1
|
Klein P, Kaminski RM, Koepp M, Löscher W. New epilepsy therapies in development. Nat Rev Drug Discov 2024; 23:682-708. [PMID: 39039153 DOI: 10.1038/s41573-024-00981-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/29/2024] [Indexed: 07/24/2024]
Abstract
Epilepsy is a common brain disorder, characterized by spontaneous recurrent seizures, with associated neuropsychiatric and cognitive comorbidities and increased mortality. Although people at risk can often be identified, interventions to prevent the development of the disorder are not available. Moreover, in at least 30% of patients, epilepsy cannot be controlled by current antiseizure medications (ASMs). As a result of considerable progress in epilepsy genetics and the development of novel disease models, drug screening technologies and innovative therapeutic modalities over the past 10 years, more than 200 novel epilepsy therapies are currently in the preclinical or clinical pipeline, including many treatments that act by new mechanisms. Assisted by diagnostic and predictive biomarkers, the treatment of epilepsy is undergoing paradigm shifts from symptom-only ASMs to disease prevention, and from broad trial-and-error treatments for seizures in general to mechanism-based treatments for specific epilepsy syndromes. In this Review, we assess recent progress in ASM development and outline future directions for the development of new therapies for the treatment and prevention of epilepsy.
Collapse
Affiliation(s)
- Pavel Klein
- Mid-Atlantic Epilepsy and Sleep Center, Bethesda, MD, USA.
| | | | - Matthias Koepp
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Wolfgang Löscher
- Translational Neuropharmacology Lab., NIFE, Department of Experimental Otology of the ENT Clinics, Hannover Medical School, Hannover, Germany.
- Center for Systems Neuroscience, Hannover, Germany.
| |
Collapse
|
2
|
Kok M, Brodsky JL. The biogenesis of potassium transporters: implications of disease-associated mutations. Crit Rev Biochem Mol Biol 2024; 59:154-198. [PMID: 38946646 PMCID: PMC11444911 DOI: 10.1080/10409238.2024.2369986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/02/2024] [Accepted: 06/16/2024] [Indexed: 07/02/2024]
Abstract
The concentration of intracellular and extracellular potassium is tightly regulated due to the action of various ion transporters, channels, and pumps, which reside primarily in the kidney. Yet, potassium transporters and cotransporters play vital roles in all organs and cell types. Perhaps not surprisingly, defects in the biogenesis, function, and/or regulation of these proteins are linked to range of catastrophic human diseases, but to date, few drugs have been approved to treat these maladies. In this review, we discuss the structure, function, and activity of a group of potassium-chloride cotransporters, the KCCs, as well as the related sodium-potassium-chloride cotransporters, the NKCCs. Diseases associated with each of the four KCCs and two NKCCs are also discussed. Particular emphasis is placed on how these complex membrane proteins fold and mature in the endoplasmic reticulum, how non-native forms of the cotransporters are destroyed in the cell, and which cellular factors oversee their maturation and transport to the cell surface. When known, we also outline how the levels and activities of each cotransporter are regulated. Open questions in the field and avenues for future investigations are further outlined.
Collapse
Affiliation(s)
- Morgan Kok
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jeffrey L Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
3
|
Zhang S, Meor Azlan NF, Josiah SS, Zhou J, Zhou X, Jie L, Zhang Y, Dai C, Liang D, Li P, Li Z, Wang Z, Wang Y, Ding K, Wang Y, Zhang J. The role of SLC12A family of cation-chloride cotransporters and drug discovery methodologies. J Pharm Anal 2023; 13:1471-1495. [PMID: 38223443 PMCID: PMC10785268 DOI: 10.1016/j.jpha.2023.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 06/20/2023] [Accepted: 09/05/2023] [Indexed: 09/12/2023] Open
Abstract
The solute carrier family 12 (SLC12) of cation-chloride cotransporters (CCCs) comprises potassium chloride cotransporters (KCCs, e.g. KCC1, KCC2, KCC3, and KCC4)-mediated Cl- extrusion, and sodium potassium chloride cotransporters (N[K]CCs, NKCC1, NKCC2, and NCC)-mediated Cl- loading. The CCCs play vital roles in cell volume regulation and ion homeostasis. Gain-of-function or loss-of-function of these ion transporters can cause diseases in many tissues. In recent years, there have been considerable advances in our understanding of CCCs' control mechanisms in cell volume regulations, with many techniques developed in studying the functions and activities of CCCs. Classic approaches to directly measure CCC activity involve assays that measure the transport of potassium substitutes through the CCCs. These techniques include the ammonium pulse technique, radioactive or nonradioactive rubidium ion uptake-assay, and thallium ion-uptake assay. CCCs' activity can also be indirectly observed by measuring γ-aminobutyric acid (GABA) activity with patch-clamp electrophysiology and intracellular chloride concentration with sensitive microelectrodes, radiotracer 36Cl-, and fluorescent dyes. Other techniques include directly looking at kinase regulatory sites phosphorylation, flame photometry, 22Na+ uptake assay, structural biology, molecular modeling, and high-throughput drug screening. This review summarizes the role of CCCs in genetic disorders and cell volume regulation, current methods applied in studying CCCs biology, and compounds developed that directly or indirectly target the CCCs for disease treatments.
Collapse
Affiliation(s)
- Shiyao Zhang
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 363001, China
| | - Nur Farah Meor Azlan
- Institute of Biomedical and Clinical Sciences, Medical School, Faculty of Health and Life Sciences, University of Exeter, Exeter, EX4 4PS, UK
| | - Sunday Solomon Josiah
- Institute of Biomedical and Clinical Sciences, Medical School, Faculty of Health and Life Sciences, University of Exeter, Exeter, EX4 4PS, UK
| | - Jing Zhou
- Department of Neurology, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institute of Biological Science, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Xiaoxia Zhou
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 363001, China
| | - Lingjun Jie
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 363001, China
| | - Yanhui Zhang
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 363001, China
| | - Cuilian Dai
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 363001, China
| | - Dong Liang
- Aurora Discovery Inc., Foshan, Guangdong, 528300, China
| | - Peifeng Li
- Institute for Translational Medicine, Qingdao University, Qingdao, Shandong, 266021, China
| | - Zhengqiu Li
- School of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Zhen Wang
- State Key Laboratory of Chemical Biology, Research Center of Chemical Kinomics, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yun Wang
- Department of Neurology, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institute of Biological Science, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Ke Ding
- State Key Laboratory of Chemical Biology, Research Center of Chemical Kinomics, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yan Wang
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 363001, China
| | - Jinwei Zhang
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 363001, China
- Institute of Biomedical and Clinical Sciences, Medical School, Faculty of Health and Life Sciences, University of Exeter, Exeter, EX4 4PS, UK
- State Key Laboratory of Chemical Biology, Research Center of Chemical Kinomics, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
4
|
Al-Wahaibi LH, Abou-Zied HA, Beshr EAM, Youssif BGM, Hayallah AM, Abdel-Aziz M. Design, Synthesis, Antiproliferative Actions, and DFT Studies of New Bis-Pyrazoline Derivatives as Dual EGFR/BRAF V600E Inhibitors. Int J Mol Sci 2023; 24:9104. [PMID: 37240450 PMCID: PMC10218941 DOI: 10.3390/ijms24109104] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/14/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Some new Bis-pyrazoline hybrids 8-17 with dual EGFR and BRAFV600E inhibitors have been developed. The target compounds were synthesized and tested in vitro against four cancer cell lines. Compounds 12, 15, and 17 demonstrated strong antiproliferative activity with GI50 values of 1.05 µM, 1.50 µM, and 1.20 µM, respectively. Hybrids showed dual inhibition of EGFR and BRAFV600E. Compounds 12, 15, and 17 inhibited EGFR-like erlotinib and exhibited promising anticancer activity. Compound 12 is the most potent inhibitor of cancer cell proliferation and BRAFV600E. Compounds 12 and 17 induced apoptosis by increasing caspase 3, 8, and Bax levels, and resulted in the downregulation of the antiapoptotic Bcl2. The molecular docking studies verified that compounds 12, 15, and 17 have the potential to be dual EGFR/BRAFV600E inhibitors. Additionally, in silico ADMET prediction revealed that most synthesized bis-pyrazoline hybrids have low toxicity and adverse effects. DFT studies for the two most active compounds, 12 and 15, were also carried out. The values of the HOMO and LUMO energies, as well as softness and hardness, were computationally investigated using the DFT method. These findings agreed well with those of the in vitro research and molecular docking study.
