1
|
Manaila E, Craciun G. Poly(acrylic acid)-Sodium Alginate Superabsorbent Hydrogels Synthesized by Electron-Beam Irradiation-Part II: Swelling Kinetics and Absorption Behavior in Various Swelling Media. Gels 2024; 10:609. [PMID: 39330211 PMCID: PMC11431746 DOI: 10.3390/gels10090609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/18/2024] [Accepted: 09/21/2024] [Indexed: 09/28/2024] Open
Abstract
Hybrid hydrogels with superabsorbent properties based on acrylic acid (20%), sodium alginate (0.5%) and poly(ethylene oxide) (0.1%) were obtained by electron-beam irradiation between 5 and 20 kGy, and are characterized by different physical and chemical methods; the first results reported showed gel fractions over 87%, cross-link densities under 9.9 × 103 mol/cm3 and swelling degrees of 400 g/g. Two types of hydrogels (without and with 0.1% initiator potassium persulfate) have been subjected to swelling and deswelling experiments in different swelling media with different pHs, chosen in accordance with the purpose for which these superabsorbent materials were obtained, i.e., water and nutrients carriers for agricultural purposes: 6.05 (distilled water), 7.66 (tap water), 5.40 (synthetic nutrient solution) and 7.45 (organic nutrient solution). Swelling kinetics and swelling dynamics have been also studied in order to investigate the influence of swelling media type and pH on the absorption phenomenon. The swelling and deswelling behaviors were influenced by the hydrogel characteristics and pH of the swelling media. Both the polymeric chain relaxation (non-Fickian diffusion) and macromolecular relaxation (super case II) phenomenon were highlighted as a function of swelling media type.
Collapse
Affiliation(s)
- Elena Manaila
- Electron Accelerators Laboratory, National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor St., 077125 Magurele, Romania
| | - Gabriela Craciun
- Electron Accelerators Laboratory, National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor St., 077125 Magurele, Romania
| |
Collapse
|
2
|
Wang C, Zhang X, Fan Y, Yu S, Liu M, Feng L, Sun Q, Pan P. Principles and Design of Bionic Hydrogel Adhesives for Skin Wound Treatment. Polymers (Basel) 2024; 16:1937. [PMID: 39000792 PMCID: PMC11244016 DOI: 10.3390/polym16131937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 06/26/2024] [Accepted: 07/03/2024] [Indexed: 07/17/2024] Open
Abstract
Over millions of years of evolution, nature has developed a myriad of unique features that have inspired the design of adhesives for wound healing. Bionic hydrogel adhesives, capable of adapting to the dynamic movements of tissues, possess superior biocompatibility and effectively promote the healing of both external and internal wounds. This paper provides a systematic review of the design and principles of these adhesives, focusing on the treatment of skin wounds, and explores the feasibility of incorporating nature-inspired properties into their design. The adhesion mechanisms of bionic adhesives are analyzed from both chemical and physical perspectives. Materials from natural and synthetic polymers commonly used as adhesives are detailed regarding their biocompatibility and degradability. The multifunctional design elements of hydrogel adhesives for skin trauma treatment, such as self-healing, drug release, responsive design, and optimization of mechanical and physical properties, are further explored. The aim is to overcome the limitations of conventional treatments and offer a safer, more effective solution for the application of bionic wound dressings.
Collapse
Affiliation(s)
- Chunxiao Wang
- Marine College, Shandong University, Weihai 264209, China
| | - Xinyu Zhang
- Marine College, Shandong University, Weihai 264209, China
| | - Yinuo Fan
- Marine College, Shandong University, Weihai 264209, China
| | - Shuhan Yu
- Marine College, Shandong University, Weihai 264209, China
| | - Man Liu
- Marine College, Shandong University, Weihai 264209, China
| | - Linhan Feng
- Marine College, Shandong University, Weihai 264209, China
| | - Qisen Sun
- Marine College, Shandong University, Weihai 264209, China
| | - Panpan Pan
- Marine College, Shandong University, Weihai 264209, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai 200025, China
| |
Collapse
|
3
|
Singhal R, Sarangi MK, Rath G. Injectable Hydrogels: A Paradigm Tailored with Design, Characterization, and Multifaceted Approaches. Macromol Biosci 2024; 24:e2400049. [PMID: 38577905 DOI: 10.1002/mabi.202400049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/22/2024] [Indexed: 04/06/2024]
Abstract
Biomaterials denoting self-healing and versatile structural integrity are highly curious in the biomedicine segment. The injectable and/or printable 3D printing technology is explored in a few decades back, which can alter their dimensions temporarily under shear stress, showing potential healing/recovery tendency with patient-specific intervention toward the development of personalized medicine. Thus, self-healing injectable hydrogels (IHs) are stunning toward developing a paradigm for tissue regeneration. This review comprises the designing of IHs, rheological characterization and stability, several benchmark consequences for self-healing IHs, their translation into tissue regeneration of specific types, applications of IHs in biomedical such as anticancer and immunomodulation, wound healing and tissue/bone regeneration, antimicrobial potentials, drugs, gene and vaccine delivery, ocular delivery, 3D printing, cosmeceuticals, and photothermal therapy as well as in other allied avenues like agriculture, aerospace, electronic/electrical industries, coating approaches, patents associated with therapeutic/nontherapeutic avenues, and numerous futuristic challenges and solutions.
