1
|
García-Olivares V, Muñoz-Barrera A, Rubio-Rodríguez LA, Jáspez D, Díaz-de Usera A, Iñigo-Campos A, Veeramah KR, Alonso S, Thomas MG, Lorenzo-Salazar JM, González-Montelongo R, Flores C. Benchmarking of human Y-chromosomal haplogroup classifiers with whole-genome and whole-exome sequence data. Comput Struct Biotechnol J 2023; 21:4613-4618. [PMID: 37817776 PMCID: PMC10560978 DOI: 10.1016/j.csbj.2023.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 09/12/2023] [Accepted: 09/12/2023] [Indexed: 10/12/2023] Open
Abstract
In anthropological, medical, and forensic studies, the nonrecombinant region of the human Y chromosome (NRY) enables accurate reconstruction of pedigree relationships and retrieval of ancestral information. Using high-throughput sequencing (HTS) data, we present a benchmarking analysis of command-line tools for NRY haplogroup classification. The evaluation was performed using paired Illumina data from whole-genome sequencing (WGS) and whole-exome sequencing (WES) experiments from 50 unrelated donors. Additionally, as a validation, we also used paired WGS/WES datasets of 54 individuals from the 1000 Genomes Project. Finally, we evaluated the tools on data from third-generation HTS obtained from a subset of donors and one reference sample. Our results show that WES, despite typically offering less genealogical resolution than WGS, is an effective method for determining the NRY haplogroup. Y-LineageTracker and Yleaf showed the highest accuracy for WGS data, classifying precisely 98% and 96% of the samples, respectively. Yleaf outperforms all benchmarked tools in the WES data, classifying approximately 90% of the samples. Yleaf, Y-LineageTracker, and pathPhynder can correctly classify most samples (88%) sequenced with third-generation HTS. As a result, Yleaf provides the best performance for applications that use WGS and WES. Overall, our study offers researchers with a guide that allows them to select the most appropriate tool to analyze the NRY region using both second- and third-generation HTS data.
Collapse
Affiliation(s)
- Víctor García-Olivares
- Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), Santa Cruz de Tenerife, Spain
- Plataforma Genómica de Alto Rendimiento para el Estudio de la Biodiversidad, Instituto de Productos Naturales y Agrobiología (IPNA), Consejo Superior de Investigaciones Científicas, San Cristóbal de La Laguna, Spain
| | - Adrián Muñoz-Barrera
- Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), Santa Cruz de Tenerife, Spain
| | - Luis A. Rubio-Rodríguez
- Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), Santa Cruz de Tenerife, Spain
| | - David Jáspez
- Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), Santa Cruz de Tenerife, Spain
| | - Ana Díaz-de Usera
- Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), Santa Cruz de Tenerife, Spain
| | - Antonio Iñigo-Campos
- Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), Santa Cruz de Tenerife, Spain
| | - Krishna R. Veeramah
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY 11794-5245, United States
| | - Santos Alonso
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country UPV/EHU, Leioa, Bizkaia, Spain
- María Goyri Building, Biotechnology Center, Human Molecular Evolution Lab 2.08 UPV/EHU Science Park, 48940 Leioa, Bizkaia, Spain
| | - Mark G. Thomas
- UCL Genetics Institute, University College London (UCL), Gower Street, London WC1E 6BT, United Kingdom
- Research Department of Genetics, Evolution & Environment, University College London (UCL), Darwin Building, Gower Street, London WC1E 6BT, United Kingdom
| | - José M. Lorenzo-Salazar
- Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), Santa Cruz de Tenerife, Spain
| | - Rafaela González-Montelongo
- Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), Santa Cruz de Tenerife, Spain
- Plataforma Genómica de Alto Rendimiento para el Estudio de la Biodiversidad, Instituto de Productos Naturales y Agrobiología (IPNA), Consejo Superior de Investigaciones Científicas, San Cristóbal de La Laguna, Spain
| | - Carlos Flores
- Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), Santa Cruz de Tenerife, Spain
- Plataforma Genómica de Alto Rendimiento para el Estudio de la Biodiversidad, Instituto de Productos Naturales y Agrobiología (IPNA), Consejo Superior de Investigaciones Científicas, San Cristóbal de La Laguna, Spain
- Research Unit, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
- Facultad de Ciencias de la Salud, Universidad Fernando de Pessoa Canarias, Las Palmas de Gran Canaria, Spain
| |
Collapse
|
2
|
Yanagimachi R. Mysteries and unsolved problems of mammalian fertilization and related topics. Biol Reprod 2022; 106:644-675. [PMID: 35292804 PMCID: PMC9040664 DOI: 10.1093/biolre/ioac037] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 02/10/2022] [Accepted: 02/10/2022] [Indexed: 11/13/2022] Open
Abstract
Mammalian fertilization is a fascinating process that leads to the formation of a new individual. Eggs and sperm are complex cells that must meet at the appropriate time and position within the female reproductive tract for successful fertilization. I have been studying various aspects of mammalian fertilization over 60 years. In this review, I discuss many different aspects of mammalian fertilization, some of my laboratory's contribution to the field, and discuss enigmas and mysteries that remain to be solved.
