1
|
Zheng L, Maqbool E, Han Z. Efficient and Shape-Sensitive Manipulation of Nanoparticles by Quasi-Bound States in the Continuum Modes in All-Dielectric Metasurfaces. MICROMACHINES 2024; 15:437. [PMID: 38675249 PMCID: PMC11052311 DOI: 10.3390/mi15040437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/18/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024]
Abstract
Current optical tweezering techniques are actively employed in the manipulation of nanoparticles, e.g., biomedical cells. However, there is still huge room for improving the efficiency of manipulating multiple nanoparticles of the same composition but different shapes. In this study, we designed an array of high-index all-dielectric disk antennas, each with an asymmetric open slot for such applications. Compared with the plasmonic counterparts, this all-dielectric metasurface has no dissipation loss and, thus, circumvents the Joule heating problem of plasmonic antennas. Furthermore, the asymmetry-induced excitation of quasi-bound states in continuum (QBIC) mode with a low-power intensity (1 mW/µm2) incidence imposes an optical gradient force of -0.31 pN on 8 nm radius nanospheres, which is four orders of magnitude stronger than that provided by the Fano resonance in plasmonic antenna arrays, and three orders of magnitude stronger than that by the Mie resonance in the same metasurface without any slot, respectively. This asymmetry also leads to the generation of large optical moments. At the QBIC resonance wavelength, a value of 88.3 pN-nm will act on the nanorods to generate a rotational force along the direction within the disk surface but perpendicular to the slot. This will allow only nanospheres but prevent the nanorods from accurately entering into the slots, realizing effective sieving between the nanoparticles of the two shapes.
Collapse
Affiliation(s)
| | | | - Zhanghua Han
- Shandong Provincial Key Laboratory of Optics and Photonic Devices, Center of Light Manipulation and Applications, School of Physics and Electronics, Shandong Normal University, Jinan 250358, China (E.M.)
| |
Collapse
|
2
|
Chen Y, Guo K, Jiang L, Zhu S, Ni Z, Xiang N. Microfluidic deformability cytometry: A review. Talanta 2022; 251:123815. [DOI: 10.1016/j.talanta.2022.123815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 07/23/2022] [Accepted: 08/02/2022] [Indexed: 10/15/2022]
|
3
|
|
4
|
Matthews K, Lamoureux ES, Myrand-Lapierre ME, Duffy SP, Ma H. Technologies for measuring red blood cell deformability. LAB ON A CHIP 2022; 22:1254-1274. [PMID: 35266475 DOI: 10.1039/d1lc01058a] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Human red blood cells (RBCs) are approximately 8 μm in diameter, but must repeatedly deform through capillaries as small as 2 μm in order to deliver oxygen to all parts of the body. The loss of this capability is associated with the pathology of many diseases, and is therefore a potential biomarker for disease status and treatment efficacy. Measuring RBC deformability is a difficult problem because of the minute forces (∼pN) that must be exerted on these cells, as well as the requirements for throughput and multiplexing. The development of technologies for measuring RBC deformability date back to the 1960s with the development of micropipette aspiration, ektacytometry, and the cell transit analyzer. In the past 10 years, significant progress has been made using microfluidics by leveraging the ability to precisely control fluid flow through microstructures at the size scale of individual RBCs. These technologies have now surpassed traditional methods in terms of sensitivity, throughput, consistency, and ease of use. As a result, these efforts are beginning to move beyond feasibility studies and into applications to enable biomedical discoveries. In this review, we provide an overview of both traditional and microfluidic techniques for measuring RBC deformability. We discuss the capabilities of each technique and compare their sensitivity, throughput, and robustness in measuring bulk and single-cell RBC deformability. Finally, we discuss how these tools could be used to measure changes in RBC deformability in the context of various applications including pathologies caused by malaria and hemoglobinopathies, as well as degradation during storage in blood bags prior to blood transfusions.
Collapse
Affiliation(s)
- Kerryn Matthews
- Department of Mechanical Engineering, University of British Columbia, 2054-6250 Applied Science Lane, Vancouver, BC, V6T 1Z4, Canada.
- Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
| | - Erik S Lamoureux
- Department of Mechanical Engineering, University of British Columbia, 2054-6250 Applied Science Lane, Vancouver, BC, V6T 1Z4, Canada.
- Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
| | - Marie-Eve Myrand-Lapierre
- Department of Mechanical Engineering, University of British Columbia, 2054-6250 Applied Science Lane, Vancouver, BC, V6T 1Z4, Canada.
| | - Simon P Duffy
- Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
- British Columbia Institute of Technology, Vancouver, BC, Canada
| | - Hongshen Ma
- Department of Mechanical Engineering, University of British Columbia, 2054-6250 Applied Science Lane, Vancouver, BC, V6T 1Z4, Canada.
- Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
- Department of Urologic Science, University of British Columbia, Vancouver, BC, Canada
- Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, BC, Canada
| |
Collapse
|
5
|
Lapizco-Encinas BH. Microscale nonlinear electrokinetics for the analysis of cellular materials in clinical applications: a review. Mikrochim Acta 2021; 188:104. [PMID: 33651196 DOI: 10.1007/s00604-021-04748-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 02/06/2021] [Indexed: 12/16/2022]
Abstract
This review article presents a discussion of some of the latest advancements in the field of microscale electrokinetics for the analysis of cells and subcellular materials in clinical applications. The introduction presents an overview on the use of electric fields, i.e., electrokinetics, in microfluidics devices and discusses the potential of electrokinetic-based methods for the analysis of liquid biopsies in clinical and point-of-care applications. This is followed by four comprehensive sections that present some of the newest findings on the analysis of circulating tumor cells, blood (red blood cells, white blood cells, and platelets), stem cells, and subcellular particles (extracellular vesicles and mitochondria). The valuable contributions discussed here (with 131 references) were mainly published during the last 3 to 4 years, providing the reader with an overview of the state-of-the-art in the use of microscale electrokinetic methods in clinical analysis. Finally, the conclusions summarize the main advancements and discuss the future prospects.
Collapse
Affiliation(s)
- Blanca H Lapizco-Encinas
- Microscale Bioseparations Laboratory and Biomedical Engineering Department, Rochester Institute of Technology, Institute Hall (Bldg. 73), Room 3103, 160 Lomb Memorial Drive, Rochester, NY, 14623-5604, USA.
| |
Collapse
|
6
|
Liu J, Qiang Y, Du E. Dielectric spectroscopy of red blood cells in sickle cell disease. Electrophoresis 2021; 42:667-675. [PMID: 33314275 DOI: 10.1002/elps.202000143] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 12/03/2020] [Accepted: 12/07/2020] [Indexed: 01/18/2023]
Abstract
Hypoxia-induced polymerization of sickle hemoglobin and the related ion diffusion across cell membrane can lead to changes in cell dielectric properties, which can potentially serve as label-free, diagnostic biomarkers for sickle cell disease. This article presents a microfluidic-based approach with on-chip gas control for the impedance spectroscopy of suspended cells within the frequency range of 40 Hz to 110 MHz. A comprehensive bioimpedance of sickle cells under both normoxia and hypoxia is achieved rapidly (within ∼7 min) and is appropriated by small sample volumes (∼2.5 μL). Analysis of the sensing modeling is performed to obtain optimum conditions for dielectric spectroscopy of sickle cell suspensions and for extraction of single cell properties from the measured impedance spectra. The results of sickle cells show that upon hypoxia treatment, cell interior permittivity and conductivity increase, while cell membrane capacitance decreases. Moreover, the relative changes in cell dielectric parameters are found to be dependent on the sickle and fetal hemoglobin levels. In contrast, the changes in normal red blood cells between the hypoxia and normoxia states are unnoticeable. The results of sickle cells may serve as a reference to design dielectrophoresis-based cell sorting and electrodeformation testing devices that require cell dielectric characteristics as input parameters. The demonstrated method for dielectric characterization of single cells from the impedance spectroscopy of cell suspensions can be potentially applied to other cell types and under varied gas conditions.