Collapse
Affiliation(s)
- Lamya H. Al-Wahaibi
- Department of Chemistry, College of Sciences, Princess Nourah bint Abdulrahman University, Riyadh 11564, Saudi Arabia;
| | - Hesham A. Abou-Zied
- Medicinal Chemistry Department, Faculty of Pharmacy, Deraya University, Minia 61111, Egypt; (H.A.A.-Z.); (M.A.-A.)
| | - Eman A. M. Beshr
- Medicinal Chemistry Department, Faculty of Pharmacy, Minia University, Minia 61519, Egypt;
| | - Bahaa G. M. Youssif
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Alaa M. Hayallah
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Sphinx University, Assiut 71515, Egypt
| | - Mohamed Abdel-Aziz
- Medicinal Chemistry Department, Faculty of Pharmacy, Deraya University, Minia 61111, Egypt; (H.A.A.-Z.); (M.A.-A.)
| |
Collapse
|
5
|
Welzel B, Schmidt R, Kirchhoff L, Gramer M, Löscher W. The loop diuretic torasemide but not azosemide potentiates the anti-seizure and disease-modifying effects of midazolam in a rat model of birth asphyxia. Epilepsy Behav 2023; 139:109057. [PMID: 36586153 DOI: 10.1016/j.yebeh.2022.109057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 12/31/2022]
Abstract
Loop diuretics such as furosemide and bumetanide, which act by inhibiting the Na-K-2Cl cotransporter NKCC2 at the thick ascending limb of the loop of Henle, have been shown to exert anti-seizure effects. However, the exact mechanism of this effect is not known. For bumetanide, it has been suggested that inhibition of the NKCC isoform NKCC1 in the membrane of brain neurons may be involved; however, NKCC1 is expressed by virtually all cell types in the brain, which makes any specific targeting of neuronal NKCC1 by bumetanide impossible. In addition, bumetanide only poorly penetrates the brain. We have previously shown that loop diuretics azosemide and torasemide also potently inhibit NKCC1. In contrast to bumetanide and furosemide, azosemide and torasemide lack a carboxylic group, which should allow them to better penetrate through biomembranes by passive diffusion. Because of the urgent medical need to develop new treatments for neonatal seizures and their adverse outcome, we evaluated the effects of azosemide and torasemide, administered alone or in combination with phenobarbital or midazolam, in a rat model of birth asphyxia and neonatal seizures. Neither diuretic suppressed the seizures when administered alone but torasemide potentiated the anti-seizure effect of midazolam. Brain levels of torasemide were below those needed to inhibit NKCC1. In addition to suppressing seizures, the combination of torasemide and midazolam, but not midazolam alone, prevented the cognitive impairment of the post-asphyxial rats at 3 months after asphyxia. Furthermore, aberrant mossy fiber sprouting in the hippocampus was more effectively prevented by the combination. We assume that either an effect on NKCC1 at the blood-brain barrier and/or cells in the periphery or the NKCC2-mediated diuretic effect of torasemide are involved in the present findings. Our data suggest that torasemide may be a useful option for improving the treatment of neonatal seizures and their adverse outcome.
Collapse
Affiliation(s)
- Björn Welzel
- Dept. of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany; Center for Systems Neuroscience Hannover, Germany
| | - Ricardo Schmidt
- Dept. of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany; Center for Systems Neuroscience Hannover, Germany
| | - Larsen Kirchhoff
- Dept. of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany
| | - Martina Gramer
- Dept. of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany
| | - Wolfgang Löscher
- Dept. of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany; Center for Systems Neuroscience Hannover, Germany.
| |
Collapse
|
6
|
Machado S, Lucas Lima J, Imperatori C, Souza de Sá Filho A. Commentary: Is Torasemide a Potential Agent in the Treatment of Autism? ALPHA PSYCHIATRY 2023; 24:32-33. [PMID: 36879994 PMCID: PMC9985063 DOI: 10.5152/alphapsychiatry.2023.27122022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Sergio Machado
- Department of Sports Methods and Techniques, Federal University of Santa Maria, Santa Maria, Brazil
| | - João Lucas Lima
- Laboratory of Physical Activity Neuroscience, Neurodiversity Institute Queimados, Río de Janeiro, Brazil
| | - Claudio Imperatori
- Intercontinental Neuroscience Research Group, Cognitive and Clinical Psychology Laboratory, Department of Human Sciences, European University of Rome, Rome, Italy
| | - Alberto Souza de Sá Filho
- Intercontinental Neuroscience Research Group, Post Graduate Program of University Center of Anápolis (UniEVANGÉLICA), Anápolis, Brazil
| |
Collapse
|
7
|
Doğan M, Albayrak Y, Erbaş O, Erbas O. Torasemide Improves the Propionic Acid-Induced Autism in Rats: A Histopathological and Imaging Study. ALPHA PSYCHIATRY 2023; 24:22-31. [PMID: 36879996 PMCID: PMC9984905 DOI: 10.5152/alphapsychiatry.2023.22975] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 10/11/2022] [Indexed: 01/11/2023]
Abstract
Objective Autism spectrum disorder is a neurodevelopmental disease in which impaired social behaviors, impaired sociality, and restricted and repetitive behaviors are seen. Bumetanide is a loop diuretic that inhibits Na+-K+-2Cl- cotransporter 1 and it is currently used in clinical phase studies in patients with autism spectrum disorder. In present research, it is purposed to demonstrate the beneficial effects of torasemide which is another Na+-K+-2Cl- cotransporter 1 inhibitor on an experimental autism model induced with propionic acid by providing imaging and brain tissue investigations. Methods Male Wistar rats were used in the present study (n = 30). Propionic acid of 250 mg/kg/day was administrated intraperitoneally in rats to induce autism for 5 days. Three groups were created for present study as follows: group 1, normal control (n = 10); group 2, propionic acid and saline given group (n = 10); group 3, propionic acid + tora-semide-administrated group (n = 10). Results Torasemide group scored higher on behavioral tests compared to saline group. The brain levels of malondialdehyde, tumor necrosis factor-alpha, interleukin-2, interleukin-17, and Nuclear Factor kappa B (NF-κB), Glial fibrillary acidic protein (GFAP) were remarkably higher in propionic acid + saline group. In histopathology assessments, torasemide group had higher neuronal count of Cornu Ammonis 1, neuronal count of Cornu Ammonis 2 in hippocampus, and Purkinje cells in cerebellum. GFAP immunostaining index (Cornu Ammonis 1) and cerebellum were lower in torasemide group. Magnetic resonance spectroscopy revealed that mean lactate value was higher in propionic acid + saline group compared to torasemide group. Conclusion Our experimental results showed that torasemide might enhance gamma-aminobutyric acid activity. Torasemide can be considered another promising Na+-K+-2Cl- cotransporter 1 inhibitor in the treatment of autism with a longer half-life and less side effects after further studies.