Collapse
Affiliation(s)
- Rishika Singhal
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Malhaur Railway Station Road, Gomti Nagar, Lucknow, Uttar Pradesh, 201313, India
| | - Manoj Kumar Sarangi
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Malhaur Railway Station Road, Gomti Nagar, Lucknow, Uttar Pradesh, 201313, India
| | - Goutam Rath
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan University, Bhubaneswar, Odisha, 751030, India
| |
Collapse
|
4
|
Milian D, Robert de Saint Vincent M, Patarin J, Bodiguel H. Gastropod Slime-Based Gel as an Adjustable Synthetic Model for Human Airway Mucus. Biomacromolecules 2024; 25:400-412. [PMID: 38124283 DOI: 10.1021/acs.biomac.3c01043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Airway mucus works as a protective barrier in the human body, as it entraps pathogens that will be later cleared from the airways by ciliary transport or by coughing, thus featuring the rheological properties of a highly stretchable gel. Nonetheless, the study of these physical barrier as well as transport properties remains limited due to the restricted and invasive access to lungs and bronchi to retrieve mucus and to the poor repeatability inherent to native mucus samples. To overcome these limits, we report on a biobased synthetic mucus prepared from snail slime and multibranched thiol cross-linker, which are able to establish disulfide bonds, in analogy with the disulfide bonding of mucins, and therefore build viscoelastoplastic hydrogels. The gel macroscopic properties are tuned by modifying the cross-linker and slime concentrations and can quantitatively match those of native sputum from donors with cystic fibrosis (CF) or non-cystic fibrosis bronchiectasis (NCFB) both in the small- and large-deformation regimes. Heterogeneous regimes were locally found in the mucus model by passive microrheology, in which both diffusive and non-diffusive motion are present, similar to what is observed in sputa. The biobased synthetic approach proposed in the present study thus allows to produce, with commercially available components, a promising model to native respiratory mucus regarding both mechanical and, to a lesser extent, physicochemical aspects.
Collapse
Affiliation(s)
- Diego Milian
- Univ. Grenoble Alpes, CNRS, Grenoble INP, LRP, 38000 Grenoble, France
- Rheonova, 1 Allée de Certèze, 38610 Gières, France
| | | | | | - Hugues Bodiguel
- Univ. Grenoble Alpes, CNRS, Grenoble INP, LRP, 38000 Grenoble, France
| |
Collapse
|
5
|
Zhang Y, Li R, Trick TC, Nosiglia MA, Palmquist MS, Wong ML, Dorsainvil JM, Tran SL, Danielson MK, Barnes JC. Saltwater-Induced Rapid Gelation of Photoredox-Responsive Mucomimetic Hydrogels. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2307356. [PMID: 38124527 DOI: 10.1002/adma.202307356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 12/06/2023] [Indexed: 12/23/2023]
Abstract
Shear-thinning hydrogels represent an important class of injectable soft materials that are often used in a wide range of biomedical applications. Creation of new shear-thinning materials often requires that factors such as viscosity, injection rate/force, and needle gauge be evaluated to achieve efficient delivery, while simultaneously protecting potentially sensitive cargo. Here, a new approach to establishing shear-thinning hydrogels is reported where a host-guest cross-linked network initially remains soluble in deionized water but is kinetically trapped as a viscous hydrogel once exposed to saltwater. The shear-thinning properties of the hydrogel is then "switched on" in response to heating or exposure to visible light. These hydrogels consist of polynorbornene-based bottlebrush copolymers with porphyrin- and oligoviologen-containing side chains that are cross-linked through the reversible formation of β-cyclodextrin-adamantane inclusion complexes. The resultant viscous hydrogels display broad adhesive properties across polar and nonpolar substrates, mimicking that of natural mucous and thus making it easier to distribute onto a wide range of surfaces. Additional control over the hydrogel's mechanical properties (storage/loss moduli) and performance (adhesion) is achieved post-injection using a low-energy (blue light) photoinduced electron-transfer process. This work envisions these injectable copolymers and multimodal hydrogels can serve as versatile next-generation biomaterials capable of light-based mechanical manipulation post-injection.
