Mariana Yunuen Moreno Becerril
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Querétaro, Av. Epigmenio González, No. 500 Fracc. San Pablo, Querétaro 76130, Mexico; (L.A.B.V.); (M.Y.M.B.); (G.G.d.L.C.); (M.E.A.P.)
| | - Erick Octavio Mora Hernández
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Mexico City, Calle del Puente, No. 222 Col. Ejidos de Huipulco, Tlalpan, Mexico City 14380, Mexico;
| | - Gabriela García de León Carmona
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Querétaro, Av. Epigmenio González, No. 500 Fracc. San Pablo, Querétaro 76130, Mexico; (L.A.B.V.); (M.Y.M.B.); (G.G.d.L.C.); (M.E.A.P.)
| | - María Emilia Aguirre Padilla
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Querétaro, Av. Epigmenio González, No. 500 Fracc. San Pablo, Querétaro 76130, Mexico; (L.A.B.V.); (M.Y.M.B.); (G.G.d.L.C.); (M.E.A.P.)
| | - Samik Chakraborty
- Division of Nephrology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA;
| | - Anindya Bandyopadhyay
- International Rice Research Institute, Manila 4031, Philippines;
- Reliance Industries Ltd., Navi Mumbai 400701, India
| | - Sujay Paul
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Querétaro, Av. Epigmenio González, No. 500 Fracc. San Pablo, Querétaro 76130, Mexico; (L.A.B.V.); (M.Y.M.B.); (G.G.d.L.C.); (M.E.A.P.)
- Correspondence:
| |
Collapse
|
29
|
Zhao M, Dong J, Liao Y, Lu G, Pan W, Zhou H, Zuo X, Shan B. MicroRNA miR-18a-3p promotes osteoporosis and possibly contributes to spinal fracture by inhibiting the glutamate AMPA receptor subunit 1 gene (GRIA1). Bioengineered 2021; 13:370-382. [PMID: 34937502 PMCID: PMC8805820 DOI: 10.1080/21655979.2021.2005743] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The promoting role that miR-18a-3p plays in osteoporosis (OP) has been previously described. However, the detailed mechanisms remain unclear. Bone tissues were collected from healthy patients, OP patients, and patients with osteoporotic spinal fractures. An osteogenic differentiation of human bone marrow mesenchymal stem cells (hBMSCs) was constructed to detect the expression of miR-18a-3p and glutamate AMPA receptor subunit 1 (GRIA1). Alkaline phosphatase (ALP) activity and a qRT-PCR analysis were used to detect ALP content, alizarin red S staining was used to detect calcium deposition, and qRT-PCR was used to evaluate runt-related transcription factor 2 (RUNX2), osteocalcin (OCN), and osteopontin (OPN) expression levels. A dual-luciferase reporter and RNA pull-down assay was used to verify the targeted correlation between miR-18a-3p and GRIA1. We observed an increase in miR-18a-3p expression and a decrease in GRIA1 expression in OP and osteoporotic vertebral fracture patients. Upregulation of miR-18a-3p restrained the activity and expression of ALP in hBMSCs, inhibited the expression of RUNX2, OCN, and OPN, and inhibited calcium deposition. Knockdown of miR-18a-3p or upregulation of GRIA1 promoted osteogenic differentiation. Our findings indicate that miR-18a-3p promotes OP progression by regulating GRIA1 expression, suggesting that targeting miR-18a-3p/GRIA1 may be a therapeutic strategy for OP.
Collapse
Affiliation(s)
- Meng Zhao
- Department of Medicine Laboratory, The Affiliated Huai'an Hospital of Xuzhou Medical University and the Second People's Hospital of Huai'an, Huai'an, Jiangsu, China
| | - Junli Dong
- Department of Pain Management, the Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yuanmei Liao
- Department of Medical Technology, Gannan Healthcare Vocational College, Ganzhou, Jiangxi, China
| | - Guoyong Lu
- Department of Vascular Surgery, The Affiliated Huai'an Hospital of Xuzhou Medical University and the Second People's Hospital of Huai'an, Huai'an, Jiangsu, China
| | - Wei Pan
- Department of Orthopaedics, The Affiliated Huai'an Hospital of Xuzhou Medical University and the Second People's Hospital of Huai'an, Huai'an, Jiangsu, China
| | - Hansong Zhou
- Department of Radiology, The Affiliated Huai'an Hospital of Xuzhou Medical University and the Second People's Hospital of Huai'an, Huai'an, Jiangsu, China
| | - Xiaohua Zuo
- Department of Pain Management, The Affiliated Huai'an Hospital of Xuzhou Medical University and the Second People's Hospital of Huai'an, Huai'an, Jiangsu, China
| | - Ben Shan
- Department of Radiology, The Affiliated Huai'an Hospital of Xuzhou Medical University and the Second People's Hospital of Huai'an, Huai'an, Jiangsu, China
| |
Collapse
|
30
|
Al-Rawaf HA, Alghadir AH, Gabr SA. Circulating MicroRNA Expression, Vitamin D, and Hypercortisolism as Predictors of Osteoporosis in Elderly Postmenopausal Women. DISEASE MARKERS 2021; 2021:3719919. [PMID: 34938374 PMCID: PMC8687791 DOI: 10.1155/2021/3719919] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 11/20/2021] [Accepted: 11/30/2021] [Indexed: 11/18/2022]
Abstract
BACKGROUND MicroRNAs (miRNA) identified as critical molecular regulators for bone development, function, and modeling/remodeling process and could be predictable for osteoporotic fractures in postmenopausal elderly women. AIM The potential diagnostic role of circulating miRNAs, miR-148a and miR-122-5p, in the pathogenesis of osteoporosis and its association with bone markers, hypercortisolism, and vitamin D deficiency were explored in postmenopausal elderly women with osteoporosis. METHODS A total of 120 elderly women aged 50-80 years old were recruited in this study, of which only 100 eligible women with amenorrhea of at least 12 consecutive months or surgical menopause participated in this study. Based upon bone mineral density (BMD) measurements, the participants were classified according into two groups: normal (n = 45; T score of ≥-1.0) and osteoporosis (n = 55; T score: ≤-2.5). Circulating miRNAs, miR-148a and miR-122-5p, were estimated by real-time RT-PCR analysis. In addition, bone markers, hypercortisolism, and vitamin D deficiency were colorimetrically and ELISA immune assay estimated. The potential role of miR-148a, miR-122-5p, cortisol, and vitamin D in the diagnosis of osteoporosis was predicted using the analysis of the respective area under the receiver operating characteristic curve (AUC-ROC). RESULTS The expressed level of miR-148a significantly increased and miR-122-5p significantly decreased in the serum of osteoporotic patients compared to healthy controls. In addition, a significant increase in the levels of cortisol, s-BAP, and CTx and significant decrease in the levels of T-BMD, the levels of OC, and s-Ca were also identified. All parameters significantly correlated with fracture risk parameters; BMD, and T score lumbar spine (L2-L4). Thus, the data showed AUC cut off values (miR-148a; 0.876, miR-122-5p; 0.761) were best evaluated for clinical diagnosis of patients with osteoporosis and that AUC cut off values of 0.748 for cortisol and 0.635 for vitamin D were the best cut off values, respectively, reported for the prediction of osteoporosis clinical diagnosis. CONCLUSION In this study, expressed miRNAs miR-148a and miR-122-5p and changes in the levels of both cortisol and vitamin D status are significantly associated with bone loss or osteoporosis. Thus, circulation miRNAs alone or in combination with cortisol and vitamin D status might be considered predictable biomarkers in the diagnosis or the pathogenesis of osteoporosis in elderly postmenopausal women; however, more studies are recommended.