Collapse
Affiliation(s)
| | - Yakup Albayrak
- Department of Psychiatry, Tekirdağ Namık Kemal University Faculty of Medicine, Tekirdağ, Turkey
| | - Oytun Erbaş
- Department of Physiology, Demiroğlu Bilim University Faculty of Medicine, İstanbul, Turkey
| | | | | | | |
Collapse
|
8
|
Janoš P, Magistrato A. Role of Monovalent Ions in the NKCC1 Inhibition Mechanism Revealed through Molecular Simulations. Int J Mol Sci 2022; 23:ijms232315439. [PMID: 36499764 PMCID: PMC9741434 DOI: 10.3390/ijms232315439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
The secondary active Na-K-Cl cotransporter 1 (NKCC1) promotes electroneutral uptake of two chloride ions, one sodium ion and one potassium ion. NKCC1 regulates Cl- homeostasis, thus being implicated in transepithelial water transport and in neuronal excitability. Aberrant NKCC1 transport is linked to a variety of human diseases. The loop diuretic drugs bumetanide, furosemide, azosemide and ethacrynic acid target NKCC1, but are characterized by poor selectivity leading to severe side effects. Despite its therapeutic importance, the molecular details of the NKCC1 inhibition mechanism remain unclear. Using all-atom simulations, we predict a putative binding mode of these drugs to the zebrafish (z) and human (h) NKCC1 orthologs. Although differing in their specific interactions with NKCC1 and/or monovalent ions, all drugs can fit within the same cavity and engage in hydrophobic interactions with M304/M382 in z/hNKCC1, a proposed ion gating residue demonstrated to be key for bumetanide binding. Consistent with experimental evidence, all drugs take advantage of the K+/Na+ ions, which plastically respond to their binding. This study not only provides atomic-level insights useful for drug discovery campaigns of more selective/potent NKCC1 inhibitors aimed to tackle diseases related to deregulated Cl- homeostasis, but it also supplies a paradigmatic example of the key importance of dynamical effects when drug binding is mediated by monovalent ions.
Collapse
|
9
|
Miles KD, Doll CA. Chloride imbalance in Fragile X syndrome. Front Neurosci 2022; 16:1008393. [PMID: 36312023 PMCID: PMC9596984 DOI: 10.3389/fnins.2022.1008393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 09/20/2022] [Indexed: 11/26/2022] Open
Abstract
Developmental changes in ionic balance are associated with crucial hallmarks in neural circuit formation, including changes in excitation and inhibition, neurogenesis, and synaptogenesis. Neuronal excitability is largely mediated by ionic concentrations inside and outside of the cell, and chloride (Cl-) ions are highly influential in early neurodevelopmental events. For example, γ-aminobutyric acid (GABA) is the main inhibitory neurotransmitter of the mature central nervous system (CNS). However, during early development GABA can depolarize target neurons, and GABAergic depolarization is implicated in crucial neurodevelopmental processes. This developmental shift of GABAergic neurotransmission from depolarizing to hyperpolarizing output is induced by changes in Cl- gradients, which are generated by the relative expression of Cl- transporters Nkcc1 and Kcc2. Interestingly, the GABA polarity shift is delayed in Fragile X syndrome (FXS) models; FXS is one of the most common heritable neurodevelopmental disorders. The RNA binding protein FMRP, encoded by the gene Fragile X Messenger Ribonucleoprotein-1 (Fmr1) and absent in FXS, appears to regulate chloride transporter expression. This could dramatically influence FXS phenotypes, as the syndrome is hypothesized to be rooted in defects in neural circuit development and imbalanced excitatory/inhibitory (E/I) neurotransmission. In this perspective, we summarize canonical Cl- transporter expression and investigate altered gene and protein expression of Nkcc1 and Kcc2 in FXS models. We then discuss interactions between Cl- transporters and neurotransmission complexes, and how these links could cause imbalances in inhibitory neurotransmission that may alter mature circuits. Finally, we highlight current therapeutic strategies and promising new directions in targeting Cl- transporter expression in FXS patients.
Collapse
Affiliation(s)
| | - Caleb Andrew Doll
- Department of Pediatrics, Section of Developmental Biology, University of Colorado School of Medicine, Children’s Hospital Colorado, Aurora, CO, United States
| |
Collapse
|
10
|
Bialer M, Johannessen SI, Koepp MJ, Levy RH, Perucca E, Perucca P, Tomson T, White HS. Progress report on new antiepileptic drugs: A summary of the Sixteenth Eilat Conference on New Antiepileptic Drugs and Devices (EILAT XVI): II. Drugs in more advanced clinical development. Epilepsia 2022; 63:2883-2910. [PMID: 35950617 DOI: 10.1111/epi.17376] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/19/2022] [Accepted: 07/25/2022] [Indexed: 11/27/2022]
Abstract
The Sixteenth Eilat Conference on New Antiepileptic Drugs and Devices (EILAT XVI) was held in Madrid, Spain on May 22-25, 2022 and was attended by 157 delegates from 26 countries representing basic and clinical science, regulatory agencies, and pharmaceutical industries. One day of the conference was dedicated to sessions presenting and discussing investigational compounds under development for the treatment of seizures and epilepsy. The current progress report summarizes recent findings and current knowledge for seven of these compounds in more advanced clinical development for which either novel preclinical or patient data are available. These compounds include bumetanide and its derivatives, darigabat, ganaxolone, lorcaserin, soticlestat, STK-001, and XEN1101. Of these, ganaxolone was approved by the US Food and Drug Administration in March 2022 for the treatment of seizures associated with cyclin-dependent kinase-like 5 deficiency disorder in patients 2 years of age and older.