Collapse
Affiliation(s)
- Yipei Zhang
- Department of Chemistry, Washington University, St. Louis, MO 63130, USA
| | - Ruihan Li
- Department of Chemistry, Washington University, St. Louis, MO 63130, USA
| | - Tarryn C Trick
- Department of Chemistry, Washington University, St. Louis, MO 63130, USA
| | - Mark A Nosiglia
- Department of Chemistry, Washington University, St. Louis, MO 63130, USA
| | - Mark S Palmquist
- Department of Chemistry, Washington University, St. Louis, MO 63130, USA
| | - Mason L Wong
- Department of Chemistry, Washington University, St. Louis, MO 63130, USA
| | | | - Sheila L Tran
- Department of Chemistry, Washington University, St. Louis, MO 63130, USA
| | - Mary K Danielson
- Department of Chemistry, Washington University, St. Louis, MO 63130, USA
| | - Jonathan C Barnes
- Department of Chemistry, Washington University, St. Louis, MO 63130, USA
| |
Collapse
|
6
|
Rising A, Harrington MJ. Biological Materials Processing: Time-Tested Tricks for Sustainable Fiber Fabrication. Chem Rev 2023; 123:2155-2199. [PMID: 36508546 DOI: 10.1021/acs.chemrev.2c00465] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
There is an urgent need to improve the sustainability of the materials we produce and use. Here, we explore what humans can learn from nature about how to sustainably fabricate polymeric fibers with excellent material properties by reviewing the physical and chemical aspects of materials processing distilled from diverse model systems, including spider silk, mussel byssus, velvet worm slime, hagfish slime, and mistletoe viscin. We identify common and divergent strategies, highlighting the potential for bioinspired design and technology transfer. Despite the diversity of the biopolymeric fibers surveyed, we identify several common strategies across multiple systems, including: (1) use of stimuli-responsive biomolecular building blocks, (2) use of concentrated fluid precursor phases (e.g., coacervates and liquid crystals) stored under controlled chemical conditions, and (3) use of chemical (pH, salt concentration, redox chemistry) and physical (mechanical shear, extensional flow) stimuli to trigger the transition from fluid precursor to solid material. Importantly, because these materials largely form and function outside of the body of the organisms, these principles can more easily be transferred for bioinspired design in synthetic systems. We end the review by discussing ongoing efforts and challenges to mimic biological model systems, with a particular focus on artificial spider silks and mussel-inspired materials.
Collapse
Affiliation(s)
- Anna Rising
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge 141 52, Sweden.,Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala 750 07, Sweden
| | | |
Collapse
|
7
|
Taylor L, Chaudhary G, Jain G, Lowe A, Hupe A, Negishi A, Zeng Y, Ewoldt RH, Fudge DS. Mechanisms of gill-clogging by hagfish slime. J R Soc Interface 2023; 20:20220774. [PMID: 36987615 PMCID: PMC10050918 DOI: 10.1098/rsif.2022.0774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 02/28/2023] [Indexed: 03/30/2023] Open
Abstract
Hagfishes defend themselves from gill-breathing predators by producing large volumes of fibrous slime when attacked. The slime's effectiveness comes from its ability to clog predators' gills, but the mechanisms by which hagfish slime clogs are uncertain, especially given its remarkably dilute concentration of solids. We quantified the clogging performance of hagfish slime over a range of concentrations, measured the contributions of its mucous and thread components, and measured the effect of turbulent mixing on clogging. To assess the porous structure of hagfish slime, we used a custom device to measure its Darcy permeability. We show that hagfish slime clogs at extremely dilute concentrations like those found in native hagfish slime and displays clogging performance that is superior to three thickening agents. We report an extremely low Darcy permeability for hagfish slime, and an effective pore size of 10-300 nm. We also show that the mucous and thread components play distinct yet crucial roles, with mucus being responsible for effective clogging and low permeability and the threads imparting mechanical strength and retaining clogging function over time. Our results provide new insights into the mechanisms by which hagfish slime clogs gills and may inspire the development of ultra-soft materials with novel properties.
Collapse
Affiliation(s)
- Luke Taylor
- Schmid College of Science and Technology, Chapman University, 1 University Drive, Orange, CA 92866, USA
| | - Gaurav Chaudhary
- Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Gaurav Jain
- Schmid College of Science and Technology, Chapman University, 1 University Drive, Orange, CA 92866, USA
| | - Andrew Lowe
- Schmid College of Science and Technology, Chapman University, 1 University Drive, Orange, CA 92866, USA
| | - Andre Hupe
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada N1G-2W1
| | - Atsuko Negishi
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada N1G-2W1
| | - Yu Zeng
- Schmid College of Science and Technology, Chapman University, 1 University Drive, Orange, CA 92866, USA
| | - Randy H. Ewoldt
- Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Douglas S. Fudge
- Schmid College of Science and Technology, Chapman University, 1 University Drive, Orange, CA 92866, USA
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada N1G-2W1
| |
Collapse
|
8
|
Bertsch P, Diba M, Mooney DJ, Leeuwenburgh SCG. Self-Healing Injectable Hydrogels for Tissue Regeneration. Chem Rev 2022; 123:834-873. [PMID: 35930422 PMCID: PMC9881015 DOI: 10.1021/acs.chemrev.2c00179] [Citation(s) in RCA: 241] [Impact Index Per Article: 80.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Biomaterials with the ability to self-heal and recover their structural integrity offer many advantages for applications in biomedicine. The past decade has witnessed the rapid emergence of a new class of self-healing biomaterials commonly termed injectable, or printable in the context of 3D printing. These self-healing injectable biomaterials, mostly hydrogels and other soft condensed matter based on reversible chemistry, are able to temporarily fluidize under shear stress and subsequently recover their original mechanical properties. Self-healing injectable hydrogels offer distinct advantages compared to traditional biomaterials. Most notably, they can be administered in a locally targeted and minimally invasive manner through a narrow syringe without the need for invasive surgery. Their moldability allows for a patient-specific intervention and shows great prospects for personalized medicine. Injected hydrogels can facilitate tissue regeneration in multiple ways owing to their viscoelastic and diffusive nature, ranging from simple mechanical support, spatiotemporally controlled delivery of cells or therapeutics, to local recruitment and modulation of host cells to promote tissue regeneration. Consequently, self-healing injectable hydrogels have been at the forefront of many cutting-edge tissue regeneration strategies. This study provides a critical review of the current state of self-healing injectable hydrogels for tissue regeneration. As key challenges toward further maturation of this exciting research field, we identify (i) the trade-off between the self-healing and injectability of hydrogels vs their physical stability, (ii) the lack of consensus on rheological characterization and quantitative benchmarks for self-healing injectable hydrogels, particularly regarding the capillary flow in syringes, and (iii) practical limitations regarding translation toward therapeutically effective formulations for regeneration of specific tissues. Hence, here we (i) review chemical and physical design strategies for self-healing injectable hydrogels, (ii) provide a practical guide for their rheological analysis, and (iii) showcase their applicability for regeneration of various tissues and 3D printing of complex tissues and organoids.