Collapse
Affiliation(s)
- Ryuzo Yanagimachi
- Institute for Biogenesis Research, Department of Anatomy, Biochemistry and Physiology, University of Hawaii Medical School, Honolulu, HI 96822, USA
| |
Collapse
|
3
|
Nizamudeen ZA, Xerri R, Parmenter C, Suain K, Markus R, Chakrabarti L, Sottile V. Low-Power Sonication Can Alter Extracellular Vesicle Size and Properties. Cells 2021; 10:cells10092413. [PMID: 34572062 PMCID: PMC8466153 DOI: 10.3390/cells10092413] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/20/2021] [Accepted: 09/03/2021] [Indexed: 01/02/2023] Open
Abstract
Low-power sonication is widely used to disaggregate extracellular vesicles (EVs) after isolation, however, the effects of sonication on EV samples beyond dispersion are unclear. The present study analysed the characteristics of EVs collected from mesenchymal stem cells (MSCs) after sonication, using a combination of transmission electron microscopy, direct stochastic optical reconstruction microscopy, and flow cytometry techniques. Results showed that beyond the intended disaggregation effect, sonication using the lowest power setting available was enough to alter the size distribution, membrane integrity, and uptake of EVs in cultured cells. These results point to the need for a more systematic analysis of sonication procedures to improve reproducibility in EV-based cellular experiments.
Collapse
Affiliation(s)
| | - Rachael Xerri
- School of Pharmacy, The University of Nottingham, Nottingham NG7 2RD, UK; (R.X.); (C.P.); (K.S.)
| | - Christopher Parmenter
- School of Pharmacy, The University of Nottingham, Nottingham NG7 2RD, UK; (R.X.); (C.P.); (K.S.)
| | - Kiran Suain
- School of Pharmacy, The University of Nottingham, Nottingham NG7 2RD, UK; (R.X.); (C.P.); (K.S.)
| | - Robert Markus
- School of Life Sciences, The University of Nottingham, Nottingham NG7 2RD, UK;
| | - Lisa Chakrabarti
- School of Veterinary Medicine and Science, Sutton Bonington Campus, The University of Nottingham, Loughborough LE12 5RD, UK;
| | - Virginie Sottile
- School of Medicine, The University of Nottingham, Nottingham NG7 2RD, UK;
- Department of Molecular Medicine, The University of Pavia, 27100 Pavia, Italy
- Correspondence:
| |
Collapse
|
4
|
Lopes M, Louzada S, Gama-Carvalho M, Chaves R. Genomic Tackling of Human Satellite DNA: Breaking Barriers through Time. Int J Mol Sci 2021; 22:4707. [PMID: 33946766 PMCID: PMC8125562 DOI: 10.3390/ijms22094707] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/24/2021] [Accepted: 04/27/2021] [Indexed: 12/12/2022] Open
Abstract
(Peri)centromeric repetitive sequences and, more specifically, satellite DNA (satDNA) sequences, constitute a major human genomic component. SatDNA sequences can vary on a large number of features, including nucleotide composition, complexity, and abundance. Several satDNA families have been identified and characterized in the human genome through time, albeit at different speeds. Human satDNA families present a high degree of sub-variability, leading to the definition of various subfamilies with different organization and clustered localization. Evolution of satDNA analysis has enabled the progressive characterization of satDNA features. Despite recent advances in the sequencing of centromeric arrays, comprehensive genomic studies to assess their variability are still required to provide accurate and proportional representation of satDNA (peri)centromeric/acrocentric short arm sequences. Approaches combining multiple techniques have been successfully applied and seem to be the path to follow for generating integrated knowledge in the promising field of human satDNA biology.