Collapse
Affiliation(s)
- Meir Bialer
- Institute for Drug Research, Faculty of Medicine, School of Pharmacy, and David R. Bloom Center for Pharmacy, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Svein I Johannessen
- National Center for Epilepsy, Sandvika, Norway.,Department of Pharmacology, Oslo University Hospital, Oslo, Norway
| | - Matthias J Koepp
- Department of Clinical and Experimental Epilepsy, University College London Queen Square Institute of Neurology, London, UK
| | - René H Levy
- Department of Pharmaceutics and Neurological Surgery, University of Washington, Seattle, Washington, USA
| | - Emilio Perucca
- Department of Medicine (Austin Health), University of Melbourne, Melbourne, Victoria, Australia.,Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Piero Perucca
- Department of Medicine (Austin Health), University of Melbourne, Melbourne, Victoria, Australia.,Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia.,Bladin-Berkovic Comprehensive Epilepsy Program, Department of Neurology, Austin Health, Melbourne, Victoria, Australia.,Department of Neurology, The Royal Melbourne Hospital, Melbourne, Victoria, Australia.,Department of Neurology, Alfred Health, Melbourne, Victoria, Australia
| | - Torbjörn Tomson
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - H Steve White
- Department of Pharmacy, School of Pharmacy, University of Washington, Seattle, Washington, USA
| |
Collapse
|
11
|
Sulfonamide Diuretic Azosemide as an Efficient Carbonic Anhydrase Inhibitor. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
12
|
Structural basis for inhibition of the Cation-chloride cotransporter NKCC1 by the diuretic drug bumetanide. Nat Commun 2022; 13:2747. [PMID: 35585053 PMCID: PMC9117670 DOI: 10.1038/s41467-022-30407-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 04/28/2022] [Indexed: 11/08/2022] Open
Abstract
Cation-chloride cotransporters (CCCs) NKCC1 and NKCC2 catalyze electroneutral symport of 1 Na+, 1 K+, and 2 Cl− across cell membranes. NKCC1 mediates trans-epithelial Cl− secretion and regulates excitability of some neurons and NKCC2 is critical to renal salt reabsorption. Both transporters are inhibited by the so-called loop diuretics including bumetanide, and these drugs are a mainstay for treating edema and hypertension. Here, our single-particle electron cryo-microscopy structures supported by functional studies reveal an outward-facing conformation of NKCC1, showing bumetanide wedged into a pocket in the extracellular ion translocation pathway. Based on these and the previously published inward-facing structures, we define the translocation pathway and the conformational changes necessary for ion translocation. We also identify an NKCC1 dimer with separated transmembrane domains and extensive transmembrane and C-terminal domain interactions. We further define an N-terminal phosphoregulatory domain that interacts with the C-terminal domain, suggesting a mechanism whereby (de)phosphorylation regulates NKCC1 by tuning the strength of this domain association. Loop diuretics including bumetanide inhibit Na+-K+-Cl−-cotransporters (NKCCs) and are used for the treatment of edema and hypertension. Here, Zhao et. al. report structures of NKCC1 with bumetanide bound, revealing its mechanism of action that would facilitate design of novel diuretics.
Collapse
|
13
|
Kaila K, Löscher W. Bumetanide for neonatal seizures: no light in the pharmacokinetic/dynamic tunnel. Epilepsia 2022; 63:1868-1873. [PMID: 35524446 PMCID: PMC9545618 DOI: 10.1111/epi.17279] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 11/29/2022]
Abstract
In his editorial, Kevin Staley criticizes our recent work demonstrating the lack of effect of bumetanide in a novel model of neonatal seizures. The main points in our response are that (1) our work is on an asphyxia model, not one on "hypercarbia only"; (2) clinically relevant parenteral doses of bumetanide applied in vivo lead to concentrations in the brain parenchyma that are at least an order of magnitude lower than what would be sufficient to exert any direct effect—even a transient one—on neuronal functions, including neonatal seizures; and (3) moreover, bumetanide's molecular target in the brain is the Na‐K‐2Cl cotransporter NKCC1, which has vital functions in neurons, astrocytes, and oligodendrocytes as well as microglia. This would make it impossible even for highly brain‐permeant NKCC1 blockers to specifically target depolarizing and excitatory actions of γ‐aminobutyric acid in principal neurons of the brain, which is postulated as the rationale of clinical trials on neonatal seizures.
Collapse
Affiliation(s)
- Kai Kaila
- Molecular and Integrative Biosciences (MIBS) and Neuroscience Center (HiLIFE), University of Helsinki, Finland
| | - Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany.,Center for Systems Neuroscience, Hannover, Germany
| |
Collapse
|
14
|
Löscher W, Kaila K. CNS pharmacology of NKCC1 inhibitors. Neuropharmacology 2021; 205:108910. [PMID: 34883135 DOI: 10.1016/j.neuropharm.2021.108910] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 11/25/2021] [Accepted: 11/26/2021] [Indexed: 12/21/2022]
Abstract
The Na-K-2Cl cotransporter NKCC1 and the neuron-specific K-Cl cotransporter KCC2 are considered attractive CNS drug targets because altered neuronal chloride regulation and consequent effects on GABAergic signaling have been implicated in numerous CNS disorders. While KCC2 modulators are not yet clinically available, the loop diuretic bumetanide has been used off-label in attempts to treat brain disorders and as a tool for NKCC1 inhibition in preclinical models. Bumetanide is known to have anticonvulsant and neuroprotective effects under some pathophysiological conditions. However, as shown in several species from neonates to adults (mice, rats, dogs, and by extrapolation in humans), at the low clinical doses of bumetanide approved for diuresis, this drug has negligible access into the CNS, reaching levels that are much lower than what is needed to inhibit NKCC1 in cells within the brain parenchyma. Several drug discovery strategies have been initiated over the last ∼15 years to develop brain-permeant compounds that, ideally, should be selective for NKCC1 to eliminate the diuresis mediated by inhibition of renal NKCC2. The strategies employed to improve the pharmacokinetic and pharmacodynamic properties of NKCC1 blockers include evaluation of other clinically approved loop diuretics; development of lipophilic prodrugs of bumetanide; development of side-chain derivatives of bumetanide; and unbiased high-throughput screening approaches of drug discovery based on large chemical compound libraries. The main outcomes are that (1), non-acidic loop diuretics such as azosemide and torasemide may have advantages as NKCC1 inhibitors vs. bumetanide; (2), bumetanide prodrugs lead to significantly higher brain levels than the parent drug and have lower diuretic activity; (3), the novel bumetanide side-chain derivatives do not exhibit any functionally relevant improvement of CNS accessibility or NKCC1 selectivity vs. bumetanide; (4) novel compounds discovered by high-throughput screening may resolve some of the inherent problems of bumetanide, but as yet this has not been achieved. Thus, further research is needed to optimize the design of brain-permeant NKCC1 inhibitors. In parallel, a major challenge is to identify the mechanisms whereby various NKCC1-expressing cellular targets of these drugs within (e.g., neurons, oligodendrocytes or astrocytes) and outside the brain parenchyma (e.g., the blood-brain barrier, the choroid plexus, and the endocrine system), as well as molecular off-target effects, might contribute to their reported therapeutic and adverse effects.
Collapse
Affiliation(s)
- Wolfgang Löscher
- Dept. of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany; Center for Systems Neuroscience Hannover, Germany.
| | - Kai Kaila
- Molecular and Integrative Biosciences and Neuroscience Center (HiLIFE), University of Helsinki, Finland
| |
Collapse
|
15
|
Scepanovic G, Hunter MV, Kafri R, Fernandez-Gonzalez R. p38-mediated cell growth and survival drive rapid embryonic wound repair. Cell Rep 2021; 37:109874. [PMID: 34686334 DOI: 10.1016/j.celrep.2021.109874] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 08/02/2021] [Accepted: 09/30/2021] [Indexed: 12/18/2022] Open
Abstract
Embryos repair wounds rapidly, with no inflammation or scarring, in a process that involves polarization of the actomyosin cytoskeleton. Actomyosin polarization results in the assembly of a contractile cable around the wound that drives wound closure. Here, we demonstrate that a contractile actomyosin cable is not sufficient for rapid wound repair in Drosophila embryos. We show that wounding causes activation of the serine/threonine kinase p38 mitogen-activated protein kinase (MAPK) in the cells adjacent to the wound. p38 activation reduces the levels of wound-induced reactive oxygen species in the cells around the wound, limiting wound size. In addition, p38 promotes an increase in volume in the cells around the wound, thus facilitating the collective cell movements that drive rapid wound healing. Our data indicate that p38 regulates cell volumes through the sodium-potassium-chloride cotransporter NKCC1. Our work reveals cell growth and cell survival as cell behaviors critical for embryonic wound repair.