Collapse
Affiliation(s)
- Pascal Bertsch
- Department
of Dentistry-Regenerative Biomaterials, Radboud Institute for Molecular
Life Sciences, Radboud University Medical
Center, 6525 EX Nijmegen, The Netherlands
| | - Mani Diba
- Department
of Dentistry-Regenerative Biomaterials, Radboud Institute for Molecular
Life Sciences, Radboud University Medical
Center, 6525 EX Nijmegen, The Netherlands,John
A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States,Wyss
Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts 02115, United States
| | - David J. Mooney
- John
A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States,Wyss
Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts 02115, United States
| | - Sander C. G. Leeuwenburgh
- Department
of Dentistry-Regenerative Biomaterials, Radboud Institute for Molecular
Life Sciences, Radboud University Medical
Center, 6525 EX Nijmegen, The Netherlands,
| |
Collapse
|
9
|
van der Kaaij A, van Noort K, Nibbering P, Wilbers RHP, Schots A. Glyco-Engineering Plants to Produce Helminth Glycoproteins as Prospective Biopharmaceuticals: Recent Advances, Challenges and Future Prospects. FRONTIERS IN PLANT SCIENCE 2022; 13:882835. [PMID: 35574113 PMCID: PMC9100689 DOI: 10.3389/fpls.2022.882835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 03/28/2022] [Indexed: 06/15/2023]
Abstract
Glycoproteins are the dominant category among approved biopharmaceuticals, indicating their importance as therapeutic proteins. Glycoproteins are decorated with carbohydrate structures (or glycans) in a process called glycosylation. Glycosylation is a post-translational modification that is present in all kingdoms of life, albeit with differences in core modifications, terminal glycan structures, and incorporation of different sugar residues. Glycans play pivotal roles in many biological processes and can impact the efficacy of therapeutic glycoproteins. The majority of biopharmaceuticals are based on human glycoproteins, but non-human glycoproteins, originating from for instance parasitic worms (helminths), form an untapped pool of potential therapeutics for immune-related diseases and vaccine candidates. The production of sufficient quantities of correctly glycosylated putative therapeutic helminth proteins is often challenging and requires extensive engineering of the glycosylation pathway. Therefore, a flexible glycoprotein production system is required that allows straightforward introduction of heterologous glycosylation machinery composed of glycosyltransferases and glycosidases to obtain desired glycan structures. The glycome of plants creates an ideal starting point for N- and O-glyco-engineering of helminth glycans. Plants are also tolerant toward the introduction of heterologous glycosylation enzymes as well as the obtained glycans. Thus, a potent production platform emerges that enables the production of recombinant helminth proteins with unusual glycans. In this review, we discuss recent advances in plant glyco-engineering of potentially therapeutic helminth glycoproteins, challenges and their future prospects.
Collapse
|
10
|
Lutz TM, Kimna C, Casini A, Lieleg O. Bio-based and bio-inspired adhesives from animals and plants for biomedical applications. Mater Today Bio 2022; 13:100203. [PMID: 35079700 PMCID: PMC8777159 DOI: 10.1016/j.mtbio.2022.100203] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/08/2022] [Accepted: 01/08/2022] [Indexed: 01/01/2023] Open
Abstract
With the "many-headed" slime mold Physarum polycelphalum having been voted the unicellular organism of the year 2021 by the German Society of Protozoology, we are reminded that a large part of nature's huge variety of life forms is easily overlooked - both by the general public and researchers alike. Indeed, whereas several animals such as mussels or spiders have already inspired many scientists to create novel materials with glue-like properties, there is much more to discover in the flora and fauna. Here, we provide an overview of naturally occurring slimy substances with adhesive properties and categorize them in terms of the main chemical motifs that convey their stickiness, i.e., carbohydrate-, protein-, and glycoprotein-based biological glues. Furthermore, we highlight selected recent developments in the area of material design and functionalization that aim at making use of such biological compounds for novel applications in medicine - either by conjugating adhesive motifs found in nature to biological or synthetic macromolecules or by synthetically creating (multi-)functional materials, which combine adhesive properties with additional, problem-specific (and sometimes tunable) features.