Collapse
Affiliation(s)
- Hadeel A. Al-Rawaf
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Ahmad H. Alghadir
- Department of Rehabilitation Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Sami A. Gabr
- Department of Rehabilitation Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
31
|
Kim B, Cho YJ, Lim W. Osteoporosis therapies and their mechanisms of action (Review). Exp Ther Med 2021; 22:1379. [PMID: 34650627 PMCID: PMC8506919 DOI: 10.3892/etm.2021.10815] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/04/2021] [Indexed: 12/15/2022] Open
Abstract
Osteoporosis is a common disease that affects millions of patients worldwide and is most common in menopausal women. The main characteristics of osteoporosis are low bone density and increased risk of fractures due to deterioration of the bone architecture. Osteoporosis is a chronic disease that is difficult to treat; thus, investigations into novel effective therapeutic methods are required. A number of studies have focused on determining the most effective treatment options for this disease. There are several treatment options for osteoporosis that differ depending on the characteristics of the disease, and these include both well-established and newly developed drugs. The present review focuses on the various drugs available for osteoporosis, the associated mechanisms of action and the methods of administration.
Collapse
Affiliation(s)
- Beomchang Kim
- Laboratory of Orthopaedic Research, School of Medicine, Chosun University, Gwangju 61452, Republic of Korea
| | - Yong Jin Cho
- Department of Orthopaedic Surgery, College of Medicine, Chosun University, Gwangju 61452, Republic of Korea
| | - Wonbong Lim
- Laboratory of Orthopaedic Research, School of Medicine, Chosun University, Gwangju 61452, Republic of Korea
- Department of Orthopaedic Surgery, College of Medicine, Chosun University, Gwangju 61452, Republic of Korea
- Department of Premedical Sciences, College of Medicine, Chosun University, Gwangju 61452, Republic of Korea
| |
Collapse
|
32
|
Differential miRNA Expression in Osteoporotic Elderly Patients with Hip Fractures Compared to Young Patients. Indian J Orthop 2021; 56:399-411. [PMID: 35251503 PMCID: PMC8854460 DOI: 10.1007/s43465-021-00561-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 10/30/2021] [Indexed: 02/04/2023]
Abstract
BACKGROUND The expression pattern of micro-RNAs (miRNA) has been implicated in the pathomechanism of various bone disorders, and has a role in differentiation of osteoblasts and osteoclasts. The purpose of the study was to investigate the differential miRNA profiles of osteoporotic hip fractures compared to young patients with hip fractures. METHODS Blood samples from ten osteoporosis patients and ten young, healthy patients, presenting with acute hip fractures were collected and subjected to an initial miRNA profiling to detect those miRNAs with significant variations between the two groups based on polymerase chain reactions performed in duplicate. A real-time quantitative polymerase chain reaction-based analysis was then performed for validation of specific miRNAs that were significantly different between the two groups. RESULTS A total of 182 miRNAs were analyzed. Thirty-nine of them showed significant differences between the two groups in the initial miRNA profiling. The validation results suggested that five miRNAs related to bone metabolism had significantly different expression among the osteoporotic hip fracture group compared to the young, healthy group: miR-23b-3p and miR-140-3p were up-regulated; miR-21-5p, miR-122-5p and miR-125b-5p were down-regulated. CONCLUSIONS Differential expression of selected miRNAs in patients with osteoporotic hip fracture suggests a possible role of miRNAs as potential biomarkers in prevention or timely prediction of osteoporotic fractures in the elderly. Further research is required to elucidate the mechanism of their involvement in osteoporosis. LEVEL OF EVIDENCE Not applicable.
Collapse
|
33
|
Jones TL, Esa MS, Li KHC, Krishnan SRG, Elgallab GM, Pearce MS, Young DA, Birrell FN. Osteoporosis, fracture, osteoarthritis & sarcopenia: A systematic review of circulating microRNA association. Bone 2021; 152:116068. [PMID: 34166859 DOI: 10.1016/j.bone.2021.116068] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/16/2021] [Accepted: 06/15/2021] [Indexed: 12/18/2022]
Abstract
Circulating microRNAs (c-miRs) show promise as biomarkers. This systematic review explores their potential association with age-related fracture/osteoporosis (OP), osteoarthritis (OA) and sarcopenia (SP), as well as cross-disease association. Most overlap occurred between OA and OP, suggesting potentially shared microRNA activity. There was little agreement in results across studies. Few reported receiver operating characteristic analysis (ROC) and many identified significant dysregulation in disease, but direction of effect was commonly conflicting. c-miRs with most evidence for consistency in dysregulation included miR-146a, miR-155 and miR-98 for OA (upregulated). Area under the curve (AUC) for miR-146a biomarker performance was AUC 0.92, p = 0.028. miR-125b (AUC 0.76-0.89), miR-100, miR-148a and miR-24 were consistently upregulated in OP. Insufficient evidence exists for c-miRs in SP. Study quality was typically rated intermediate/high risk of bias. Wide study heterogeneity meant meta-analysis was not possible. We provide detailed critique and recommendations for future approaches in c-miR analyses based on this review.
Collapse
Affiliation(s)
- Tania L Jones
- Population Health Sciences Institute, Faculty of Medicine, Newcastle University, Sir James Spence Building, Royal Victoria Infirmary, Newcastle upon Tyne NE1 4LP, United Kingdom.
| | - Mohammed S Esa
- Population Health Sciences Institute, Faculty of Medicine, Newcastle University, Sir James Spence Building, Royal Victoria Infirmary, Newcastle upon Tyne NE1 4LP, United Kingdom.
| | - K H Christien Li
- Medical Research Council Versus Arthritis Centre for Integrated Research into Musculoskeletal Ageing, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - S R Gokul Krishnan
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE1 3BZ, United Kingdom.
| | - George M Elgallab
- Faculty of Health Sciences and Wellbeing, Sciences Complex, City Campus, Chester Road, University of Sunderland, Sunderland SR1 3SD, United Kingdom
| | - Mark S Pearce
- Population Health Sciences Institute, Faculty of Medicine, Newcastle University, Sir James Spence Building, Royal Victoria Infirmary, Newcastle upon Tyne NE1 4LP, United Kingdom.
| | - David A Young
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE1 3BZ, United Kingdom.
| | - Fraser N Birrell
- Population Health Sciences Institute, Faculty of Medicine, Newcastle University, Sir James Spence Building, Royal Victoria Infirmary, Newcastle upon Tyne NE1 4LP, United Kingdom; Medical Research Council Versus Arthritis Centre for Integrated Research into Musculoskeletal Ageing, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom.
| |
Collapse
|
34
|
Cannata-Andía JB, Carrillo-López N, Messina OD, Hamdy NAT, Panizo S, Ferrari SL. Pathophysiology of Vascular Calcification and Bone Loss: Linked Disorders of Ageing? Nutrients 2021; 13:3835. [PMID: 34836090 PMCID: PMC8623966 DOI: 10.3390/nu13113835] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/20/2021] [Accepted: 10/22/2021] [Indexed: 02/07/2023] Open
Abstract
Vascular Calcification (VC), low bone mass and fragility fractures are frequently observed in ageing subjects. Although this clinical observation could be the mere coincidence of frequent age-dependent disorders, clinical and experimental data suggest that VC and bone loss could share pathophysiological mechanisms. Indeed, VC is an active process of calcium and phosphate precipitation that involves the transition of the vascular smooth muscle cells (VSMCs) into osteoblast-like cells. Among the molecules involved in this process, parathyroid hormone (PTH) plays a key role acting through several mechanisms which includes the regulation of the RANK/RANKL/OPG system and the Wnt/ß-catenin pathway, the main pathways for bone resorption and bone formation, respectively. Furthermore, some microRNAs have been implicated as common regulators of bone metabolism, VC, left ventricle hypertrophy and myocardial fibrosis. Elucidating the common mechanisms between ageing; VC and bone loss could help to better understand the potential effects of osteoporosis drugs on the CV system.