Collapse
Affiliation(s)
- Gordana Scepanovic
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada; Ted Rogers Centre for Heart Research, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Miranda Victoria Hunter
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada; Ted Rogers Centre for Heart Research, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Ran Kafri
- Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Rodrigo Fernandez-Gonzalez
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada; Ted Rogers Centre for Heart Research, University of Toronto, Toronto, ON M5G 1M1, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada; Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada.
| |
Collapse
|
16
|
Savardi A, Borgogno M, De Vivo M, Cancedda L. Pharmacological tools to target NKCC1 in brain disorders. Trends Pharmacol Sci 2021; 42:1009-1034. [PMID: 34620512 DOI: 10.1016/j.tips.2021.09.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 08/27/2021] [Accepted: 09/08/2021] [Indexed: 02/06/2023]
Abstract
The chloride importer NKCC1 and the chloride exporter KCC2 are key regulators of neuronal chloride concentration. A defective NKCC1/KCC2 expression ratio is associated with several brain disorders. Preclinical/clinical studies have shown that NKCC1 inhibition by the United States FDA-approved diuretic bumetanide is a potential therapeutic strategy in preclinical/clinical studies of multiple neurological conditions. However, bumetanide has poor brain penetration and causes unwanted diuresis by inhibiting NKCC2 in the kidney. To overcome these issues, a growing number of studies have reported more brain-penetrating and/or selective bumetanide prodrugs, analogs, and new molecular entities. Here, we review the evidence for NKCC1 pharmacological inhibition as an effective strategy to manage neurological disorders. We also discuss the advantages and limitations of bumetanide repurposing and the benefits and risks of new NKCC1 inhibitors as therapeutic agents for brain disorders.
Collapse
Affiliation(s)
- Annalisa Savardi
- Brain Development and Disease Laboratory, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genoa, Italy; Dulbecco Telethon Institute, 00185 Rome, Italy; Molecular Modeling and Drug Discovery Laboratory, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genoa, Italy
| | - Marco Borgogno
- Molecular Modeling and Drug Discovery Laboratory, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genoa, Italy
| | - Marco De Vivo
- Molecular Modeling and Drug Discovery Laboratory, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genoa, Italy.
| | - Laura Cancedda
- Brain Development and Disease Laboratory, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genoa, Italy; Dulbecco Telethon Institute, 00185 Rome, Italy.
| |
Collapse
|
17
|
Chen F, Fang B, Li P, Wang S. Simultaneous determination of five diuretic drugs using quantitative analysis of multiple components by a single marker. BMC Chem 2021; 15:39. [PMID: 34108013 PMCID: PMC8191180 DOI: 10.1186/s13065-021-00764-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 05/21/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Loop diuretics are commonly used in clinical practice to manage high fluid loads and to control fluid balance. In this paper, a novel quantitative analysis method for multiple components with a single marker (QAMS) was developed for the simultaneous determination of 5 diuretic drugs furosemide, torasemide, azosemide, etacrynic acid, and bumetanide, by HPLC. Qualitative analysis was performed using relative retention time and ultraviolet (UV) spectral similarity as the double indicator. The QAMS method was conducted with etacrynic acid as an internal reference substance. The quantities of the other four diuretics were calculated by using the relative correction factors for etacrynic acid. The quantities of the 5 diuretic drugs were also determined by the external standard method (ESM). Chromatographic separation was achieved on a Shimadzu HC-C18 column (150 mm × 4.6 mm, 5 µm) using 50 mM potassium dihydrogen phosphate (pH adjusted to 4.0 with phosphoric acid) with acetonitrile (64:36, v/v) as the mobile phase at a flow rate of 1.0 mL/min and a column temperature of 30 ℃. RESULTS Under these conditions, the 5 diuretic drugs were well separated, showing linear relationships within certain ranges. The quantitative results showed that there was no significant difference between the QAMS and ESM methods. CONCLUSIONS Overall, the HPLC-QAMS analytical scheme established in this study is a simple, efficient, economical, and accurate method for the quantitative evaluation of 5 diuretic drugs.
Collapse
Affiliation(s)
- Fuchao Chen
- Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan, Hubei, 442008, People's Republic of China
| | - Baoxia Fang
- Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan, Hubei, 442008, People's Republic of China
| | - Peng Li
- Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan, Hubei, 442008, People's Republic of China
| | - Sicen Wang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, Shanxi, People's Republic of China.
| |
Collapse
|
18
|
Hampel P, Römermann K, Gailus B, Johne M, Gericke B, Kaczmarek E, Löscher W. Effects of the NKCC1 inhibitors bumetanide, azosemide, and torasemide alone or in combination with phenobarbital on seizure threshold in epileptic and nonepileptic mice. Neuropharmacology 2021; 185:108449. [PMID: 33450274 DOI: 10.1016/j.neuropharm.2021.108449] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 12/07/2020] [Accepted: 12/22/2020] [Indexed: 12/31/2022]
Abstract
The sodium-potassium-chloride (Na-K-Cl) cotransporter NKCC1 is found in the plasma membrane of a wide variety of cell types, including neurons, glia and endothelial cells in the brain. Increased expression of neuronal NKCC1 has been implicated in several brain disorders, including neonatal seizures and epilepsy. The loop diuretic and NKCC inhibitor bumetanide has been evaluated as an antiseizure agent alone or together with approved antiseizure drugs such as phenobarbital (PB) in pre-clinical and clinical studies with varying results. The equivocal efficacy of bumetanide may be a result of its poor brain penetration. We recently reported that the loop diuretic azosemide is more potent to inhibit NKCC1 than bumetanide. In contrast to bumetanide, azosemide is not acidic, which should favor its brain penetration. Thus, azosemide may be a promising alternative to bumetanide for treatment of brain disorders such as epilepsy. In the present study, we determined the effect of azosemide and bumetanide on seizure threshold in adult epileptic mice. A structurally related non-acidic loop diuretic, torasemide, which also blocks NKCC1, was included in the experiments. The drug effects were assessed by determing the maximal electroshock seizure threshold (MEST) in epileptic vs. nonepileptic mice. Epilepsy was induced by pilocarpine, which was shown to produce long-lasting increases in NKCC1 in the hippocampus, whereas MEST did not alter NKCC1 mRNA in this region. None of the three loop diuretics increased MEST or the effect of PB on MEST in nonepileptic mice. In epileptic mice, all three diuretics significantly increased PB's seizure threshold increasing efficacy, but the effect was variable upon repeated MEST determinations and not correlated with the drugs' diuretic potency. These data may indicate that inhibition of NKCC1 by loop diuretics is not an effective means of increasing seizure threshold in adult epilepsy.
