1
|
Wang X, Li TZ, Ma YB, Ma WJ, Xue D, Chen JJ. Synthesis and antihepatoma activity of guaianolide dimers derived from lavandiolide I. Bioorg Med Chem Lett 2024; 104:129708. [PMID: 38521176 DOI: 10.1016/j.bmcl.2024.129708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/12/2024] [Accepted: 03/14/2024] [Indexed: 03/25/2024]
Abstract
Guaianolide dimers represent a unique class of natural products with anticancer activities, but their low content in plants has limited in-depth pharmacological studies. Lavandiolide I is a guaianolide dimer isolated from Artemisia species, and had been synthesized on a ten-gram scale in four steps with 60 % overall yield, which showed potent antihepatoma activity on the HepG2, Huh7, and SK-Hep-1 cell lines with IC50 values of 12.1, 18.4, and 17.6 µM, respectively. To explore more active dimers, 33 lavandiolide I derivatives were designed, synthesized, and evaluated for their inhibitory activity on human hepatoma cell lines. Among them, 10 derivatives were more active than lavandiolide I and sorafenib on the three cell lines. The primary structure-activity relationship concluded that the introduction of aldehyde, ester, azide, amide, carbamate and urea functional groups at C-14' of the guaianolide dimer significantly enhanced the antihepatoma activity. Among these compounds, derivatives 25, 27, and 33 enhanced antihepatoma activity more than 1.2-5.8 folds than that of lavandiolide I, and demonstrated low toxicity to the human liver cell lines (THLE-2) and good safety profiles with selective index ranging from 1.3 to 3.4, while lavandiolide I was more toxic to THLE-2 cells. This work provides new insights into enhancing the antihepatoma efficacy and reducing the toxicity of sesquiterpenoid dimers.
Collapse
Affiliation(s)
- Xing Wang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China; Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, People's Republic of China
| | - Tian-Ze Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
| | - Yun-Bao Ma
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
| | - Wen-Jing Ma
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
| | - Dong Xue
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, People's Republic of China.
| | - Ji-Jun Chen
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China.
| |
Collapse
|
2
|
He TB, Yan BC, Zhou YF, Sang YQ, Li XN, Sun HD, Wang C, Xue XS, Puno PT. Discovery and bioinspired total syntheses of unprecedented sesquiterpenoid dimers unveiled bifurcating [4 + 2] cycloaddition and target differentiation of enantiomers. Chem Sci 2024; 15:1260-1270. [PMID: 38274075 PMCID: PMC10806648 DOI: 10.1039/d3sc05233h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 11/27/2023] [Indexed: 01/27/2024] Open
Abstract
[4 + 2] cycloaddition has led to diverse polycyclic chiral architectures, serving as novel sources for organic synthesis and biological exploration. Here, an unprecedented class of cadinane sesquiterpene [4 + 2] dimers, henryinins A-E (1-5), with a unique 6/6/6/6/6-fused pentacyclic system, were isolated from Schisandra henryi. The divergent total syntheses of compounds 1-5 and their enantiomers (6-10) were concisely accomplished in eight linear steps using a protection-free approach. Mechanistic studies illustrated the origin of selectivity in the key [4 + 2] cycloaddition as well as the inhibition of reaction pathway bifurcation via desymmetrization. The chemical proteomics results showed that a pair of enantiomers shared common targets (PRDX5 C100 and BLMH C73) and had unique targets (USP45 C588 for 4 and COG7 C419 for 9). This work provides experimental evidence for the discovery of unprecedented cadinane dimers from selective Diels-Alder reaction and a powerful strategy to explore the biological properties of natural products.