Collapse
Affiliation(s)
- Jorge B. Cannata-Andía
- Bone and Mineral Research Unit, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Retic REDinREN-ISCIII, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain; (N.C.-L.); (S.P.)
| | - Natalia Carrillo-López
- Bone and Mineral Research Unit, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Retic REDinREN-ISCIII, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain; (N.C.-L.); (S.P.)
| | - Osvaldo D. Messina
- Investigaciones Reumatológicas y Osteológicas (IRO), Buenos Aires 1114, Argentina;
| | - Neveen A. T. Hamdy
- Center for Bone Quality, Division Endocrinology, Department of Medicine, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands;
| | - Sara Panizo
- Bone and Mineral Research Unit, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Retic REDinREN-ISCIII, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain; (N.C.-L.); (S.P.)
| | - Serge L. Ferrari
- Service and Laboratory of Bone Diseases, Department of Medicine, Faculty of Medicine, Geneva University Hospital, 1211 Geneva, Switzerland;
| | | |
Collapse
|
35
|
Pertusa C, Tarín JJ, Cano A, García-Pérez MÁ, Mifsut D. Serum microRNAs in osteoporotic fracture and osteoarthritis: a genetic and functional study. Sci Rep 2021; 11:19372. [PMID: 34588560 PMCID: PMC8481273 DOI: 10.1038/s41598-021-98789-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 09/13/2021] [Indexed: 02/08/2023] Open
Abstract
The rising incidence of bone pathologies such as osteoporosis and osteoarthritis is negatively affecting the functional status of millions of patients worldwide. The genetic component of these multifactorial pathologies is far from being fully understood, but in recent years several epigenetic mechanisms involved in the pathophysiology of these bone diseases have been identified. The aim of the present study was to compare the serum expression of four miRNAs in women with hip fragility fracture (OF group), osteoarthritis requiring hip replacement (OA group) and control women (Ctrl group). Serum expression of miR-497-5p, miR-155-5p, miR-423-5p and miR-365-3p was determined in a sample of 23 OA women, 25 OF women and 52 Ctrl women. Data shown that women with bone pathologies have higher expression of miR-497 and miR-423 and lower expression of miR-155 and miR-365 than control subjects. Most importantly, miR-497 was identified as an excellent discriminator between OA group and control group (AUC: 0.89, p < 0.000) and acceptable in distinguishing from the OF group (AUC: 0.76, p = 0.002). Our data suggest that circulating miR-497 may represent a significant biomarker of OA, a promising finding that could contribute towards future early-stage diagnosis of this disease. Further studies are required to establish the role of miR-155, miR-423 and miR-365 in bone pathologies.
Collapse
Affiliation(s)
- Clara Pertusa
- grid.429003.cResearch Unit, INCLIVA Health Research Institute, 46010 Valencia, Spain
| | - Juan J. Tarín
- grid.5338.d0000 0001 2173 938XDepartment of Cellular Biology, Functional Biology and Physical Anthropology, University of Valencia, 46100 Burjassot, Spain
| | - Antonio Cano
- grid.5338.d0000 0001 2173 938XDepartment of Pediatrics, Obstetrics and Gynecology, University of Valencia, 46010 Valencia, Spain
| | - Miguel Ángel García-Pérez
- grid.429003.cResearch Unit, INCLIVA Health Research Institute, 46010 Valencia, Spain ,grid.5338.d0000 0001 2173 938XDepartment of Genetics, University of Valencia, 46100 Burjassot, Spain
| | - Damián Mifsut
- Orthopedic Surgery and Traumatology, Clinic Hospital, INCLIVA Institute of Health Research, 46010 Valencia, Spain
| |
Collapse
|
36
|
Lee S, Hong N, Kim Y, Park S, Kim KJ, Jeong J, Jung HI, Rhee Y. Circulating miR-122-5p and miR-375 as Potential Biomarkers for Bone Mass Recovery after Parathyroidectomy in Patients with Primary Hyperparathyroidism: A Proof-of-Concept Study. Diagnostics (Basel) 2021; 11:1704. [PMID: 34574045 PMCID: PMC8472510 DOI: 10.3390/diagnostics11091704] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/16/2021] [Accepted: 09/16/2021] [Indexed: 12/11/2022] Open
Abstract
Primary hyperparathyroidism (PHPT) is the leading cause of secondary osteoporosis. Although bone mineral density (BMD) tends to recover after parathyroidectomy in PHPT patients, the degree of recovery varies. Circulating microRNAs (miRNAs) profiles are known to be correlated with osteoporosis and fracture. We aimed to investigate whether osteoporotic fracture-related miRNAs are associated with postoperative BMD recovery in PHPT. Here, 16 previously identified osteoporotic fracture-related miRNAs were selected. We analyzed the association between the preoperative level of each miRNA and total hip (TH) BMD change. All 12 patients (among the 18 patients enrolled) were cured of PHPT after parathyroidectomy as parathyroid hormone (PTH) and calcium levels were restored to the normal range. Preoperative miR-19b-3p, miR-122-5p, and miR-375 showed a negative association with the percent changes in TH BMD from baseline. The association remained robust for miR-122-5p and miR-375 even after adjusting for sex, age, PTH, and procollagen type 1 N-terminal propeptide levels in a multivariable model. In conclusion, preoperative circulating miR-122-5p and miR-375 levels were negatively associated with TH BMD changes after parathyroidectomy in PHPT patients. miRNAs have the potential to serve as predictive biomarkers of treatment response in PHPT patients, which merits further investigation.
Collapse
Affiliation(s)
- Seunghyun Lee
- Department of Internal Medicine, Severance Hospital, Endocrine Research Institute, Yonsei University College of Medicine, Seoul 03722, Korea; (S.L.); (N.H.)
| | - Namki Hong
- Department of Internal Medicine, Severance Hospital, Endocrine Research Institute, Yonsei University College of Medicine, Seoul 03722, Korea; (S.L.); (N.H.)
| | - Yongnyun Kim
- Yonsei University Health System, Seoul 03722, Korea;
| | - Sunyoung Park
- Department of Mechanical Engineering, Yonsei University, Seodaemun-gu, Seoul 03722, Korea; (S.P.); (H.-I.J.)
| | - Kyoung-Jin Kim
- Department of Internal Medicine, Korea University College of Medicine, Seoul 02841, Korea;
| | - Jongju Jeong
- Department of Surgery, Thyroid Cancer Clinic, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Korea;
| | - Hyo-Il Jung
- Department of Mechanical Engineering, Yonsei University, Seodaemun-gu, Seoul 03722, Korea; (S.P.); (H.-I.J.)
| | - Yumie Rhee
- Department of Internal Medicine, Severance Hospital, Endocrine Research Institute, Yonsei University College of Medicine, Seoul 03722, Korea; (S.L.); (N.H.)
| |
Collapse
|
37
|
Farshbaf-Khalili A, Farajnia S, Pourzeinali S, Shakouri SK, Salehi-Pourmehr H. The effect of nanomicelle curcumin supplementation and Nigella sativa oil on the expression level of miRNA-21, miRNA-422a, and miRNA-503 gene in postmenopausal women with low bone mass density: A randomized, triple-blind, placebo-controlled clinical trial with factorial design. Phytother Res 2021; 35:6216-6227. [PMID: 34496087 DOI: 10.1002/ptr.7259] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 06/01/2021] [Accepted: 08/08/2021] [Indexed: 12/11/2022]
Abstract
This study aimed to investigate the effect of nanomicelle curcumin (CUR), Nigella sativa oil (NS), and CUR and NS on the plasma levels of miR-21, miR-422a, and miR-503 expression in postmenopausal women with low bone mass density (BMD). This randomized, triple-blind, placebo-controlled clinical trial with a factorial design was conducted on 120 postmenopausal women from the integrated healthcare system, Tabriz-Iran. The BMD was determined using dual-energy X-ray absorptiometry (DEXA). Women were randomly divided into four groups of 30 participants: (a) CUR (80 mg) and placebo of NS, (b) NS (1,000 mg) and placebo of CUR, (c) CUR (80 mg) and NS (1,000 mg), and (d) both placebos (containing microcrystalline cellulose). The plasma level of miRNA-21, miRNA-422a, and miRNA-503 was determined by qRT-PCR. The expression level of miRNAs at the baseline was similar. At the end of the intervention, only the expression level of miRNA-21 changed statistically significantly between the four groups (p = .037) and between the NS and placebo groups (p = .005). Also, its expression in the two groups receiving NS (p = .037) and NS-CUR (p = .043) was significantly increased. NS and NS-CUR supplementation can increase the expression level of miRNA-21 in postmenopausal women with low bone density, and bring perspective to further studies of the target.