Collapse
Affiliation(s)
- Philip Hampel
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany; Center for Systems Neuroscience, Hannover, Germany.
| | - Kerstin Römermann
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany
| | - Björn Gailus
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany; Center for Systems Neuroscience, Hannover, Germany
| | - Marie Johne
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany; Center for Systems Neuroscience, Hannover, Germany
| | - Birthe Gericke
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany; Center for Systems Neuroscience, Hannover, Germany
| | - Edith Kaczmarek
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany
| | - Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany; Center for Systems Neuroscience, Hannover, Germany
| |
Collapse
|
19
|
Hampel P, Römermann K, Gramer M, Löscher W. The search for brain-permeant NKCC1 inhibitors for the treatment of seizures: Pharmacokinetic-pharmacodynamic modelling of NKCC1 inhibition by azosemide, torasemide, and bumetanide in mouse brain. Epilepsy Behav 2021; 114:107616. [PMID: 33279441 DOI: 10.1016/j.yebeh.2020.107616] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 10/30/2020] [Indexed: 01/23/2023]
Abstract
Because of its potent inhibitory effect on the Na+-K+-2Cl- symporter isotype 1 (NKCC1) in brain neurons, bumetanide has been tested with varying results for treatment of seizures that potentially evolve as a consequence of abnormal NKCC1 activity. However, because of its physicochemical properties, bumetanide only poorly penetrates into the brain. We previously demonstrated that NKCC1 can be also inhibited by azosemide and torasemide, which lack the carboxyl group of bumetanide and thus should be better brain-permeable. Here we studied the brain distribution kinetics of azosemide and torasemide in comparison with bumetanide in mice and used pharmacokinetic-pharmacodynamic modelling to determine whether the drugs reach NKCC1-inhibitory brain concentrations. All three drugs hardly distributed into the brain, which seemed to be the result of probenecid-sensitive efflux transport at the blood-brain barrier. When fractions unbound in plasma and brain were determined by equilibrium dialysis, only about 6-17% of the brain drug concentration were freely available. With the systemic doses (10 mg/kg i.v.) used, free brain concentrations of bumetanide and torasemide were in the NKCC1-inhibitory concentration range, while levels of azosemide were slightly below this range. However, all three drugs exhibited free plasma levels that would be sufficient to block NKCC1 at the apical membrane of brain capillary endothelial cells. These data suggest that azosemide and torasemide are interesting alternatives to bumetanide for treatment of seizures involving abnormal NKCC1 functionality, particularly because of their longer duration of action and their lower diuretic potency, which is an advantage in patients with seizures.
Collapse
Affiliation(s)
- Philip Hampel
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany
| | - Kerstin Römermann
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany
| | - Martina Gramer
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany
| | - Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany; Center for Systems Neuroscience, Hannover, Germany.
| |
Collapse
|
20
|
Roy AS, Sawrav MSS, Hossain MS, Johura FT, Ahmed SF, Hami I, Islam MK, Al Reza H, Bhuiyan MIH, Bahadur NM, Rahaman MM. In silico identification of potential inhibitors with higher potency than bumetanide targeting NKCC1: An important ion co-transporter to treat neurological disorders. INFORMATICS IN MEDICINE UNLOCKED 2021. [DOI: 10.1016/j.imu.2021.100777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
21
|
Koumangoye R, Bastarache L, Delpire E. NKCC1: Newly Found as a Human Disease-Causing Ion Transporter. FUNCTION 2020; 2:zqaa028. [PMID: 33345190 PMCID: PMC7727275 DOI: 10.1093/function/zqaa028] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/28/2020] [Accepted: 10/30/2020] [Indexed: 01/06/2023] Open
Abstract
Among the electroneutral Na+-dependent chloride transporters, NKCC1 had until now evaded identification as a protein causing human diseases. The closely related SLC12A transporters, NKCC2 and NCC have been identified some 25 years ago as responsible for Bartter and Gitelman syndromes: two renal-dependent salt wasting disorders. Absence of disease was most surprising since the NKCC1 knockout mouse was shown in 1999 to be viable, albeit with a wide range of deleterious phenotypes. Here we summarize the work of the past 5 years that introduced us to clinical cases involving NKCC1. The most striking cases are of 3 children with inherited mutations, who have complete absence of NKCC1 expression. These cases establish that lack of NKCC1 causes deafness; CFTR-like secretory defects with mucus accumulation in lung and intestine; severe xerostomia, hypotonia, dysmorphic facial features, and severe neurodevelopmental disorder. Another intriguing case is of a patient with a dominant deleterious SLC12A2 allele. This de novo mutation introduced a premature stop codon leading to a truncated protein. This mutant transporter seems to exert dominant-negative effect on wild-type transporter only in epithelial cells. The patient who suffers from lung, bladder, intestine, pancreas, and multiple endocrine abnormalities has, however, normal hearing and cognition. Finally, new reports substantiate the haploinsufficiency prediction of the SLC12A2 gene. Cases with single allele mutations in SLC12A2 have been linked to hearing loss and neurodevelopmental disorders.
Collapse
Affiliation(s)
- Rainelli Koumangoye
- Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Lisa Bastarache
- Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Eric Delpire
- Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA,Corresponding author. E-mail:
| |
Collapse
|
22
|
Drug development in targeting ion channels for brain edema. Acta Pharmacol Sin 2020; 41:1272-1288. [PMID: 32855530 PMCID: PMC7609292 DOI: 10.1038/s41401-020-00503-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 08/02/2020] [Indexed: 12/18/2022] Open
Abstract
Cerebral edema is a pathological hallmark of various central nervous system (CNS) insults, including traumatic brain injury (TBI) and excitotoxic injury such as stroke. Due to the rigidity of the skull, edema-induced increase of intracranial fluid significantly complicates severe CNS injuries by raising intracranial pressure and compromising perfusion. Mortality due to cerebral edema is high. With mortality rates up to 80% in severe cases of stroke, it is the leading cause of death within the first week. Similarly, cerebral edema is devastating for patients of TBI, accounting for up to 50% mortality. Currently, the available treatments for cerebral edema include hypothermia, osmotherapy, and surgery. However, these treatments only address the symptoms and often elicit adverse side effects, potentially in part due to non-specificity. There is an urgent need to identify effective pharmacological treatments for cerebral edema. Currently, ion channels represent the third-largest target class for drug development, but their roles in cerebral edema remain ill-defined. The present review aims to provide an overview of the proposed roles of ion channels and transporters (including aquaporins, SUR1-TRPM4, chloride channels, glucose transporters, and proton-sensitive channels) in mediating cerebral edema in acute ischemic stroke and TBI. We also focus on the pharmacological inhibitors for each target and potential therapeutic strategies that may be further pursued for the treatment of cerebral edema.
Collapse
|
23
|
Becskeházi E, Korsós MM, Erőss B, Hegyi P, Venglovecz V. OEsophageal Ion Transport Mechanisms and Significance Under Pathological Conditions. Front Physiol 2020; 11:855. [PMID: 32765303 PMCID: PMC7379034 DOI: 10.3389/fphys.2020.00855] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 06/25/2020] [Indexed: 12/20/2022] Open
Abstract
Ion transporters play an important role in several physiological functions, such as cell volume regulation, pH homeostasis and secretion. In the oesophagus, ion transport proteins are part of the epithelial resistance, a mechanism which protects the oesophagus against reflux-induced damage. A change in the function or expression of ion transporters has significance in the development or neoplastic progression of Barrett’s oesophagus (BO). In this review, we discuss the physiological and pathophysiological roles of ion transporters in the oesophagus, highlighting transport proteins which serve as therapeutic targets or prognostic markers in eosinophilic oesophagitis, BO and esophageal cancer. We believe that this review highlights important relationships which might contribute to a better understanding of the pathomechanisms of esophageal diseases.