Collapse
Affiliation(s)
- Tao-Bin He
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Yunnan Key Laboratory of Natural Medicinal Chemistry Kunming 650201 China
| | - Bing-Chao Yan
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Yunnan Key Laboratory of Natural Medicinal Chemistry Kunming 650201 China
| | - Yuan-Fei Zhou
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 China
| | - Yue-Qian Sang
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences Shanghai200032 China
| | - Xiao-Nian Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Yunnan Key Laboratory of Natural Medicinal Chemistry Kunming 650201 China
| | - Han-Dong Sun
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Yunnan Key Laboratory of Natural Medicinal Chemistry Kunming 650201 China
| | - Chu Wang
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 China
| | - Xiao-Song Xue
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences Shanghai200032 China
| | - Pema-Tenzin Puno
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Yunnan Key Laboratory of Natural Medicinal Chemistry Kunming 650201 China
| |
Collapse
|
3
|
Zhao YT, Yin H, Hu C, Zeng J, Zhang S, Chen S, Zheng W, Li M, Jin L, Liu Y, Wu W, Liu S. Tilapia Skin Peptides Ameliorate Cyclophosphamide-Induced Anxiety- and Depression-Like Behavior via Improving Oxidative Stress, Neuroinflammation, Neuron Apoptosis, and Neurogenesis in Mice. Front Nutr 2022; 9:882175. [PMID: 35719151 PMCID: PMC9201437 DOI: 10.3389/fnut.2022.882175] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 05/13/2022] [Indexed: 01/18/2023] Open
Abstract
Anxiety- and depression-like behavior following chemotherapy treatment occurs in cancer patients with high probability and no specific therapeutics are available for treatment and prevention of this complication. Here, tilapia skin peptides (TSP), a novel enzymatically hydrolyzed bioactive peptide mixture, obtained from tilapia (Oreochromis mossambicus) scraps, were studied on cyclophosphamide (CP)-induced anxiety- and depression-like behavior in mice. Mice were received intraperitoneal injection of CP for 2 weeks, while TSP was administered for 4 weeks. After the end of the animal experiment, behavioral, biochemical, and molecular tests were carried out. The mice decreased preference for sugar water, increased immobility time in the forced swimming and tail suspension test, and decreased travel distance in the open field test in the Model group, compared with the Control group. Abnormal changes in behavioral tests were significantly improved after the TSP treatment. Additionally, abnormalities on superoxide dismutase, malondialdehyde, glutathione peroxidase were rescued by administration of 1000 mg/kg/d TSP in mice than that of the Model group. TSP has normalized the expression of Iba-1 and the levels of TNF-α and IL-1β in the hippocampus of mice, which indicated that TSP could observably ameliorate neuroinflammatory response in the hippocampus of mice. TSP ameliorated the apoptosis of hippocampal neurons of CA1 and CA3 regions in the TSP group vs. the Model group. The number of doublecortin positive cells was drastically increased by administering 1000 mg/kg/d TSP in mice vs. the Model group. Furthermore, TSP reversed the Nrf2/HO-1 signaling pathway, BDNF/TrkB/CREB signaling pathway, and reduced the Bcl-2/Bax/caspase-3 apoptosis pathway. In conclusion, TSP could restore CP-induced anxiety- and depression-like behavior via improving oxidative stress, neuroinflammation, neuron apoptosis, and neurogenesis in mice hippocampus.
Collapse
Affiliation(s)
- Yun-Tao Zhao
- Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Modern Biochemistry Experimental Center, Guangdong Ocean University, Zhanjiang, China
| | - Haowen Yin
- Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Modern Biochemistry Experimental Center, Guangdong Ocean University, Zhanjiang, China
| | - Chuanyin Hu
- Department of Biology, Guangdong Medical University, Zhanjiang, China
| | - Jian Zeng
- Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Modern Biochemistry Experimental Center, Guangdong Ocean University, Zhanjiang, China
| | - Shilin Zhang
- Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Modern Biochemistry Experimental Center, Guangdong Ocean University, Zhanjiang, China
| | - Shaohong Chen
- Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Modern Biochemistry Experimental Center, Guangdong Ocean University, Zhanjiang, China
| | - Wenjing Zheng
- Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Modern Biochemistry Experimental Center, Guangdong Ocean University, Zhanjiang, China
| | - Mengjiao Li
- Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Modern Biochemistry Experimental Center, Guangdong Ocean University, Zhanjiang, China
| | - Leigang Jin
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - You Liu
- Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Modern Biochemistry Experimental Center, Guangdong Ocean University, Zhanjiang, China
- You Liu,
| | - Wenjin Wu
- Institute of Agricultural Products Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan, China
- Wenjin Wu,
| | - Shucheng Liu
- Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Modern Biochemistry Experimental Center, Guangdong Ocean University, Zhanjiang, China
- *Correspondence: Shucheng Liu,
| |
Collapse
|
4
|
Caprioglio D, Salamone S, Pollastro F, Minassi A. Biomimetic Approaches to the Synthesis of Natural Disesquiterpenoids: An Update. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10040677. [PMID: 33916090 PMCID: PMC8065479 DOI: 10.3390/plants10040677] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 03/30/2021] [Accepted: 03/30/2021] [Indexed: 06/12/2023]
Abstract
Natural disesquiterpenoids represent a small group of secondary metabolites characterized by complex molecular scaffolds and interesting pharmacological profiles. In the last decade, more than 400 new disesquiterpenoids have been discovered and fully characterized, pointing out once more the "magic touch" of nature in the design of new compounds. The perfect blend of complex and unique architectures and biological activity has made sesquiterpene dimers an attractive and challenging synthetic target, inspiring organic chemists to find new and biomimetic approaches to replicate the efficiency and the selectivity of natural processes under laboratory conditions. In this work, we present a review covering the literature from 2010 to 2020 reporting all the efforts made in the total synthesis of complex natural disesquiterpenoids.