Collapse
Affiliation(s)
- Azizeh Farshbaf-Khalili
- Physical Medicine and Rehabilitation Research Centre, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Safar Farajnia
- Drug Applied Research Center, Tabriz University of Medical Science, Tabriz, Iran
| | - Samira Pourzeinali
- Health Center, Vice Chancellor for Health, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyed Kazem Shakouri
- Physical Medicine and Rehabilitation Research Centre, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hanieh Salehi-Pourmehr
- Research Center for Evidence-based medicine, Iranian EBM Centre: A Joanna Briggs Institute (JBI) Center of Excellence, Tabriz University of Medical, Tabriz, Iran
| |
Collapse
|
38
|
He N, Zhang Y, Zhang Y, Feng B, Zheng Z, Wang D, Zhang S, Ye H. Increasing Fracture Risk Associates With Plasma Circulating MicroRNAs in Aging People's Sarcopenia. Front Physiol 2021; 12:678610. [PMID: 34163374 PMCID: PMC8215392 DOI: 10.3389/fphys.2021.678610] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 04/26/2021] [Indexed: 11/29/2022] Open
Abstract
Aging generally coincides with a gradual decline in mass and strength of muscles and bone mineral density (BMD). Sarcopenia is closely linked to osteoporosis in the elderly, which can lead to abnormal gait, balance disorders, and dysfunctions, as well as increase in the risks of falls, fractures, weakness, and death. MicroRNAs (miRNAs, miRs) are a kind of short and non-coding RNA molecules but can regulate posttranscriptional protein expression. However, we have known little about their participation in age-associated osteoporosis and sarcopenia. The current study aims to confirm those miRNAs as biomarkers for age-related reduction in muscular atrophy associated with human blood fractures. In our study, 10 fracture-risk-related miRNAs (miR-637, miR-148a-3p, miR-125b-5p, miR-124-3p, miR-122-5p, miR-100-5p, miR-93-5p, miR-21-5p, miR-23a-3p, and miR-24-3p) were analyzed. For the initial screening, we determined the abundance of fracture-risk-associated miRNAs by RT-PCR most frequently detected in enrolled 93 elderly with sarcopenia and non-sarcopenia, respectively. Statistically, the relative expression levels of plasma miR-23a-3p, miR-93-5p, and miR-637 in the sarcopenia group were significantly lower than that in the non-sarcopenia group, while the levels of other miRNAs did not change significantly. Moreover, we showed that the levels of ASM/height2, handgrip strength, and 4-m velocity in the sarcopenia group were significantly lower than in the non-sarcopenia group. Whereafter, we expanded the sample for further detection and analysis and revealed that the levels of plasma miR-23a-3p, miR-93-5p, and miR-637 in the sarcopenia group were significantly lower than that in the non-sarcopenia group, which is consistent with the initial screening experiment. From our analysis, changes in levels of plasma miR-93-5p and miR-637 were dramatically related to ASM/height2. Furthermore, changes in miR-23a and miR-93-5p were significantly affected by ASM/height2 in female individuals, with no significant correlations between miRNAs changes and these diagnostic indexes in male individuals after adjusting sex. The study showed that plasma miRNAs changed in an aging-related sarcopenia manner and were associated with increased fracture risk. In aging patients, plasma miR-23a-3p, miR-93-5p, and miR-637 have the potential as biomarkers of sarcopenia, which can affect the development of physiological dysfunction and may be also used in the fracture risk assessment of these patients.
Collapse
Affiliation(s)
- Nana He
- Department of Experimental Medical Science, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, China.,Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Ningbo, China
| | - Yuelin Zhang
- Department of Cardiology, HwaMei Hospital (Previously Named Ningbo No. 2 Hospital), University of Chinese Academy of Sciences, Ningbo, China
| | - Yue Zhang
- Department of Cardiology, HwaMei Hospital (Previously Named Ningbo No. 2 Hospital), University of Chinese Academy of Sciences, Ningbo, China
| | - Beili Feng
- Department of Cardiology, HwaMei Hospital (Previously Named Ningbo No. 2 Hospital), University of Chinese Academy of Sciences, Ningbo, China
| | - Zaixing Zheng
- Department of Cardiology, HwaMei Hospital (Previously Named Ningbo No. 2 Hospital), University of Chinese Academy of Sciences, Ningbo, China
| | - Dongjuan Wang
- Department of Cardiology, HwaMei Hospital (Previously Named Ningbo No. 2 Hospital), University of Chinese Academy of Sciences, Ningbo, China
| | - Shun Zhang
- Department of Experimental Medical Science, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, China.,Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Ningbo, China
| | - Honghua Ye
- Department of Cardiology, HwaMei Hospital (Previously Named Ningbo No. 2 Hospital), University of Chinese Academy of Sciences, Ningbo, China
| |
Collapse
|
39
|
Zhang H, Song X, Teng Z, Cheng S, Yu W, Yao X, Song Z, Zhang Y. Key circular RNAs identified in male osteoporosis patients by whole transcriptome sequencing. PeerJ 2021; 9:e11420. [PMID: 34123587 PMCID: PMC8164409 DOI: 10.7717/peerj.11420] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 04/16/2021] [Indexed: 12/21/2022] Open
Abstract
Background Osteoporosis (OP) is a systemic disease with bone loss and microstructural deterioration. Numerous noncoding RNAs (ncRNAs) have been proved to participate in various diseases, especially circular RNAs (circRNAs). However, the expression profile and mechanisms underlying circRNAs in male osteoporosis have not yet been explored. Methods The whole transcriptome expression profile and differences in mRNAs, circRNAs, and microRNAs (miRNAs) were investigated in peripheral blood samples of patients with osteoporosis and healthy controls consisting of males ≥ 60-years-old. Results A total of 398 circRNAs, 51 miRNAs, and 642 mRNAs were significantly and differentially expressed in osteoporosis compared to healthy controls. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis showed that the host genes of significantly differentially expressed circRNAs were mainly enriched in the regulation of cell cycle process: biological process (BP), organelle part cellular components (CC), protein binding molecular function (MF), Toll-like receptor signaling pathway, tumor necrosis factor (TNF) signaling pathway, and thyroid hormone signaling pathway. circRNA-miRNA-mRNA regulatory network was constructed using the differentially expressed RNAs. Moreover, key circRNAs (hsa_circ_0042409) in osteoporosis were discovered and validated by qPCR. Conclusions The key cicrRNAs plays a major role in the pathogenesis of osteoporosis and could be used as potential biomarkers or targets in the diagnosis and treatment of osteoporosis.
Collapse
Affiliation(s)
- Haijin Zhang
- Department of Geriatrics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xue Song
- Harbin North people's Hospital, Harbin, China
| | - Zongyan Teng
- Department of Geriatrics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Sujun Cheng
- Department of Geriatrics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Weigang Yu
- Department of Geriatrics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiaoyi Yao
- Department of Geriatrics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhiqiang Song
- Department of Geriatrics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yina Zhang
- Department of Geriatrics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
40
|
Wu YZ, Huang HT, Cheng TL, Lu YM, Lin SY, Ho CJ, Lee TC, Hsu CH, Huang PJ, Huang HH, Li JY, Su YD, Chen SC, Kang L, Chen CH. Application of microRNA in Human Osteoporosis and Fragility Fracture: A Systemic Review of Literatures. Int J Mol Sci 2021; 22:ijms22105232. [PMID: 34063380 PMCID: PMC8156577 DOI: 10.3390/ijms22105232] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) could serve as ideal entry points to the deregulated pathways in osteoporosis due to their relatively simple upstream and downstream relationships with other molecules in the signaling cascades. Our study aimed to give a comprehensive review of the already identified miRNAs in osteoporosis from human blood samples and provide useful information for their clinical application. A systematic literature search for relevant studies was conducted in the Pubmed database from inception to December 2020. We set two essential inclusion criteria: human blood sampling and design of controlled studies. We sorted the results of analysis on human blood samples according to the study settings and compiled the most promising miRNAs with analyzed diagnostic values. Furthermore, in vitro and in vivo evidence for the mechanisms of the identified miRNAs was also illustrated. Based on both diagnostic value and evidence of mechanism from in vitro and in vivo experiments, miR-23b-3p, miR-140-3p, miR-300, miR-155-5p, miR-208a-3p, and miR-637 were preferred candidates in diagnostic panels and as therapeutic agents. Further studies are needed to build sound foundations for the clinical usage of miRNAs in osteoporosis.