Collapse
Affiliation(s)
- Theresa M. Lutz
- School of Engineering and Design, Department of Materials Engineering, Technical University of Munich, Boltzmannstraße 15, Garching, 85748, Germany
- Center for Protein Assemblies, Technical University of Munich, Ernst-Otto-Fischer Str. 8, Garching, 85748, Germany
| | - Ceren Kimna
- School of Engineering and Design, Department of Materials Engineering, Technical University of Munich, Boltzmannstraße 15, Garching, 85748, Germany
- Center for Protein Assemblies, Technical University of Munich, Ernst-Otto-Fischer Str. 8, Garching, 85748, Germany
| | - Angela Casini
- Chair of Medicinal and Bioinorganic Chemistry, Department of Chemistry, Technical University of Munich, Lichtenbergstraße 4, Garching, 85748, Germany
| | - Oliver Lieleg
- School of Engineering and Design, Department of Materials Engineering, Technical University of Munich, Boltzmannstraße 15, Garching, 85748, Germany
- Center for Protein Assemblies, Technical University of Munich, Ernst-Otto-Fischer Str. 8, Garching, 85748, Germany
| |
Collapse
|
11
|
Evolution of a remarkable intracellular polymer and extreme cell allometry in hagfishes. Curr Biol 2021; 31:5062-5068.e4. [PMID: 34547222 DOI: 10.1016/j.cub.2021.08.066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/28/2021] [Accepted: 08/26/2021] [Indexed: 10/20/2022]
Abstract
The size of animal cells rarely scales with body size, likely due to biophysical and physiological constraints.1,2 In hagfishes, gland thread cells (GTCs) each produce a silk-like proteinaceous fiber called a slime thread.3,4 The slime threads impart strength to a hagfish's defensive slime and thus are potentially subject to selection on their function outside of the body.5-8 Body size is of fundamental importance in predator-prey interactions, which led us to hypothesize that larger hagfishes produce longer and stronger slime threads than smaller ones.9 Here, by sampling a range of sizes of hagfish from 19 species, we systematically examined the scaling of GTC and slime-thread dimensions with body size within both phylogenetic and ontogenetic contexts. We found that the length of GTCs varied between 40 and 250 μm and scaled positively with body size, exhibiting an allometric exponent greater than those in other animal cells. Correspondingly, larger hagfishes produce longer and thicker slime threads and thus are equipped to defend against larger predators. With diameter and length varying 4-fold (0.7-4 μm and 5-22 cm, respectively) over a body-size range of 10-128 cm, the slime threads characterize the largest intracellular polymers known in biology. Our results suggest selection for stronger defensive slime in larger hagfishes has driven the evolution of extreme size and allometry of GTCs.
Collapse
|
12
|
Bressman N, Fudge D. From reductionism to synthesis: The case of hagfish slime. Comp Biochem Physiol B Biochem Mol Biol 2021; 255:110610. [PMID: 33971350 DOI: 10.1016/j.cbpb.2021.110610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/28/2021] [Accepted: 05/04/2021] [Indexed: 11/17/2022]
Abstract
Reductionist strategies aim to understand the mechanisms of complex systems by studying individual parts and their interactions. In this review, we discuss how reductionist approaches have shed light on the structure, function, and production of a complex biomaterial - hagfish defensive slime. Hagfish slime is an extremely dilute hydrogel-like material composed of seawater, mucus, and silk-like proteins that can deploy rapidly. Despite being composed almost entirely of water, hagfish slime has remarkable physical properties, including high strength and toughness. While hagfish slime has a promising future in biomimetics, including the development of eco-friendly high-performance fibers, recreating hagfish slime in the lab has been a difficult challenge. Over the past two decades, reductionist experiments have provided a wealth of information about the individual components of hagfish slime. However, a reductionist approach provides a limited understanding because hagfish defensive slime, like most biological phenomena, is more than just the sum of its parts. We end by providing some thoughts about how the knowledge generated in the last few decades might be synthesized into a working model that can explain hagfish slime structure and function.
Collapse
Affiliation(s)
- Noah Bressman
- Schmid College of Science and Technology, Chapman University, 1 University Dr., Orange, CA 92866, USA.
| | - Douglas Fudge
- Schmid College of Science and Technology, Chapman University, 1 University Dr., Orange, CA 92866, USA
| |
Collapse
|
13
|
Rühs PA, Bergfreund J, Bertsch P, Gstöhl SJ, Fischer P. Complex fluids in animal survival strategies. SOFT MATTER 2021; 17:3022-3036. [PMID: 33729256 DOI: 10.1039/d1sm00142f] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Animals have evolved distinctive survival strategies in response to constant selective pressure. In this review, we highlight how animals exploit flow phenomena by manipulating their habitat (exogenous) or by secreting (endogenous) complex fluids. Ubiquitous endogenous complex fluids such as mucus demonstrate rheological versatility and are therefore involved in many animal behavioral traits ranging from sexual reproduction to protection against predators. Exogenous complex fluids such as sand can be used either for movement or for predation. In all cases, time-dependent rheological properties of complex fluids are decisive for the fate of the biological behavior and vice versa. To exploit these rheological properties, it is essential that the animal is able to sense the rheology of their surrounding complex fluids in a timely fashion. As timing is key in nature, such rheological materials often have clearly defined action windows matching the time frame of their direct biological behavior. As many rheological properties of these biological materials remain poorly studied, we demonstrate with this review that rheology and material science might provide an interesting quantitative approach to study these biological materials in particular in context towards ethology and bio-mimicking material design.