Collapse
Affiliation(s)
- Eszter Becskeházi
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary
| | | | - Bálint Erőss
- Institute for Translational Medicine, Szentágothai Research Centre, Medical School, University of Pécs, Pécs, Hungary
| | - Péter Hegyi
- Institute for Translational Medicine, Szentágothai Research Centre, Medical School, University of Pécs, Pécs, Hungary.,Division of Gastroenterology, First Department of Medicine, Medical School, University of Pécs, Pécs, Hungary.,First Department of Medicine, University of Szeged, Szeged, Hungary
| | - Viktória Venglovecz
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary
| |
Collapse
|
24
|
Brennecke A, Villar L, Wang Z, Doyle LM, Meek A, Reed M, Barden C, Weaver DF. Is Inhaled Furosemide a Potential Therapeutic for COVID-19? Am J Med Sci 2020; 360:216-221. [PMID: 32622469 PMCID: PMC7833957 DOI: 10.1016/j.amjms.2020.05.044] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 05/27/2020] [Indexed: 01/08/2023]
Abstract
The potentially lethal infection caused by the novel Severe Acute Respiratory Disease Coronavirus-2 (SARS-CoV-2) has evolved into a global crisis. Following the initial viral infection is the host inflammatory response that frequently results in excessive secretion of inflammatory cytokines (e.g., IL-6 and TNFα), developing into a self-targeting, toxic "cytokine storm" causing critical pulmonary tissue damage. The need for a therapeutic that is available immediately is growing daily but the de novo development of a vaccine may take years. Therefore, repurposing of approved drugs offers a promising approach to address this urgent need. Inhaled furosemide, a small molecule capable of inhibiting IL-6 and TNFα, may be an agent capable of treating the Coronavirus Disease 2019 cytokine storm in both resource-rich and developing countries. Furosemide is a "repurpose-able" small molecule therapeutics, that is safe, easily synthesized, handled, and stored, and is available in reasonable quantities worldwide.
Collapse
Affiliation(s)
- Anja Brennecke
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Laura Villar
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Zhiyu Wang
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada; Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Lisa M Doyle
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Autumn Meek
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Mark Reed
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Christopher Barden
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Donald F Weaver
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada; Faculty of Medicine, University of Toronto, Medical Sciences Building, Toronto, Ontario, Canada.
| |
Collapse
|
25
|
Rohr KE, Pancholi H, Haider S, Karow C, Modert D, Raddatz NJ, Evans J. Seasonal plasticity in GABA A signaling is necessary for restoring phase synchrony in the master circadian clock network. eLife 2019; 8:49578. [PMID: 31746738 PMCID: PMC6867713 DOI: 10.7554/elife.49578] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Accepted: 10/15/2019] [Indexed: 12/14/2022] Open
Abstract
Annual changes in the environment threaten survival, and numerous biological processes in mammals adjust to this challenge via seasonal encoding by the suprachiasmatic nucleus (SCN). To tune behavior according to day length, SCN neurons display unified rhythms with synchronous phasing when days are short, but will divide into two sub-clusters when days are long. The transition between SCN states is critical for maintaining behavioral responses to seasonal change, but the mechanisms regulating this form of neuroplasticity remain unclear. Here we identify that a switch in chloride transport and GABAA signaling is critical for maintaining state plasticity in the SCN network. Further, we reveal that blocking excitatory GABAA signaling locks the SCN into its long day state. Collectively, these data demonstrate that plasticity in GABAA signaling dictates how clock neurons interact to maintain environmental encoding. Further, this work highlights factors that may influence susceptibility to seasonal disorders in humans. In winter, as the days become shorter, millions of people find that their mood and energy levels start to drop. They crave carbohydrates, struggle with their weight, and find it harder to get out of bed in the mornings. These individuals are suffering from the ‘winter blues’ or seasonal affective disorder (SAD), and most find that their symptoms spontaneously improve in the spring when the days become longer again. Many also benefit from bright light therapy during the winter months, but not everyone responds fully to this treatment, so additional options are needed. The winter blues occur when the brain adjusts to changes in day length with the onset of winter. The brain region responsible for making this adjustment is the suprachiasmatic nucleus (SCN). The SCN is the master clock of the brain that coordinates the body’s circadian rhythms – the daily fluctuations in things like appetite, body temperature, sleep and wakefulness. But as well as being the brain’s clock, the SCN is also the brain’s calendar. In winter, when the days are short, SCN neurons coordinate their activity and fire in synchrony. But in summer, when the days are long, SCN neurons divide into two clusters, which fire at different times. By transitioning between these two states, the SCN helps the body adjust to seasonal changes in day length. Rohr, Pancholi et al. now provide new insight into the mechanism behind this process by showing that light alters the neurochemistry of the SCN. Exposing mice to long days causes a brain chemical called GABA to switch from inhibiting neurons in the SCN to activating them. Blocking this switch from inhibition to activation locks the SCN into its 'summer state'. Rohr, Pancholi et al. propose that this failure to transition to the winter state may be an interesting way to prevent the winter blues. While much remains to be learned about this process, these findings pave the way for better understanding the neurobiology of winter depression and how best to treat it.
Collapse
Affiliation(s)
- Kayla E Rohr
- Department of Biomedical Sciences, Marquette University, Milwaukee, United States
| | - Harshida Pancholi
- Department of Biomedical Sciences, Marquette University, Milwaukee, United States
| | - Shabi Haider
- Department of Biomedical Sciences, Marquette University, Milwaukee, United States
| | - Christopher Karow
- Department of Biomedical Sciences, Marquette University, Milwaukee, United States
| | - David Modert
- Department of Biomedical Sciences, Marquette University, Milwaukee, United States
| | - Nicholas J Raddatz
- Department of Biomedical Sciences, Marquette University, Milwaukee, United States
| | - Jennifer Evans
- Department of Biomedical Sciences, Marquette University, Milwaukee, United States
| |
Collapse
|
26
|
“Reversed polarization” of Na/K-ATPase—a sign of inverted transport in the human endolymphatic sac: a super-resolution structured illumination microscopy (SR-SIM) study. Cell Tissue Res 2019; 379:445-457. [DOI: 10.1007/s00441-019-03106-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 09/15/2019] [Indexed: 02/06/2023]
Abstract
AbstractThe human endolymphatic sac (ES) is believed to regulate inner ear fluid homeostasis and to be associated with Meniere’s disease (MD). We analyzed the ion transport protein sodium/potassium-ATPase (Na/K-ATPase) and its isoforms in the human ES using super-resolution structured illumination microscopy (SR-SIM). Human vestibular aqueducts were collected during trans-labyrinthine vestibular schwannoma surgery after obtaining ethical permission. Antibodies against various isoforms of Na/K-ATPase and additional solute-transporting proteins, believed to be essential for ion and fluid transport, were used for immunohistochemistry. A population of epithelial cells of the human ES strongly expressed Na/K-ATPase α1, β1, and β3 subunit isoforms in either the lateral/basolateral or apical plasma membrane domains. The β1 isoform was expressed in the lateral/basolateral plasma membranes in mostly large cylindrical cells, while β3 and α1 both were expressed with “reversed polarity” in the apical cell membrane in lower epithelial cells. The heterogeneous expression of Na/K-ATPase subunits substantiates earlier notions that the ES is a dynamic structure where epithelial cells show inverted epithelial transport. Dual absorption and secretion processes may regulate and maintain inner ear fluid homeostasis. These findings may shed new light on the etiology of endolymphatic hydrops and MD.