Collapse
Affiliation(s)
- Yen-Zung Wu
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan; (Y.-Z.W.); (H.-T.H.); (T.-L.C.); (Y.-M.L.); (S.-Y.L.); (C.-J.H.); (T.-C.L.); (C.-H.H.); (P.-J.H.); (J.-Y.L.); (Y.-D.S.)
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
| | - Hsuan-Ti Huang
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan; (Y.-Z.W.); (H.-T.H.); (T.-L.C.); (Y.-M.L.); (S.-Y.L.); (C.-J.H.); (T.-C.L.); (C.-H.H.); (P.-J.H.); (J.-Y.L.); (Y.-D.S.)
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Musculoskeletal Regeneration Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Department of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Department of Orthopedics, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 80145, Taiwan
| | - Tsung-Lin Cheng
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan; (Y.-Z.W.); (H.-T.H.); (T.-L.C.); (Y.-M.L.); (S.-Y.L.); (C.-J.H.); (T.-C.L.); (C.-H.H.); (P.-J.H.); (J.-Y.L.); (Y.-D.S.)
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Musculoskeletal Regeneration Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Department of Physiology, College of Medicine, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
| | - Yen-Mou Lu
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan; (Y.-Z.W.); (H.-T.H.); (T.-L.C.); (Y.-M.L.); (S.-Y.L.); (C.-J.H.); (T.-C.L.); (C.-H.H.); (P.-J.H.); (J.-Y.L.); (Y.-D.S.)
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Musculoskeletal Regeneration Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Department of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Department of Orthopedics, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 80145, Taiwan
| | - Sung-Yen Lin
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan; (Y.-Z.W.); (H.-T.H.); (T.-L.C.); (Y.-M.L.); (S.-Y.L.); (C.-J.H.); (T.-C.L.); (C.-H.H.); (P.-J.H.); (J.-Y.L.); (Y.-D.S.)
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Musculoskeletal Regeneration Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Department of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Department of Orthopedics, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 80145, Taiwan
| | - Cheng-Jung Ho
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan; (Y.-Z.W.); (H.-T.H.); (T.-L.C.); (Y.-M.L.); (S.-Y.L.); (C.-J.H.); (T.-C.L.); (C.-H.H.); (P.-J.H.); (J.-Y.L.); (Y.-D.S.)
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Musculoskeletal Regeneration Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
| | - Tien-Ching Lee
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan; (Y.-Z.W.); (H.-T.H.); (T.-L.C.); (Y.-M.L.); (S.-Y.L.); (C.-J.H.); (T.-C.L.); (C.-H.H.); (P.-J.H.); (J.-Y.L.); (Y.-D.S.)
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Musculoskeletal Regeneration Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Department of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Department of Orthopedics, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 80145, Taiwan
| | - Chia-Hao Hsu
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan; (Y.-Z.W.); (H.-T.H.); (T.-L.C.); (Y.-M.L.); (S.-Y.L.); (C.-J.H.); (T.-C.L.); (C.-H.H.); (P.-J.H.); (J.-Y.L.); (Y.-D.S.)
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Musculoskeletal Regeneration Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Department of Orthopedics, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 80145, Taiwan
| | - Peng-Ju Huang
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan; (Y.-Z.W.); (H.-T.H.); (T.-L.C.); (Y.-M.L.); (S.-Y.L.); (C.-J.H.); (T.-C.L.); (C.-H.H.); (P.-J.H.); (J.-Y.L.); (Y.-D.S.)
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Department of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
| | - Han Hsiang Huang
- Department of Veterinary Medicine, National Chiayi University, Chiayi 60004, Taiwan;
| | - Jhong-You Li
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan; (Y.-Z.W.); (H.-T.H.); (T.-L.C.); (Y.-M.L.); (S.-Y.L.); (C.-J.H.); (T.-C.L.); (C.-H.H.); (P.-J.H.); (J.-Y.L.); (Y.-D.S.)
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Musculoskeletal Regeneration Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Department of Orthopedics, Kaohsiung Municipal Hsiao-Kang Hospital, Kaohsiung Medical University, Kaohsiung 812, Taiwan
| | - Yu-De Su
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan; (Y.-Z.W.); (H.-T.H.); (T.-L.C.); (Y.-M.L.); (S.-Y.L.); (C.-J.H.); (T.-C.L.); (C.-H.H.); (P.-J.H.); (J.-Y.L.); (Y.-D.S.)
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Musculoskeletal Regeneration Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Department of Orthopedics, Kaohsiung Municipal Hsiao-Kang Hospital, Kaohsiung Medical University, Kaohsiung 812, Taiwan
| | - Shih-Chieh Chen
- Department of Healthcare Administration and Medical Informatics, Kaohsiung Medical University, Kaohsiung 80701, Taiwan;
- Department of Medical Records, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
| | - Lin Kang
- Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
- Correspondence: (L.K.); (C.-H.C.); Tel.: +886-7-3209-209 (C.-H.C.)
| | - Chung-Hwan Chen
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan; (Y.-Z.W.); (H.-T.H.); (T.-L.C.); (Y.-M.L.); (S.-Y.L.); (C.-J.H.); (T.-C.L.); (C.-H.H.); (P.-J.H.); (J.-Y.L.); (Y.-D.S.)
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Musculoskeletal Regeneration Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Department of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Department of Orthopedics, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 80145, Taiwan
- Department of Healthcare Administration and Medical Informatics, Kaohsiung Medical University, Kaohsiung 80701, Taiwan;
- Institute of Medical Science and Technology, National Sun Yat-Sen University, Kaohsiung 80420, Taiwan
- Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 912301, Taiwan
- Correspondence: (L.K.); (C.-H.C.); Tel.: +886-7-3209-209 (C.-H.C.)
| |
Collapse
|
41
|
Grillari J, Mäkitie RE, Kocijan R, Haschka J, Vázquez DC, Semmelrock E, Hackl M. Circulating miRNAs in bone health and disease. Bone 2021; 145:115787. [PMID: 33301964 DOI: 10.1016/j.bone.2020.115787] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/27/2020] [Accepted: 12/01/2020] [Indexed: 12/15/2022]
Abstract
microRNAs have evolved as important regulators of multiple biological pathways essential for bone homeostasis, and microRNA research has furthered our understanding of the mechanisms underlying bone health and disease. This knowledge, together with the finding that active or passive release of microRNAs from cells into the extracellular space enables minimal-invasive detection in biofluids (circulating miRNAs), motivated researchers to explore microRNAs as biomarkers in several pathologic conditions, including bone diseases. Thus, exploratory studies in cohorts representing different types of bone diseases have been performed. In this review, we first summarize important molecular basics of microRNA function and release and provide recommendations for best (pre-)analytical practices and documentation standards for circulating microRNA research required for generating high quality data and ensuring reproducibility of results. Secondly, we review how the genesis of bone-derived circulating microRNAs via release from osteoblasts and osteoclasts could contribute to the communication between these cells. Lastly, we summarize evidence from clinical research studies that have investigated the clinical utility of microRNAs as biomarkers in musculoskeletal disorders. While previous reviews have mainly focused on diagnosis of primary osteoporosis, we have also included studies exploring the utility of circulating microRNAs in monitoring anti-osteoporotic treatment and for diagnosis of other types of bone diseases, such as diabetic osteopathy, bone degradation in inflammatory diseases, and monogenetic bone diseases.