Collapse
Affiliation(s)
- Jia Liu
- Department of Ocean and Mechanical Engineering, Florida Atlantic University, Boca Raton, FL, USA
| | - Yuhao Qiang
- Department of Ocean and Mechanical Engineering, Florida Atlantic University, Boca Raton, FL, USA
| | - E Du
- Department of Ocean and Mechanical Engineering, Florida Atlantic University, Boca Raton, FL, USA
| |
Collapse
|
7
|
Dielectrophoretic characterization of dendritic cell deformability upon maturation. Biotechniques 2020; 70:29-36. [PMID: 33138639 DOI: 10.2144/btn-2020-0126] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
We have developed a rapid technique for characterizing the biomechanical properties of dendritic cells using dielectrophoretic forces. It is widely recognized that maturing of dendritic cells modulates their stiffness and migration capabilities, which results in T-cell activation triggering the adaptive immune response. Therefore it is important to develop techniques for mechanophenotyping of immature and mature dendritic cells. The technique reported here utilizes nonuniform electric fields to exert a substantial force on the cells to induce cellular elongation for optical measurements. In addition, a large array of interdigitated electrodes allows multiple cells to be stretched simultaneously. Our results indicate a direct correlation between F-actin activity and deformability observed in dendritic cells, determined through mean fluorescence signal intensity of phalloidin.
Collapse
|
8
|
Guan Y, Liu Y, Lei H, Liu S, Xu F, Meng X, Bai M, Wang X, Yang G. Dielectrophoresis Separation of Platelets Using a Novel Zigzag Microchannel. MICROMACHINES 2020; 11:E890. [PMID: 32992689 PMCID: PMC7599473 DOI: 10.3390/mi11100890] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/16/2020] [Accepted: 09/22/2020] [Indexed: 11/30/2022]
Abstract
Platelet separation and purification are required in many applications including in the detection and treatment of hemorrhagic and thrombotic diseases, in addition to transfusions and in medical research. In this study, platelet separation was evaluated using a novel zigzag microchannel fluidic device while leveraging a dielectrophoresis (DEP) electric field using the COMSOL multiphysics software package and additional experimentation. The zigzag-shaped microchannel was superior to straight channel devices for cell separation because the sharp corners reduced the required horizontal distance needed for separation and also contributed to an asymmetric DEP electric field. A perfect linear relationship was observed between the separation distance and the corner angles. A quadratic relationship (R2 = 0.99) was observed between the driving voltage and the width and the lengths of the channel, allowing for optimization of these properties. In addition, the voltage was inversely proportional to the channel width and proportional to the channel length. An optimal velocity ratio of 1:4 was identified for the velocities of the two device inlets. The proposed device was fabricated using laser engraving and lithography with optimized structures including a 0.5 mm channel width, a 120° corner angle, a 0.3 mm channel depth, and a 17 mm channel length. A separation efficiency of 99.4% was achieved using a voltage of 20 V and a velocity ratio of 1:4. The easy fabrication, lower required voltage, label-free detection, high efficiency, and environmental friendliness of this device make it suitable for point-of-care medicine and biological applications. Moreover, it can be used for the separation of other types of compounds including lipids.
Collapse
Affiliation(s)
- Yanfang Guan
- School of Electromechanical Engineering, Henan University of Technology, Zhengzhou 450001, China; (Y.L.); (H.L.); (S.L.); (F.X.); (X.M.); (M.B.); (X.W.); (G.Y.)