Collapse
Affiliation(s)
- Diego Caprioglio
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, L.go Donegani 2/3, 28100 Novara, Italy; (D.C.); (S.S.); (F.P.)
| | - Stefano Salamone
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, L.go Donegani 2/3, 28100 Novara, Italy; (D.C.); (S.S.); (F.P.)
| | - Federica Pollastro
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, L.go Donegani 2/3, 28100 Novara, Italy; (D.C.); (S.S.); (F.P.)
- PlantaChem srls, via Canobio 4/6, 28100 Novara, Italy
| | - Alberto Minassi
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, L.go Donegani 2/3, 28100 Novara, Italy; (D.C.); (S.S.); (F.P.)
- PlantaChem srls, via Canobio 4/6, 28100 Novara, Italy
| |
Collapse
|
5
|
Wu J, Su HK, Yu ZH, Xi SY, Guo CC, Hu ZY, Qu Y, Cai HP, Zhao YY, Zhao HF, Chen FR, Huang YF, To SST, Feng BH, Sai K, Chen ZP, Wang J. Skp2 modulates proliferation, senescence and tumorigenesis of glioma. Cancer Cell Int 2020; 20:71. [PMID: 32165861 PMCID: PMC7059397 DOI: 10.1186/s12935-020-1144-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 02/19/2020] [Indexed: 12/24/2022] Open
Abstract
Background Gliomas represent the largest class of primary central nervous system neoplasms, many subtypes of which exhibit poor prognoses. Surgery followed by radiotherapy and chemotherapy has been used as a standard strategy but yielded unsatisfactory improvements in patient survival outcomes. The S-phase kinase protein 2 (Skp2), a critical component of the E3-ligase SCF complex, has been documented in tumorigenesis in various cancer types but its role in glioma has yet to be fully clarified. In this study, we investigated the function of Skp2 in the proliferation, stem cell maintenance, and drug sensitivity to temozolomide (TMZ) of glioma. Methods To investigate the role of Skp2 in the prognosis of patients with glioma, we first analyzed data in databases TCGA and GTEx. To further clarify the effect of Skp2 on glioma cell proliferation, we suppressed its level in glioblastoma (GBM) cell lines through knockdown and small molecule inhibitors (lovastatin and SZL-P1-41). We then detected cell growth, colony formation, sphere formation, drug sensitivity, and in vivo tumor formation in xenograft mice model. Results Skp2 mRNA level was higher in both low-grade glioma and GBM than normal brain tissues. The knockdown of Skp2 increased cell sensitivity to TMZ, decreased cell proliferation and tumorigenesis. In addition, Skp2 level was found increased upon stem cells enriching, while the knockdown of Skp2 led to reduced sphere numbers. Downregulation of Skp2 also induced senescence. Repurposing of lovastatin and novel compound SZL-P1-41 suppressed Skp2 effectively, and enhanced glioma cell sensitivity to TMZ in vitro and in vivo. Conclusion Our data demonstrated that Skp2 modulated glioma cell proliferation in vitro and in vivo, stem cell maintenance, and cell sensitivity to TMZ, which indicated that Skp2 could be a potential target for long-term treatment.