Collapse
Affiliation(s)
- Johannes Grillari
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria; Institute for Molecular Biotechnology, BOKU - University of Natural Resources and Life Sciences, Vienna, Austria; Austrian Cluster for Tissue Regeneration, Austria
| | - Riikka E Mäkitie
- Folkhälsan Institute of Genetics and University of Helsinki, Helsinki, Finland; Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Molecular Endocrinology Laboratory, Department of Medicine, Hammersmith Campus, Imperial College London, London, United Kingdom
| | - Roland Kocijan
- Hanusch Hospital of the WGKK and AUVA Trauma Center, 1st Medical Department at Hanusch Hospital, Ludwig Boltzmann Institute of Osteology, Vienna, Austria; Sigmund Freud University Vienna, School of Medicine, Metabolic Bone Diseases Unit, Austria
| | - Judith Haschka
- Hanusch Hospital of the WGKK and AUVA Trauma Center, 1st Medical Department at Hanusch Hospital, Ludwig Boltzmann Institute of Osteology, Vienna, Austria; Karl Landsteiner Institute for Rheumatology and Gastroenterology, Vienna, Austria
| | | | | | - Matthias Hackl
- Austrian Cluster for Tissue Regeneration, Austria; TAmiRNA GmbH, Vienna, Austria.
| |
Collapse
|
42
|
Use of Omics Data in Fracture Prediction; a Scoping and Systematic Review in Horses and Humans. Animals (Basel) 2021; 11:ani11040959. [PMID: 33808497 PMCID: PMC8065418 DOI: 10.3390/ani11040959] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 03/25/2021] [Accepted: 03/26/2021] [Indexed: 12/17/2022] Open
Abstract
Simple Summary Despite many recent advances in imaging and epidemiological data analysis, musculoskeletal injuries continue to be a welfare issue in racehorses. Omics studies describe the study of protein, genetic material (both DNA and RNA, including microRNAs—small non-coding ribonucleic acids) and metabolites that may provide insights into the pathophysiology of disease or opportunities to monitor response to treatment when measured in bodily fluids. As these fields of study are scientifically complex and highly specialised, it is timely to perform a review of the current literature to allow for the design of robust studies that allow for repeatable work. Systematic reviews have been introduced into the medical literature and are a methodological way of searching for relevant papers followed by critical review of the content and a detection of biases. The objectives of the current systematic review were to identify and critically appraise the literature pertaining to microRNA (miRNA) and their target genes that are correlated with stress fractures in racehorses and humans. The object was to define a panel of miRNAs and their target genes as potential biomarkers in either horses or human subjects. The online scientific databases were searched and a reviewed was performed according to preferred reporting items for systematic reviews and meta-analyses (PRISMA) guidelines. MicroRNA profiling studies in horses continue to emerge, but as of yet, no miRNA profile can reliably predict the occurrence of fractures. It is very important that future studies are well designed to mitigate the effects of variation in sample size, exercise and normalisation methods. Abstract Despite many recent advances in imaging and epidemiological data analysis, musculoskeletal injuries continue to be a welfare issue in racehorses. Peptide biomarker studies have failed to consistently predict bone injury. Molecular profiling studies provide an opportunity to study equine musculoskeletal disease. A systematic review of the literature was performed using preferred reporting items for systematic reviews and meta-analyses protocols (PRISMA-P) guidelines to assess the use of miRNA profiling studies in equine and human musculoskeletal injuries. Data were extracted from 40 papers between 2008 and 2020. Three miRNA studies profiling equine musculoskeletal disease were identified, none of which related to equine stress fractures. Eleven papers studied miRNA profiles in osteoporotic human patients with fractures, but differentially expressed miRNAs were not consistent between studies. MicroRNA target prediction programmes also produced conflicting results between studies. Exercise affected miRNA profiles in both horse and human studies (e.g., miR-21 was upregulated by endurance exercise and miR-125b was downregulated by exercise). MicroRNA profiling studies in horses continue to emerge, but as yet, no miRNA profile can reliably predict the occurrence of fractures. It is very important that future studies are well designed to mitigate the effects of variation in sample size, exercise and normalisation methods.
Collapse
|
43
|
Kong D, Chen T, Zheng X, Yang T, Zhang Y, Shao J. Comparative profile of exosomal microRNAs in postmenopausal women with various bone mineral densities by small RNA sequencing. Genomics 2021; 113:1514-1521. [PMID: 33785399 DOI: 10.1016/j.ygeno.2021.03.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 01/28/2021] [Accepted: 03/25/2021] [Indexed: 12/16/2022]
Abstract
To explore the role of plasma miRNAs in exosomes in early postmenopausal women. Small RNA sequencing was implemented to clarify the expression of miRNA in plasma exosomes obtained from 15 postmenopausal women, divided into groups of osteoporosis, osteopenia, and normal bone mass based on bone mineral density. Differentially expressed miRNAs (DEMs) were identified by comparing miRNA expression profiles. Five putative miRNAs, miR-224-3p, miR-25-5p, miR-302a-3p, miR-642a-3p, and miR-766-5p were confirmed by real-time PCR; miRNA target genes were obtained from 4 databases: miRWalk, miRDB, RNA22, and TargetScan. The miRNA-mRNA- Kyoto Encyclopedia of Genes and Genomes (KEGG) networks were analyzed, and the DEMs' potential role was investigated by gene ontology terms and KEGG pathway annotation. The results suggest that characterizing plasma exosomal miRNA profiles of early postmenopausal women by small RNA sequencing could identify novel exo-miRNAs involved in bone remodeling, and miR-642a-3p maybe contribute to the prediction and diagnosis of early postmenopausal osteoporosis.
Collapse
Affiliation(s)
- Dece Kong
- Department of Orthopedics, Pudong New Area Gongli Hospital, School of Clinical Medicine, Shanghai University, Shanghai 200135, China
| | - Tianning Chen
- Graduate School of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, 750004, China
| | - Xinhui Zheng
- Graduate School of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, 750004, China
| | - Tieyi Yang
- Department of Orthopedics, Pudong New Area Gongli Hospital, School of Clinical Medicine, Shanghai University, Shanghai 200135, China.
| | - Yan Zhang
- Department of Orthopedics, Pudong New Area Gongli Hospital, School of Clinical Medicine, Shanghai University, Shanghai 200135, China
| | - Jin Shao
- Department of Orthopedics, Pudong New Area Gongli Hospital, School of Clinical Medicine, Shanghai University, Shanghai 200135, China.
| |
Collapse
|
44
|
Ge X, Xie H, Wang L, Li R, Zhang F, Xu J, Zhao B, Du J. MicroRNA-122 promotes apoptosis of keratinocytes in oral lichen planus through suppressing VDR expression. J Cell Mol Med 2021; 25:3400-3407. [PMID: 33656264 PMCID: PMC8034474 DOI: 10.1111/jcmm.16418] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 02/05/2021] [Accepted: 02/12/2021] [Indexed: 12/14/2022] Open
Abstract
MicroRNA‐122 (miR‐122) is known to be up‐regulated by inflammation to exert a variety of biological functions in hepatocellular carcinoma (HCC)‐derived human cell lines. Vitamin D receptor (VDR) is reported to regulate excessive oral keratinocytes apoptosis which compromises oral epithelial barrier in oral lichen planus (OLP). Although many studies have suggested that miR‐122 is capable of regulating cell apoptosis, its effects on the development of OLP and VDR expression are still unclear. Herein, we demonstrate that miR‐122 expression is increased in the epithelial layer of OLP. Mechanically, transcription factor nuclear factor‐κB (NF‐κB) selectively binds with κB element in the promoter of miR‐122 to accelerate gene transcription. The up‐regulation of miR‐122 induces cell apoptosis in human oral keratinocytes (HOKs) by targeting VDR mRNA. In VDR knockout oral keratinocytes, miR‐122 fails to improve caspase 3 activity and cleaved caspase 3 and poly(ADP‐ribose) polymerase (PARP) levels. Moreover, VDR overexpression is able to reverse lipopolysaccharide (LPS)‐ or activated CD4+ T cell–induced miR‐122 up‐regulation and ameliorate miR‐122‐stimulated caspase 3 activity. Collectively, our results suggest that miR‐122 promotes oral keratinocytes apoptosis in OLP through decreasing VDR expression.