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Liang W, Yang X, Wang J, Wang Y, Yang W, Liu L. Determination of Dielectric Properties of Cells using AC Electrokinetic-based Microfluidic Platform: A Review of Recent Advances. MICROMACHINES 2020; 11:E513. [PMID: 32438680 PMCID: PMC7281274 DOI: 10.3390/mi11050513] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/16/2020] [Accepted: 05/18/2020] [Indexed: 12/18/2022]
Abstract
Cell dielectric properties, a type of intrinsic property of cells, can be used as electrophysiological biomarkers that offer a label-free way to characterize cell phenotypes and states, purify clinical samples, and identify target cancer cells. Here, we present a review of the determination of cell dielectric properties using alternating current (AC) electrokinetic-based microfluidic mechanisms, including electro-rotation (ROT) and dielectrophoresis (DEP). The review covers theoretically how ROT and DEP work to extract cell dielectric properties. We also dive into the details of differently structured ROT chips, followed by a discussion on the determination of cell dielectric properties and the use of these properties in bio-related applications. Additionally, the review offers a look at the future challenges facing the AC electrokinetic-based microfluidic platform in terms of acquiring cell dielectric parameters. Our conclusion is that this platform will bring biomedical and bioengineering sciences to the next level and ultimately achieve the shift from lab-oriented research to real-world applications.
Collapse
Affiliation(s)
- Wenfeng Liang
- School of Mechanical Engineering, Shenyang Jianzhu University, Shenyang 110168, China; (X.Y.); (J.W.)
| | - Xieliu Yang
- School of Mechanical Engineering, Shenyang Jianzhu University, Shenyang 110168, China; (X.Y.); (J.W.)
| | - Junhai Wang
- School of Mechanical Engineering, Shenyang Jianzhu University, Shenyang 110168, China; (X.Y.); (J.W.)
| | - Yuechao Wang
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China;
| | - Wenguang Yang
- School of Electromechanical and Automotive Engineering, Yantai University, Yantai 264005, China;
| | - Lianqing Liu
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China;
| |
Collapse
|
10
|
Bratengeier C, Liszka A, Hoffman J, Bakker AD, Fahlgren A. High shear stress amplitude in combination with prolonged stimulus duration determine induction of osteoclast formation by hematopoietic progenitor cells. FASEB J 2020; 34:3755-3772. [PMID: 31957079 DOI: 10.1096/fj.201901458r] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 12/04/2019] [Accepted: 12/19/2019] [Indexed: 12/15/2022]
Abstract
To date, it is unclear how fluid dynamics stimulate mechanosensory cells to induce an osteoprotective or osteodestructive response. We investigated how murine hematopoietic progenitor cells respond to 2 minutes of dynamic fluid flow stimulation with a precisely controlled sequence of fluid shear stresses. The response was quantified by measuring extracellular adenosine triphosphate (ATP), immunocytochemistry of Piezo1, and sarcoplasmic/endoplasmic Ca2+ reticulum ATPase 2 (SERCA2), and by the ability of soluble factors produced by mechanically stimulated cells to modulate osteoclast differentiation. We rejected our initial hypothesis that peak wall shear stress rate determines the response of hematopoietic progenitor cells to dynamic fluid shear stress, as it had only a minor correlation with the abovementioned parameters. Low stimulus amplitudes corresponded to activation of Piezo1, SERCA2, low concentrations of extracellular ATP, and inhibition of osteoclastogenesis and resorption area, while high amplitudes generally corresponded to osteodestructive responses. At a given amplitude (3 Pa) and waveform (square), the duration of individual stimuli (duty cycle) showed a strong correlation with the release of ATP and osteoclast number and resorption area. Collectively, our data suggest that hematopoietic progenitor cells respond in a viscoelastic manner to loading, since a combination of high shear stress amplitude and prolonged duty cycle is needed to trigger an osteodestructive response. PLAIN LANGUAGE SUMMARY: In case of painful joints or missing teeth, the current intervention is to replace them with an implant to keep a high-quality lifestyle. When exercising or chewing, the cells in the bone around the implant experience mechanical loading. This loading generally supports bone formation to strengthen the bone and prevent breaking, but can also stimulate bone loss when the mechanical loading becomes too high around orthopedic and dental implants. We still do not fully understand how cells in the bone can distinguish between mechanical loading that strengthens or weakens the bone. We cultured cells derived from the bone marrow in the laboratory to test whether the bone loss response depends on (i) how fast a mechanical load is applied (rate), (ii) how intense the mechanical load is (amplitude), or (iii) how long each individual loading stimulus is applied (duration). We mimicked mechanical loading as it occurs in the body, by applying very precisely controlled flow of fluid over the cells. We found that a mechanosensitive receptor Piezo1 was activated by a low amplitude stimulus, which usually strengthens the bone. The potential inhibitor of Piezo1, namely SERCA2, was only activated by a low amplitude stimulus. This happened regardless of the rate of application. At a constant high amplitude, a longer duration of the stimulus enhanced the bone-weakening response. Based on these results we deduce that a high loading amplitude tends to be bone weakening, and the longer this high amplitude persists, the worse it is for the bone.