Collapse
Affiliation(s)
- Patrick A Rühs
- Department of Bioengineering, University of California, 218 Hearst Memorial Mining Building, Berkeley, CA 94704, USA
| | | | | | | | | |
Collapse
|
14
|
Khrunyk Y, Lach S, Petrenko I, Ehrlich H. Progress in Modern Marine Biomaterials Research. Mar Drugs 2020; 18:E589. [PMID: 33255647 PMCID: PMC7760574 DOI: 10.3390/md18120589] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/16/2020] [Accepted: 11/19/2020] [Indexed: 02/06/2023] Open
Abstract
The growing demand for new, sophisticated, multifunctional materials has brought natural structural composites into focus, since they underwent a substantial optimization during long evolutionary selection pressure and adaptation processes. Marine biological materials are the most important sources of both inspiration for biomimetics and of raw materials for practical applications in technology and biomedicine. The use of marine natural products as multifunctional biomaterials is currently undergoing a renaissance in the modern materials science. The diversity of marine biomaterials, their forms and fields of application are highlighted in this review. We will discuss the challenges, solutions, and future directions of modern marine biomaterialogy using a thorough analysis of scientific sources over the past ten years.
Collapse
Affiliation(s)
- Yuliya Khrunyk
- Department of Heat Treatment and Physics of Metal, Ural Federal University, 620002 Ekaterinburg, Russia;
- Institute of High Temperature Electrochemistry, Ural Branch, Russian Academy of Sciences, 620990 Ekaterinburg, Russia
| | - Slawomir Lach
- Department of Biomedical Chemistry, Faculty of Chemistry, University of Gdansk, 80-308 Gdansk, Poland;
| | - Iaroslav Petrenko
- Institute of Electronics and Sensor Materials, Technische Universität Bergakademie Freiberg, 09599 Freiberg, Germany;
| | - Hermann Ehrlich
- Institute of Electronics and Sensor Materials, Technische Universität Bergakademie Freiberg, 09599 Freiberg, Germany;
- Center for Advanced Technology, Adam Mickiewicz University, 61614 Poznan, Poland
| |
Collapse
|
15
|
Fudge DS, Ferraro SN, Siwiecki SA, Hupé A, Jain G. A New Model of Hagfish Slime Mucous Vesicle Stabilization and Deployment. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:6681-6689. [PMID: 32470308 DOI: 10.1021/acs.langmuir.0c00639] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Hagfishes thwart predators by releasing large volumes of gill-clogging slime, which consists of mucus and silk-like fibers. The mucous fraction originates within gland mucous cells, which release numerous vesicles that swell and rupture when ejected into seawater. Several studies have examined the function of hagfish slime mucous vesicles in vitro, but a comprehensive model of their biophysics is lacking. Here, we tested the hypothesis that vesicles contain polyanionic glycoproteins stabilized by divalent cations and deploy in seawater via exchange of divalent for monovalent cations. We also tested the hypothesis that vesicle swelling and stabilization are governed by "Hofmeister effects". We found no evidence for either hypothesis. Our results show that hagfish mucous granules are only stabilized by multivalent anions, and pH titration experiments underscore these results. Our results lead us to the conclusion that the hagfish slime mucous gel is in fact polycationic in nature.
Collapse
Affiliation(s)
- Douglas S Fudge
- Schmid College of Science and Technology, Chapman University, Orange, California 92866, United States
- Department of Integrative Biology, University of Guelph, Guelph, Ontario N1-2W1, Canada
| | - Shannon N Ferraro
- Department of Integrative Biology, University of Guelph, Guelph, Ontario N1-2W1, Canada
| | - Sara A Siwiecki
- Schmid College of Science and Technology, Chapman University, Orange, California 92866, United States
| | - André Hupé
- Department of Integrative Biology, University of Guelph, Guelph, Ontario N1-2W1, Canada
| | - Gaurav Jain
- Schmid College of Science and Technology, Chapman University, Orange, California 92866, United States
| |
Collapse
|
16
|
Wu X, Huang X, Zhu Y, Li J, Hoffmann MR. Synthesis and application of superabsorbent polymer microspheres for rapid concentration and quantification of microbial pathogens in ambient water. Sep Purif Technol 2020; 239:116540. [PMID: 32421015 PMCID: PMC7045201 DOI: 10.1016/j.seppur.2020.116540] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A portable, hand-pressed 3D-printed system with SAP microspheres was developed. This system could achieve efficient concentration of environmental microorganisms. Superior performance was achieved with varying ionic strengths in a short time. Optimized SAP microspheres could be reused 20 times with simple procedures.