Collapse
Affiliation(s)
- Xuejun Ge
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, China.,Department of Endodontics, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, China
| | - Hanting Xie
- Department of Pathology, Shanxi Medical University, Taiyuan, China
| | - Lu Wang
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, China
| | - Ran Li
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, China
| | - Fang Zhang
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, China.,Department of Oral Medicine, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, China
| | - Jing Xu
- Department of Pathology, Shanxi Medical University, Taiyuan, China
| | - Bin Zhao
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, China
| | - Jie Du
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, China.,Department of Oral Medicine, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, China.,Institute of Biomedical Research, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
45
|
Kaur T, John AA, Sharma C, Vashisht NK, Singh D, Kapila R, Kapila S. miR300 intervenes Smad3/β-catenin/RunX2 crosstalk for therapy with an alternate function as indicative biomarker in osteoporosis. Bone 2021; 143:115603. [PMID: 32827850 DOI: 10.1016/j.bone.2020.115603] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/14/2020] [Accepted: 08/17/2020] [Indexed: 12/15/2022]
Abstract
The study reports a theranostic nature of rno-miR-300 (miR300) in the osteoblast functioning, by influencing the signaling pathway(s), associated with osteoblast differentiation. Excessive expression of miR300 suppresses osteoblast functions. Smad3 served as a validated target for miR300, on homology-based computational analysis and experimental testimony, which activates β-catenin, and subsequently potentiates Runx2. The impact of miR300 on the Smad3/β-catenin/Runx2 signaling interactions in the induction of osteoblast differentiation was scrutinized by immunoblotting and in vivo miRNA antagonism. Overexpression of miR300 in the rat calvarial osteoblasts decreases the protein levels of Smad3, β-catenin and Runx2. Besides, in vivo silencing of miR300 in the neonatal pups and adult rats by AntimiR300 abolishes the suppressing action of miR300 on the osteoblast differentiation and expressions of Smad3/β-catenin/Runx2 axis. MicroCT studies showed improved trabecular microarchitecture in the AntimiR300 transfected ovariectomised rat model compared to sham and negative control. Furthermore, expression levels of miR300 were evaluated in serum samples from an independent set of 30 osteoporotic patients followed by a Receiver Operating Characteristic Curve (ROC) based analysis for the diagnostic efficiency of miR300. Interestingly, the results exhibited high levels of miR300 (p < 0.0001) in the serum samples from osteoporotic patients relative to non-osteoporotic subjects (AUC = 0.9689). Thus, miR300 negatively regulates the differentiation of osteoblasts by targeting crosstalk among Smad3, β-catenin and Runx2, unveiling an enormous ability to serve as a therapeutic target for bone-related disorder management strategies. Besides, miR300 may potentially function for the diagnosis of osteoporosis as a non-invasive biomarker.
Collapse
Affiliation(s)
- Taruneet Kaur
- Animal Biochemistry Division, National Dairy Research Institute, Karnal 132001, Haryana, India
| | - Aijaz A John
- Division of Endocrinology, CSIR-Central Drug Research Institute, Jankipuram Extension, Lucknow 226031, India
| | - Chandresh Sharma
- Multidisciplinary Clinical Translational Research, Translational Health Science and Technology Institute, Faridabad 121001, Haryana, India
| | - N K Vashisht
- Department of Obstetrics and Gynaecology, SMBT Institute of Medical Sciences and Research Centre, Nashik 422403, Maharashtra, India
| | - Divya Singh
- Division of Endocrinology, CSIR-Central Drug Research Institute, Jankipuram Extension, Lucknow 226031, India
| | - Rajeev Kapila
- Animal Biochemistry Division, National Dairy Research Institute, Karnal 132001, Haryana, India
| | - Suman Kapila
- Animal Biochemistry Division, National Dairy Research Institute, Karnal 132001, Haryana, India.
| |
Collapse
|
46
|
Merlotti D, Cosso R, Eller-Vainicher C, Vescini F, Chiodini I, Gennari L, Falchetti A. Energy Metabolism and Ketogenic Diets: What about the Skeletal Health? A Narrative Review and a Prospective Vision for Planning Clinical Trials on this Issue. Int J Mol Sci 2021; 22:ijms22010435. [PMID: 33406758 PMCID: PMC7796307 DOI: 10.3390/ijms22010435] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/27/2020] [Accepted: 12/30/2020] [Indexed: 12/15/2022] Open
Abstract
The existence of a common mesenchymal cell progenitor shared by bone, skeletal muscle, and adipocytes cell progenitors, makes the role of the skeleton in energy metabolism no longer surprising. Thus, bone fragility could also be seen as a consequence of a “poor” quality in nutrition. Ketogenic diet was originally proven to be effective in epilepsy, and long-term follow-up studies on epileptic children undergoing a ketogenic diet reported an increased incidence of bone fractures and decreased bone mineral density. However, the causes of such negative impacts on bone health have to be better defined. In these subjects, the concomitant use of antiepileptic drugs and the reduced mobilization may partly explain the negative effects on bone health, but little is known about the effects of diet itself, and/or generic alterations in vitamin D and/or impaired growth factor production. Despite these remarks, clinical studies were adequately designed to investigate bone health are scarce and bone health related aspects are not included among the various metabolic pathologies positively influenced by ketogenic diets. Here, we provide not only a narrative review on this issue, but also practical advice to design and implement clinical studies on ketogenic nutritional regimens and bone health outcomes. Perspectives on ketogenic regimens, microbiota, microRNAs, and bone health are also included.
Collapse
Affiliation(s)
- Daniela Merlotti
- Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy; (D.M.); (L.G.)
| | - Roberta Cosso
- Istituto Auxologico Italiano “Scientific Institute for Hospitalisation and Care”, 20100 Milano, Italy; (R.C.); (I.C.)
| | - Cristina Eller-Vainicher
- Unit of Endocrinology, Fondazione IRCCS Cà Granda-Ospedale Maggiore Policlinico Milano, 20122 Milano, Italy;
| | - Fabio Vescini
- Endocrinology and Metabolism Unit, University-Hospital S. Maria della Misericordia of Udine, 33100 Udine, Italy;
| | - Iacopo Chiodini
- Istituto Auxologico Italiano “Scientific Institute for Hospitalisation and Care”, 20100 Milano, Italy; (R.C.); (I.C.)
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20122 Milano, Italy
| | - Luigi Gennari
- Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy; (D.M.); (L.G.)
| | - Alberto Falchetti
- Istituto Auxologico Italiano “Scientific Institute for Hospitalisation and Care”, 20100 Milano, Italy; (R.C.); (I.C.)
- Correspondence:
| |
Collapse
|
47
|
Fittipaldi S, Visconti VV, Tarantino U, Novelli G, Botta A. Genetic variability in noncoding RNAs: involvement of miRNAs and long noncoding RNAs in osteoporosis pathogenesis. Epigenomics 2020; 12:2035-2049. [PMID: 33264054 DOI: 10.2217/epi-2020-0233] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The pathogenesis of osteoporosis is multifactorial and is the consequence of genetic, hormonal and lifestyle factors. Epigenetics, including noncoding RNA (ncRNA) deregulation, represents a link between susceptibility to develop the disease and environmental influences. The majority of studies investigated the expression of ncRNAs in osteoporosis patients; however, very little information is available on their genetic variability. In this review, we focus on two classes of ncRNAs: miRNAs and long noncoding RNAs (lncRNAs). We summarize recent findings on how polymorphisms in miRNAs and lncRNAs can perturb the lncRNA/miRNA/mRNA axis and may be involved in osteoporosis clinical outcome. We also provide a general overview on databases and bioinformatic tools useful for associating miRNAs and lncRNAs variability with complex genetic diseases.