Collapse
Affiliation(s)
- Mariana Lopes
- Laboratory of Cytogenomics and Animal Genomics (CAG), Department of Genetics and Biotechnology (DGB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (M.L.); (S.L.)
- Biosystems and Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal;
| | - Sandra Louzada
- Laboratory of Cytogenomics and Animal Genomics (CAG), Department of Genetics and Biotechnology (DGB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (M.L.); (S.L.)
- Biosystems and Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal;
| | - Margarida Gama-Carvalho
- Biosystems and Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal;
| | - Raquel Chaves
- Laboratory of Cytogenomics and Animal Genomics (CAG), Department of Genetics and Biotechnology (DGB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (M.L.); (S.L.)
- Biosystems and Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal;
| |
Collapse
|
5
|
Ju T, Zhai X, Liu X, Han K. A toehold-mediated strand displacement cascade-based DNA assay method via flow cytometry and magnetic separation. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:1013-1018. [PMID: 33534873 DOI: 10.1039/d0ay02102d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Sensitive assay of EGFR T790M, a circulating tumor DNA marker in non-small-cell carcinoma, provides critical information for the decision of clinical treatments, evaluation of radiotherapy effect, and monitoring the progress of recurrence and metastasis. In this report, a novel flow cytometry-based sensing method is proposed for detecting T790M. The toehold-sequence hybridizes with the biotin-labeled initiator sequence and forms IT-dsDNA. The presence of a target induces the displacement of initiator-sequence from IT-dsDNA. The targets are continuously set free with the aid of a helper hairpin sequence for the next cycle. In tandem, the free initiator sequence starts the hybridization chain reaction, which binds the serial of fluorescence-labeled probe sequences. The products of the hybridization chain reaction are captured and separated by magnetic beads, which are finally assayed via flow cytometry. The capability to distinguish single-nucleotide polymorphism and the tolerance of complex matrix in blood serum indicate that this strategy has the promising potential to be applied in the liquid biopsy of clinical samples.
Collapse
Affiliation(s)
- Ting Ju
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China and Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, P. R. China.
| | - Xingwei Zhai
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, P. R. China. and Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Xinfeng Liu
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China and Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, P. R. China.
| | - Kun Han
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China and Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, P. R. China.
| |
Collapse
|
6
|
Yang X, Liu H, Liu C, Xu Q, Yang D, Han X, Chen L, Lei B, Liu C, Du W. Application of Y-chromosomal microdeletions in a homicide case. Forensic Sci Int 2020; 314:110370. [PMID: 32682216 DOI: 10.1016/j.forsciint.2020.110370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/11/2020] [Accepted: 06/14/2020] [Indexed: 10/24/2022]
Abstract
A case study involving an intentional homicide case in November 2018, in which the autosomal genotypes of the suspect were unavailable and only part of deletions of Y-STR loci were identified by Y-chromosomal typing. The suspect, male, was charged with beating the decedent, female, over the head with an iron water pipe to death. The use of standard autosomal DNA profiling to identify the suspect was unattainable due to the extensive volume blood of the decedent on the murder weapon which was inevitably cleaned by running water at the crime scene. As a result, autosomal genotypes of the suspect were unavailable and only partial samples of deletions of Y-STR loci were identified by Y-chromosomal typing. Y-STR analysis (Yfiler™ plus and AGCU Y36) was used on the collected DNA extracts and compared to reference samples of the suspect, as well as his father and brother in an attempt to positively identify the suspect as the perpetrator of the murder. Subsequent Y-STR genotyping for the suspect, his father and brother indicated that Y-STR genotype of the suspect was consistent with that discovered on the physical evidence and the deleted Y-STR loci were identical for both. No deletions of Y-STR genotype were observed in the suspect's father and brother. After changing a Y-STR kit, the deleted loci were still present in the suspect. In Addition, sequencing of the whole Y-chromosomal genes was performed on the samples taken from the suspect and his father and brother. Segmental deletions at Yq 11.222-Yq 11.23 of the suspect were observed and the deleted Y-STR markers were right on the deleted Y-chromosomal segments. In this case, although the suspect could not be identified by the autosomal STR profiles detected on the physical evidence, the discovery of identical Y-STR genotype and the identical deletions of Y-chromosomal segments made it plausible that DNA on the murder weapon was left behind by the suspect. This case study shows that in criminal cases like this, where the autosomal STR evidence is unattainable, Y-STR evidence can be used effectively as a substitute to identify the suspect.