Even though numerous methods have been developed for the detection and quantification of waterborne pathogens, the application of these methods is often hindered by the very low pathogen concentrations in natural waters. Therefore, rapid and efficient sample concentration methods are urgently needed. Here we present a novel method to pre-concentrate microbial pathogens in water using a portable 3D-printed system with super-absorbent polymer (SAP) microspheres, which can effectively reduce the actual volume of water in a collected sample. The SAP microspheres absorb water while excluding bacteria and viruses by size exclusion and charge repulsion. To improve the water absorption capacity of SAP in varying ionic strength waters (0–100 mM), we optimized the formulation of SAP to 180 g⋅L−1 Acrylamide, 75 g⋅L−1 Itaconic Acid and 4.0 g⋅L−1 Bis-Acrylamide for the highest ionic strength water as a function of the extent of cross-linking and the concentration of counter ions. Fluorescence microscopy and double-layer agar plating respectively showed that the 3D-printed system with optimally-designed SAP microspheres could rapidly achieve a 10-fold increase in the concentration of Escherichia coli (E. coli) and bacteriophage MS2 within 20 min with concentration efficiencies of 87% and 96%, respectively. Fold changes between concentrated and original samples from qPCR and RT-qPCR results were found to be respectively 11.34–22.27 for E. coli with original concentrations from 104 to 106 cell·mL−1, and 8.20–13.81 for MS2 with original concentrations from 104 to 106 PFU·mL−1. Furthermore, SAP microspheres can be reused for 20 times without performance loss, significantly decreasing the cost of our concentration system.
Collapse
Affiliation(s)
- Xunyi Wu
- Linde+ Robinson Laboratories, California Institute of Technology, Pasadena, CA 91125, United States
| | - Xiao Huang
- Linde+ Robinson Laboratories, California Institute of Technology, Pasadena, CA 91125, United States
| | - Yanzhe Zhu
- Linde+ Robinson Laboratories, California Institute of Technology, Pasadena, CA 91125, United States
| | - Jing Li
- Linde+ Robinson Laboratories, California Institute of Technology, Pasadena, CA 91125, United States
| | - Michael R Hoffmann
- Linde+ Robinson Laboratories, California Institute of Technology, Pasadena, CA 91125, United States
| |
Collapse
|
17
|
Abstract
Hagfish slime is a unique predator defence material containing a network of long fibrous threads each ∼10 cm in length. Hagfish release the threads in a condensed coiled state known as skeins (∼100 µm), which must unravel within a fraction of a second to thwart a predator attack. Here we consider the hypothesis that viscous hydrodynamics can be responsible for this rapid unravelling, as opposed to chemical reaction kinetics alone. Our main conclusion is that, under reasonable physiological conditions, unravelling due to viscous drag can occur within a few hundred milliseconds, and is accelerated if the skein is pinned at a surface such as the mouth of a predator. We model a single skein unspooling as the fibre peels away due to viscous drag. We capture essential features by considering simplified cases of physiologically relevant flows and one-dimensional scenarios where the fibre is aligned with streamlines in either uniform or uniaxial extensional flow. The peeling resistance is modelled with a power-law dependence on peeling velocity. A dimensionless ratio of viscous drag to peeling resistance appears in the dynamical equations and determines the unraveling time scale. Our modelling approach is general and can be refined with future experimental measurements of peel strength for skein unravelling. It provides key insights into the unravelling process, offers potential answers to lingering questions about slime formation from threads and mucous vesicles, and will aid the growing interest in engineering similar bioinspired material systems.
Collapse
Affiliation(s)
- Gaurav Chaudhary
- 1 Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign , Urbana, IL , USA
| | - Randy H Ewoldt
- 1 Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign , Urbana, IL , USA
| | | |
Collapse
|
18
|
Rementzi K, Böni LJ, Adamcik J, Fischer P, Vlassopoulos D. Structure and dynamics of hagfish mucin in different saline environments. SOFT MATTER 2019; 15:8627-8637. [PMID: 31631202 DOI: 10.1039/c9sm00971j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The defense mechanism of hagfish against predators is based on its ability to form slime within a few milliseconds. Hagfish slime consists of two main components, namely mucin-like glycoproteins and long protein threads, which together entrap vast amounts of water and thus form a highly dilute hydrogel. Here, we investigate the mucin part of this hydrogel, in particular the role of the saline marine environment on the viscoelasticity and structure. By means of dynamic light scattering (DLS), shear and extensional rheology we probe the diffusion dynamics, the flow behavior, and the longest filament breaking time of hagfish mucin solutions. Using DLS we find a concentration-independent diffusion coefficient - characteristic for polyelectrolytes - up to the entanglement regime of 0.2 mg ml-1, which is about ten times higher than the natural concentration of hagfish mucin in hagfish slime. We also observe a slow relaxation process associated with clustering, probably due to electrostatic interactions. Shear rheology further revealed that hagfish mucin possesses pronounced viscoelastic properties at high concentrations (3 mg ml-1), showing that mucin alone achieves mechanical properties similar to those of natural hagfish slime (mucins and protein threads). The main effects of added seawater salts, and predominantly CaCl2 is to reduce the intensity of the slow relaxation process, which suggests that calcium ions lead to an ionotropic gelation of hagfish mucins.