Collapse
|
27
|
Kharod SC, Kang SK, Kadam SD. Off-Label Use of Bumetanide for Brain Disorders: An Overview. Front Neurosci 2019; 13:310. [PMID: 31068771 PMCID: PMC6491514 DOI: 10.3389/fnins.2019.00310] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 03/19/2019] [Indexed: 01/17/2023] Open
Abstract
Bumetanide (BTN or BUM) is a FDA-approved potent loop diuretic (LD) that acts by antagonizing sodium-potassium-chloride (Na-K-Cl) cotransporters, NKCC1 (SLc12a2) and NKCC2. While NKCC1 is expressed both in the CNS and in systemic organs, NKCC2 is kidney-specific. The off-label use of BTN to modulate neuronal transmembrane Cl− gradients by blocking NKCC1 in the CNS has now been tested as an anti-seizure agent and as an intervention for neurological disorders in pre-clinical studies with varying results. BTN safety and efficacy for its off-label use has also been tested in several clinical trials for neonates, children, adolescents, and adults. It failed to meet efficacy criteria for hypoxic-ischemic encephalopathy (HIE) neonatal seizures. In contrast, positive outcomes in temporal lobe epilepsy (TLE), autism, and schizophrenia trials have been attributed to BTN in studies evaluating its off-label use. NKCC1 is an electroneutral neuronal Cl− importer and the dominance of NKCC1 function has been proposed as the common pathology for HIE seizures, TLE, autism, and schizophrenia. Therefore, the use of BTN to antagonize neuronal NKCC1 with the goal to lower internal Cl− levels and promote GABAergic mediated hyperpolarization has been proposed. In this review, we summarize the data and results for pre-clinical and clinical studies that have tested off-label BTN interventions and report variable outcomes. We also compare the data underlying the developmental expression profile of NKCC1 and KCC2, highlight the limitations of BTN’s brain-availability and consider its actions on non-neuronal cells.
Collapse
Affiliation(s)
- Shivani C Kharod
- Neuroscience Laboratory, Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, MD, United States
| | - Seok Kyu Kang
- Neuroscience Laboratory, Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, MD, United States
| | - Shilpa D Kadam
- Neuroscience Laboratory, Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, MD, United States.,Department of Neurology and Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
28
|
Kutovaya IV, Zarezin DP, Shmatova OI, Nenajdenko VG. Six-Component Azido-Ugi Reaction: from Cyclic Ketimines to Bis-Tetrazole-Derived 5-7-Membered Amines. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900244] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Irina V. Kutovaya
- Department of Chemistry; Moscow State University; Leninskie Gory Moscow 119992 Russia
| | - Danil P. Zarezin
- Department of Chemistry; Moscow State University; Leninskie Gory Moscow 119992 Russia
| | - Olga I. Shmatova
- Department of Chemistry; Moscow State University; Leninskie Gory Moscow 119992 Russia
| | | |
Collapse
|
29
|
The Pharmacological Assessment of GABA A Receptor Activation in Experimental Febrile Seizures in Mice. eNeuro 2019; 6:eN-TNWR-0429-18. [PMID: 31058209 PMCID: PMC6498421 DOI: 10.1523/eneuro.0429-18.2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 01/01/2019] [Accepted: 01/04/2019] [Indexed: 01/07/2023] Open
Abstract
Hyperthermia-induced febrile seizures (FSs) are the most common seizures during childhood, and prolonged complex FSs can result in the development of epilepsy. Currently, GABAA receptor modulators such as benzodiazepines and barbiturates are used as medications for FSs with the aim of enhancing GABA-mediated inhibition of neuronal activity. However, it is still up for debate whether these enhancers of GABAergic neurotransmission could depolarize immature neurons with relatively higher levels of the intracellular Cl− in the developing brain during FSs. Here, we performed simultaneous video-local field potential monitoring to determine whether benzodiazepines and barbiturates affect the phenotypes of FSs in postnatal day (P)11 and P14 mice. We found that low-dose administration of diazepam decreased the incidence of clonic seizures at P11. We also found that high-dose administration of diazepam and pentobarbital exacerbated the behavioral and electrophysiological phenotypes of the induction phase of experimental FSs at P11 but not at P14. We further found that the deteriorated phenotypes at P11 were suppressed when Na+K+2Cl− cotransporter isoform 1 (NKCC1), which mediates Cl− influx, was blocked by treatment with the diuretic bumetanide. Though our findings do not exclude the involvement of sedation effect of high-dose GABAA receptor modulators in worsening experimental FSs at P11, pharmacological enhancement of GABAergic signaling could aggravate seizure activity in the early phase of FSs.
Collapse
|
30
|
Hsu YT, Chang YG, Chern Y. Insights into GABA Aergic system alteration in Huntington's disease. Open Biol 2018; 8:rsob.180165. [PMID: 30518638 PMCID: PMC6303784 DOI: 10.1098/rsob.180165] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 10/30/2018] [Indexed: 12/15/2022] Open
Abstract
Huntington's disease (HD) is an autosomal dominant progressive neurodegenerative disease that is characterized by a triad of motor, psychiatric and cognitive impairments. There is still no effective therapy to delay or halt the disease progress. The striatum and cortex are two particularly affected brain regions that exhibit dense reciprocal excitatory glutamate and inhibitory gamma-amino butyric acid (GABA) connections. Imbalance between excitatory and inhibitory signalling is known to greatly affect motor and cognitive processes. Emerging evidence supports the hypothesis that disrupted GABAergic circuits underlie HD pathogenesis. In the present review, we focused on the multiple defects recently found in the GABAergic inhibitory system, including altered GABA level and synthesis, abnormal subunit composition and distribution of GABAA receptors and aberrant GABAA receptor-mediated signalling. In particular, the important role of cation–chloride cotransporters (i.e. NKCC1 and KCC2) is discussed. Recent studies also suggest that neuroinflammation contributes significantly to the abnormal GABAergic inhibition in HD. Thus, GABAA receptors and cation–chloride cotransporters are potential therapeutic targets for HD. Given the limited availability of therapeutic treatments for HD, a better understanding of GABAergic dysfunction in HD could provide novel therapeutic opportunities.
Collapse
Affiliation(s)
- Yi-Ting Hsu
- PhD Program for Translational Medicine, China Medical University and Academia Sinica, Taiwan, Republic of China.,Department of Neurology, China Medical University Hospital, Taichung, Taiwan, Republic of China
| | - Ya-Gin Chang
- Institute of Neuroscience, National Yang-Ming University, Taipei, Taiwan, Republic of China.,Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Yang-Ming University and Academia Sinica, Taipei, Taiwan, Republic of China
| | - Yijuang Chern
- PhD Program for Translational Medicine, China Medical University and Academia Sinica, Taiwan, Republic of China .,Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan, Republic of China
| |
Collapse
|