Collapse
Affiliation(s)
- Simona Fittipaldi
- Department of Biomedicine & Prevention, Medical Genetics Section, University of Rome 'Tor Vergata', Via Montpellier 1, 00133 Rome, Italy
| | - Virginia Veronica Visconti
- Department of Biomedicine & Prevention, Medical Genetics Section, University of Rome 'Tor Vergata', Via Montpellier 1, 00133 Rome, Italy.,Department of Orthopedics & Traumatology, PTV Foundation, 00133 Rome, Italy
| | - Umberto Tarantino
- Department of Orthopedics & Traumatology, PTV Foundation, 00133 Rome, Italy.,Department of Clinical Sciences & Translational Medicine, University of Rome 'Tor Vergata', Via Montpellier 1, 00133 Rome, Italy
| | - Giuseppe Novelli
- Department of Biomedicine & Prevention, Medical Genetics Section, University of Rome 'Tor Vergata', Via Montpellier 1, 00133 Rome, Italy.,IRCCS Neuromed, Pozzilli, IS, Italy
| | - Annalisa Botta
- Department of Biomedicine & Prevention, Medical Genetics Section, University of Rome 'Tor Vergata', Via Montpellier 1, 00133 Rome, Italy
| |
Collapse
|
48
|
Zhao H, Yang Y, Wang Y, Feng X, Deng A, Ou Z, Chen B. MicroRNA-497-5p stimulates osteoblast differentiation through HMGA2-mediated JNK signaling pathway. J Orthop Surg Res 2020; 15:515. [PMID: 33168056 PMCID: PMC7654018 DOI: 10.1186/s13018-020-02043-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 10/28/2020] [Indexed: 12/18/2022] Open
Abstract
Background Osteoporosis (OP) has the characteristics of the decline in bone mineral density and worsening of bone quality, contributing to a higher risk of fractures. Some microRNAs (miRNAs) have been validated as possible mediators of osteoblast differentiation. We herein aimed to clarify whether miR-497-5p regulates the differentiation of osteoblasts in MC3T3-E1 cells. Methods The expression of miR-497-5p in OP patients and controls was measured by RT-qPCR, and its expression changes during osteoblast differentiation were determined as well. The effects of miR-497-5p on the differentiation of MC3T3-E1 cells were studied using MTT, ALR staining, and ARS staining. The target gene of miR-497-5p was predicted by TargetScan, and the effects of its target gene on differentiation and the pathway involved were investigated. Results miR-497-5p expressed poorly in OP patients, and its expression was upregulated during MC3T3-E1 cell differentiation. Overexpression of miR-497-5p promoted mineralized nodule formation and the expression of RUNX2 and OCN. miR-497-5p targeted high mobility group AT-Hook 2 (HMGA2), while the upregulation of HMGA2 inhibited osteogenesis induced by miR-497-5p mimic. miR-497-5p significantly impaired the c-Jun NH2-terminal kinase (JNK) pathway, whereas HMGA2 activated this pathway. Activation of the JNK pathway inhibited the stimulative role of miR-497-5p mimic in osteogenesis. Conclusions miR-497-5p inhibits the development of OP by promoting osteogenesis via targeting HMGA2.
Collapse
Affiliation(s)
- Huiqing Zhao
- Department of Orthopaedics, The Third Affiliated Hospital of Sun Yat-Sen University, No, 2693, Kaichuang Road, Guangzhou, 510530, Guangdong, People's Republic of China
| | - Yexiang Yang
- Department of Joint and Trauma Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, Guangdong, People's Republic of China
| | - Yang Wang
- Department of Orthopaedics, The Third Affiliated Hospital of Sun Yat-Sen University, No, 2693, Kaichuang Road, Guangzhou, 510530, Guangdong, People's Republic of China
| | - Xiaolei Feng
- Department of Orthopaedics, The Third Affiliated Hospital of Sun Yat-Sen University, No, 2693, Kaichuang Road, Guangzhou, 510530, Guangdong, People's Republic of China
| | - Adi Deng
- Department of Orthopaedics, The Third Affiliated Hospital of Sun Yat-Sen University, No, 2693, Kaichuang Road, Guangzhou, 510530, Guangdong, People's Republic of China
| | - Zhaolan Ou
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, No, 600, Tianhe Road, Tianhe District, Guangzhou, 510630, Guangdong, People's Republic of China.
| | - Biying Chen
- Department of Orthopaedics, The Third Affiliated Hospital of Sun Yat-Sen University, No, 2693, Kaichuang Road, Guangzhou, 510530, Guangdong, People's Republic of China.
| |
Collapse
|
49
|
李 晓, 孔 清. [The regulatory role of microRNA in osteogenic differentiation of mesenchymal stem cells and its application as a therapeutic target and diagnostic tool in orthopedic diseases]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2020; 34:1332-1340. [PMID: 33063501 PMCID: PMC8171876 DOI: 10.7507/1002-1892.201912092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 05/17/2020] [Indexed: 02/05/2023]
Abstract
OBJECTIVE To summarize the research progress of the regulatory role of microRNA (miRNA) in osteogenic differentiation of mesenchymal stem cells (MSCs) and its application as a therapeutic target and diagnostic tool in orthopedic diseases. METHODS The recent literature on the regulation of MSCs osteogenic differentiation by miRNAs was extensively reviewed, and its regulatory mechanism and its application as a therapeutic target and diagnostic tool in orthopedic diseases were reviewed. RESULTS miRNAs are small endogenous non-coding RNAs with a length of 20-22 nucleotides, which play an important role in the osteogenic differentiation of MSCs. Osteogenesis begins with the differentiation of MSCs into mature osteoblasts, and each stage of dynamic homeostasis of bone metabolism is associated with the regulation of different miRNAs. miRNAs are regulated from the post-transcriptional level by mRNAs cleavage, degradation, translational repression, or methylation. In addition, current studies suggest that miRNAs can be used as a new diagnostic tool and therapeutic target for orthopedic diseases. CONCLUSION Further study on the regulation mechanism of miRNAs will provide more ideas for finding new therapeutic targets and diagnostic tools for orthopedic disease.
Collapse
Affiliation(s)
- 晓龙 李
- 四川大学华西医院骨科(成都 610041)Department of Orthopedics, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| | - 清泉 孔
- 四川大学华西医院骨科(成都 610041)Department of Orthopedics, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| |
Collapse
|
50
|
Shuai Y, Liao L, Su X, Sha N, Li X, Wu Y, Jing H, Kuang H, Deng Z, Li Y, Jin Y. Circulating microRNAs in serum as novel biomarkers for osteoporosis: a case-control study. Ther Adv Musculoskelet Dis 2020; 12:1759720X20953331. [PMID: 33029202 PMCID: PMC7522822 DOI: 10.1177/1759720x20953331] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 08/05/2020] [Indexed: 02/05/2023] Open
Abstract
AIMS Osteoporosis is underdiagnosed because of the lack of a convenient diagnostic method. Circulating microRNAs (miRNAs) emerge as novel biomarkers for disease diagnosis. Here, we conducted a case-control study that included a total of 448 serum samples collected from 182 healthy participants, 132 osteopenia participants, and 134 osteoporosis patients. METHODS Circulating miRNAs dysregulated during osteoporosis were screened and analyzed in three randomly determined sub-cohorts: the discovery cohort identified 22 candidate miRNAs; the training cohort tested the candidate miRNAs and constructed Index 1, comprising five miRNAs by logistic regression, and Index 2, comprising four miRNAs, was developed by linear combination. RESULTS Both indices were tested in the validation cohort and showed statistically significant results in distinguishing osteoporosis patients from healthy and osteopenic patients. Moreover, Index 1 also showed improved performance over traditional bone turnover biomarkers type I pro-collagen (tPINP) and type I collagen (β-CTx). CONCLUSION In conclusion, circulating miRNAs are potential biomarkers for osteoporosis. The diagnostic panel of circulating miRNAs could be a complementary method for dual-energy X-ray absorptiometry (DXA) in mass screening and routine examination to enhance the osteoporosis detection rate.
Collapse
Affiliation(s)
- Yi Shuai
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Li Liao
- State Key Laboratory of Oral Disease, West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Xiaoxia Su
- State Key Laboratory of Oral Disease, West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Nanxi Sha
- Department of Health Medical Center, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Xiaobo Li
- Department of Health Medical Center, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Yutao Wu
- State Key Laboratory of Oral Disease, West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Huan Jing
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Huijuan Kuang
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Zhihong Deng
- Xi'an Institute of Tissue Engineering and Regenerative Medicine, Xi'an, Shaanxi 710032, China
| | - Yongqi Li
- Department of Pediatric, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yan Jin
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, 145# West Changle Road, Xi'an, Shaanxi 710032, China
| |
Collapse
|