Collapse
Affiliation(s)
- Juan Wu
- 1Guangzhou Key Laboratory of Translational Medicine on Malignant Tumor Treatment, Affiliated Tumor Hospital of Guangzhou Medical University, Guangzhou, 510060 Guangdong People's Republic of China
| | - Hong-Kai Su
- Department of Neurosurgery/Neuro-oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060 Guangdong People's Republic of China
| | - Zhi-Hui Yu
- 1Guangzhou Key Laboratory of Translational Medicine on Malignant Tumor Treatment, Affiliated Tumor Hospital of Guangzhou Medical University, Guangzhou, 510060 Guangdong People's Republic of China
| | - Shao-Yan Xi
- Department of Neurosurgery/Neuro-oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060 Guangdong People's Republic of China
| | - Cheng-Cheng Guo
- Department of Neurosurgery/Neuro-oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060 Guangdong People's Republic of China
| | - Zhe-Yu Hu
- 3Department of Breast Cancer Medical Oncology, Hunan Cancer Hospital, Changsha, 410013 People's Republic of China
| | - Yue Qu
- 4Department of Pharmacology, College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006 Guangdong People's Republic of China
| | - Hai-Ping Cai
- Department of Neurosurgery/Neuro-oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060 Guangdong People's Republic of China
| | - Yi-Ying Zhao
- Department of Neurosurgery/Neuro-oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060 Guangdong People's Republic of China
| | - Hua-Fu Zhao
- 5Institute of Translational Medicine, Department of Neurosurgery and Shenzhen Key Laboratory of Neurosurgery, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035 Guangdong People's Republic of China
| | - Fu-Rong Chen
- Department of Neurosurgery/Neuro-oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060 Guangdong People's Republic of China
| | - Yu-Fan Huang
- 1Guangzhou Key Laboratory of Translational Medicine on Malignant Tumor Treatment, Affiliated Tumor Hospital of Guangzhou Medical University, Guangzhou, 510060 Guangdong People's Republic of China
| | - Shing-Shun Tony To
- 6Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, People's Republic of China
| | - Bing-Hong Feng
- 4Department of Pharmacology, College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006 Guangdong People's Republic of China
| | - Ke Sai
- Department of Neurosurgery/Neuro-oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060 Guangdong People's Republic of China
| | - Zhong-Ping Chen
- Department of Neurosurgery/Neuro-oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060 Guangdong People's Republic of China
| | - Jing Wang
- Department of Neurosurgery/Neuro-oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060 Guangdong People's Republic of China
| |
Collapse
|
6
|
Liu B, Fu S, Zhou C. Naturally occurring [4 + 2] type terpenoid dimers: sources, bioactivities and total syntheses. Nat Prod Rep 2020; 37:1627-1660. [DOI: 10.1039/c9np00037b] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
This review article highlights recent progress on their sources, bioactivities, biosynthetic hypotheses and total chemical syntheses of naturally occurring [4 + 2] type terpenoid dimers.
Collapse
Affiliation(s)
- Bo Liu
- Key Laboratory of Green Chemistry & Technology of the Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu
- China
| | - Shaomin Fu
- Key Laboratory of Green Chemistry & Technology of the Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu
- China
| | - Chengying Zhou
- Key Laboratory of Green Chemistry & Technology of the Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu
- China
| |
Collapse
|
7
|
Abstract
This review highlights the progress on the isolation, bioactivity, biogenesis and total synthesis of dimeric sesquiterpenoids since 2010.
Collapse
Affiliation(s)
- Lie-Feng Ma
- College of Pharmaceutical Science
- Zhejiang University of Technology
- Hangzhou
- P. R. China
| | - Yi-Li Chen
- College of Pharmaceutical Science
- Zhejiang University of Technology
- Hangzhou
- P. R. China
| | - Wei-Guang Shan
- College of Pharmaceutical Science
- Zhejiang University of Technology
- Hangzhou
- P. R. China
| | - Zha-Jun Zhan
- College of Pharmaceutical Science
- Zhejiang University of Technology
- Hangzhou
- P. R. China
| |
Collapse
|
8
|
Luo J, Lou Z, Zheng J. Targeted regulation by ROCK2 on bladder carcinoma via Wnt signaling under hypoxia. Cancer Biomark 2019; 24:109-116. [PMID: 30475758 DOI: 10.3233/cbm-181949] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Bladder cancer is frequently occurred in urinary system and has complicated pathogenesis factors including both genetics and environmental factors that have not been fully illustrated. Hypoxia can further induce tumor progression. ROCK2 has abnormal expression in various tumors but its expression or functional role in bladder cancer have not been illustrated. In vitro cultured bladder cancer cell line T24 was randomly assigned into control group, hypoxia group (prepared under hypoxic culture), and ROCK2 siRNA group (transfected with ROCK2 siRNA after hypoxia treatment). Real-time PCR and Western bot measured ROCK2 expression. MTT assay tested cell proliferation, and cell migration was quantified. Cell apoptosis was measured by caspase3 activity assay kit and Transwell chamber measured cell migration. Western blot quantified expressional change of HIF-1α and E-cadherin, and Wnt signal pathway proteins including Wnt4, and β-catenin. ROCK2 is up-regulated in bladder cancer T24 cells under hypoxia, and can facilitate cell proliferation, migration and invasion, inhibited Caspase3 activity, enhanced HIF-1α expression, decreased E-cadherin expression, and up-regulated Wnt4 and β-catenin (p< 0.05 comparing to hypoxia group). Under hypoxia conditions, ROCK2 can facilitate apoptosis of bladder cancer cells via modulating Wnt signal pathway, inhibit cell proliferation, migration, invasion or formation of epithelial mesenchymal transition (EMT).
Collapse
|