Collapse
Affiliation(s)
- Xingyi Yang
- Guangzhou Forensic Science Institute, Guangzhou, People's Republic of China.
| | - Hong Liu
- Guangzhou Forensic Science Institute, Guangzhou, People's Republic of China.
| | - Changhui Liu
- Guangzhou Forensic Science Institute, Guangzhou, People's Republic of China.
| | - Quyi Xu
- Guangzhou Forensic Science Institute, Guangzhou, People's Republic of China.
| | - Dian Yang
- DeepReeds Biotech, Shang Hai, People's Republic of China.
| | - XiaoLong Han
- Guangzhou Forensic Science Institute, Guangzhou, People's Republic of China.
| | - Ling Chen
- Department of Forensic Medicine, School of Basic Medical Sciences, Southern Medical University, Guangzhou, People's Republic of China
| | - Bo Lei
- DeepReeds Biotech, Shang Hai, People's Republic of China.
| | - Chao Liu
- Guangzhou Forensic Science Institute, Guangzhou, People's Republic of China.
| | - Weian Du
- AGCU ScienTech Incorporation, Wuxi, 214174, People's Republic of China.
| |
Collapse
|
7
|
Highly efficient synchronization of sheep skin fibroblasts at G2/M phase and isolation of sheep Y chromosomes by flow cytometric sorting. Sci Rep 2020; 10:9933. [PMID: 32555328 PMCID: PMC7303189 DOI: 10.1038/s41598-020-66905-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 05/29/2020] [Indexed: 01/08/2023] Open
Abstract
At present, based on whole genome sequencing, sequences and genes annotation of the sheep (Ovis aries) Y chromosome are still absent. The isolation of Y chromosomes followed by sequencing has been approved as an effective approach to analyze this complex chromosome in other species. In this study, we established a highly efficient synchronization method for G2/M phase of sheep fibroblasts, which was successfully applied to flow-sorting chromosomes of sheep, with a focus on isolation and sequencing of the ovine Y chromosome. The isolated (~80,000) Y chromosomes were verified by fluorescence quantitative real-time polymerase chain reaction, further confirmed by fluorescence in situ hybridization, and amplified by the MALBAC method before next-generation sequencing. The sequence results indicated that 68.90% of reads were Y chromosome-related sequences as they are homologous to the bovine Y chromosome. The remaining 31.1% of reads were aligned to the sheep reference genome, including 13.57% reads to chromosome X and 6.68% to chromosome 17. Importantly, the paired-end reads that are properly aligned to the bovine Y sequence assembly accounted for 46.49%, indicating the success in the ovine Y chromosome isolation and the high quality of the Y chromosome sequences. This study not only set up a foundation for future sequencing, assembly and annotation of the ovine Y chromosome, but also provide a validated approach to overcoming difficulties in sequencing Y chromosome in other mammalian species.