Collapse
Affiliation(s)
- Katerina Rementzi
- FORTH, Institute of Electronic Structure & Laser, N. Plastira 100, 70013 Heraklion, Greece.
| | | | | | | | | |
Collapse
|
19
|
Bernards MA, Schorno S, McKenzie E, Winegard TM, Oke I, Plachetzki D, Fudge DS. Unraveling inter-species differences in hagfish slime skein deployment. J Exp Biol 2018; 221:221/24/jeb176925. [DOI: 10.1242/jeb.176925] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 10/08/2018] [Indexed: 01/11/2023]
Abstract
ABSTRACT
Hagfishes defend themselves from fish predators by producing defensive slime consisting of mucous and thread components that interact synergistically with seawater to pose a suffocation risk to their attackers. Deployment of the slime occurs in a fraction of a second and involves hydration of mucous vesicles as well as unraveling of the coiled threads to their full length of ∼150 mm. Previous work showed that unraveling of coiled threads (or ‘skeins’) in Atlantic hagfish requires vigorous mixing with seawater as well as the presence of mucus, whereas skeins from Pacific hagfish tend to unravel spontaneously in seawater. Here, we explored the mechanisms that underlie these different unraveling modes, and focused on the molecules that make up the skein glue, a material that must be disrupted for unraveling to proceed. We found that Atlantic hagfish skeins are also held together with a protein glue, but compared with Pacific hagfish glue, it is less soluble in seawater. Using SDS-PAGE, we identified several soluble proteins and glycoproteins that are liberated from skeins under conditions that drive unraveling in vitro. Peptides generated by mass spectrometry of five of these proteins and glycoproteins mapped strongly to 14 sequences assembled from Pacific hagfish slime gland transcriptomes, with all but one of these sequences possessing homologs in the Atlantic hagfish. Two of these sequences encode unusual acidic proteins that we propose are the structural glycoproteins that make up the skein glue. These sequences have no known homologs in other species and are likely to be unique to hagfishes. Although the ecological significance of the two modes of skein unraveling described here are unknown, they may reflect differences in predation pressure, with selection for faster skein unraveling in the Eptatretus lineage leading to the evolution of a glue that is more soluble.
Collapse
Affiliation(s)
- Mark A. Bernards
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada, N1G 2W1
| | - Sarah Schorno
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada, N1G 2W1
| | - Evan McKenzie
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada, N1G 2W1
| | - Timothy M. Winegard
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada, N1G 2W1
| | - Isdin Oke
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada, N1G 2W1
| | - David Plachetzki
- Department of Molecular, Cellular, & Biomedical Sciences, University of New Hampshire, Durham, NH 03824, USA
| | - Douglas S. Fudge
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada, N1G 2W1
- Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA
| |
Collapse
|
20
|
Böni LJ, Sanchez-Ferrer A, Widmer M, Biviano MD, Mezzenga R, Windhab EJ, Dagastine RR, Fischer P. Structure and Nanomechanics of Dry and Hydrated Intermediate Filament Films and Fibers Produced from Hagfish Slime Fibers. ACS APPLIED MATERIALS & INTERFACES 2018; 10:40460-40473. [PMID: 30371056 DOI: 10.1021/acsami.8b17166] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Intermediate filaments (IFs) are known for their extensibility, flexibility, toughness, and their ability to hydrate. Using keratin-like IFs obtained from slime fibers from the invertebrate Atlantic hagfish ( Myxine glutinosa), films were produced by drop-casting and coagulation on the surface of a MgCl2 buffer. Drop-casting produced self-supporting, smooth, and dense films rich in β-sheets (61%), whereas coagulation formed thin, porous films with a nanorough surface and a lower β-sheet content (51%). The films hydrated and swelled immediately when immersed in water and did not dissolve. X-ray diffraction showed that the β-crystallites remained stable upon hydration, that swelling presumably happens in the amorphous C-terminal tail-domains of the IFs, and that high salt conditions caused a denser network mesh size, suggesting polyelectrolyte behavior. Hydration resulted in a roughly 1000-fold decrease in apparent Young's modulus from 109 to 106 Pa as revealed by atomic force microscopy nanoindentation. Nanoindentation-based power-law rheology and stress-relaxation measurements indicated viscoelasticity and a soft-solid hydrogel character for hydrated films, where roughly 80% of energy is elastically stored and 20% is dissipated. By pulling coagulation films from the buffer interface, macroscopic fibers with highly aligned IF β-crystals similar to natural hagfish fibers were produced. We propose that viscoelasticity and strong hydrogen bonding interactions with the buffer interface are crucial for the production of such long biomimetic fibers with aligned β-sheets. This study demonstrates that hagfish fiber IFs can be reconstituted into functional biomimetic materials that are stiff when dry and retain the ability to hydrate to become soft and viscoelastic when in water.
Collapse
Affiliation(s)
| | | | | | - M D Biviano
- Department of Chemical and Biomolecular Engineering , University of Melbourne , Melbourne 3010 , Australia
| | | | | | - R R Dagastine
- Department of Chemical and Biomolecular Engineering , University of Melbourne , Melbourne 3010 , Australia
| | | |
Collapse
|