Collapse
|
8
|
Yano Y, Chiba T, Asahara H. Analysis of the Mouse Y Chromosome by Single-Molecule Sequencing With Y Chromosome Enrichment. Front Genet 2020; 11:406. [PMID: 32457799 PMCID: PMC7221202 DOI: 10.3389/fgene.2020.00406] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 03/31/2020] [Indexed: 02/02/2023] Open
Abstract
Since human and mouse Y chromosomes contain repeated sequences, it is difficult to determine the precise sequences and analyze the function of individual Y chromosome genes. Therefore, the causes of many diseases and abnormalities related to Y chromosome genes, such as male infertility, remain unclear. In this study, to elucidate the mouse Y chromosome, we enriched the mouse Y chromosome using a fluorescence-activated cell sorter (FACS) equipped with commonly used UV and blue 488 nm lasers and read the nucleotides using the Oxford Nanopore MinION long-read sequencer. This sequencing strategy allows us to cover the whole known region as well as the potential undetermined region of the Y chromosome. FACS-based chromosome enrichment and long-read sequencing are suitable for analysis of the Y chromosome sequences and may lead to further understanding of the physiological role of Y chromosome genes.
Collapse
Affiliation(s)
- Yuki Yano
- Department of Systems BioMedicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tomoki Chiba
- Department of Systems BioMedicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hiroshi Asahara
- Department of Systems BioMedicine, Tokyo Medical and Dental University, Tokyo, Japan.,Department of Molecular and Experimental Medicine, The Scripps Research Institute, San Diego, CA, United States
| |
Collapse
|
9
|
A nanoflow cytometric strategy for sensitive ctDNA detection via magnetic separation and DNA self-assembly. Anal Bioanal Chem 2019; 411:6039-6047. [DOI: 10.1007/s00216-019-01985-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/03/2019] [Accepted: 06/17/2019] [Indexed: 12/11/2022]
|
10
|
Pel J, Leung A, Choi WWY, Despotovic M, Ung WL, Shibahara G, Gelinas L, Marziali A. Rapid and highly-specific generation of targeted DNA sequencing libraries enabled by linking capture probes with universal primers. PLoS One 2018; 13:e0208283. [PMID: 30517195 PMCID: PMC6281261 DOI: 10.1371/journal.pone.0208283] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 11/14/2018] [Indexed: 11/18/2022] Open
Abstract
Targeted Next Generation Sequencing (NGS) is being adopted increasingly broadly in many research, commercial and clinical settings. Currently used target capture methods, however, typically require complex and lengthy (sometimes multi-day) workflows that complicates their use in certain applications. In addition, small panels for high sequencing depth applications such as liquid biopsy typically have low on-target rates, resulting in unnecessarily high sequencing cost. We have developed a novel targeted sequencing library preparation method, named Linked Target Capture (LTC), which replaces typical multi-day target capture workflows with a single-day, combined ‘target-capture-PCR’ workflow. This approach uses physically linked capture probes and PCR primers and is expected to work with panel sizes from 100 bp to >10 Mbp. It reduces the time and complexity of the capture workflow, eliminates long hybridization and wash steps and enables rapid library construction and target capture. High on-target read fractions are achievable due to repeated sequence selection in the target-capture-PCR step, thus lowering sequencing cost. We have demonstrated this technology on sample types including cell-free DNA (cfDNA) and formalin-fixed, paraffin-embedded (FFPE) derived DNA, capturing a 35-gene pan-cancer panel, and therein detecting single nucleotide variants, copy number variants, insertions, deletions and gene fusions. With the integration of unique molecular identifiers (UMIs), variants as low as 0.25% abundance were detected, limited by input mass and sequencing depth. Additionally, sequencing libraries were prepared in less than eight hours from extracted DNA to loaded sequencer, demonstrating that LTC holds promise as a broadly applicable tool for rapid, cost-effective and high performance targeted sequencing.
Collapse
Affiliation(s)
- Joel Pel
- Boreal Genomics Inc, Vancouver, British Columbia, Canada
| | - Amy Leung
- Boreal Genomics Inc, Vancouver, British Columbia, Canada
| | | | | | - W. Lloyd Ung
- Boreal Genomics Inc, Vancouver, British Columbia, Canada
| | | | - Laura Gelinas
- Boreal Genomics Inc, Vancouver, British Columbia, Canada
| | - Andre Marziali
- Boreal Genomics Inc, Vancouver, British Columbia, Canada
- University of British Columbia, Department of Physics and Astronomy, Vancouver, British Columbia, Canada
- * E-mail:
| |
Collapse
|