Collapse
Affiliation(s)
- Cornelia Bratengeier
- Department of Clinical and Experimental Medicine, Division of Cell Biology, Linköping University, Linköping, Sweden
| | - Aneta Liszka
- Department of Clinical and Experimental Medicine, Division of Cell Biology, Linköping University, Linköping, Sweden
| | - Johan Hoffman
- Department of Computational Science and Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Astrid D Bakker
- Department of Oral Cell Biology, ACTA-University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - Anna Fahlgren
- Department of Clinical and Experimental Medicine, Division of Cell Biology, Linköping University, Linköping, Sweden
| |
Collapse
|
11
|
Abstract
The mechanisms underlying degradation of biological cells due to mechanical fatigue are not well understood. Specifically, detrimental effects of fatigue on properties and homeostasis of human red blood cells (RBCs), as they repeatedly deform while traversing microvasculature, have remained largely unexplored. We present a general microfluidics method that incorporates amplitude-modulated electrodeformation to induce static and cyclic mechanical deformation of RBCs. Fatigue of RBCs leads to significantly greater loss of membrane deformability, compared to static deformation under the same maximum load and maximum-load duration. These findings establish unique effects of cyclic mechanical deformation on the properties and function of biological cells. Our work provides a means to assess the mechanical integrity and fatigue damage of RBCs in blood circulation. Fatigue arising from cyclic straining is a key factor in the degradation of properties of engineered materials and structures. Fatigue can also induce damage and fracture in natural biomaterials, such as bone, and in synthetic biomaterials used in implant devices. However, the mechanisms by which mechanical fatigue leads to deterioration of physical properties and contributes to the onset and progression of pathological states in biological cells have hitherto not been systematically explored. Here we present a general method that employs amplitude-modulated electrodeformation and microfluidics for characterizing mechanical fatigue in single biological cells. This method is capable of subjecting cells to static loads for prolonged periods of time or to large numbers of controlled mechanical fatigue cycles. We apply the method to measure the systematic changes in morphological and biomechanical characteristics of healthy human red blood cells (RBCs) and their membrane mechanical properties. Under constant amplitude cyclic tensile deformation, RBCs progressively lose their ability to stretch with increasing fatigue cycles. Our results further indicate that loss of deformability of RBCs during cyclic deformation is much faster than that under static deformation at the same maximum load over the same accumulated loading time. Such fatigue-induced deformability loss is more pronounced at higher amplitudes of cyclic deformation. These results uniquely establish the important role of mechanical fatigue in influencing physical properties of biological cells. They further provide insights into the accumulated membrane damage during blood circulation, paving the way for further investigations of the eventual failure of RBCs causing hemolysis in various hemolytic pathologies.
Collapse
|
12
|
Liu J, Qiang Y, Alvarez O, Du E. Electrical Impedance Characterization of Erythrocyte Response to Cyclic Hypoxia in Sickle Cell Disease. ACS Sens 2019; 4:1783-1790. [PMID: 31083931 PMCID: PMC7255762 DOI: 10.1021/acssensors.9b00263] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cell sickling is the process in which intracellular polymerization of deoxygenated sickle hemoglobin (HbS) leads to distorted, rigid cells, resulting in abnormal blood rheology and painful vaso-occlusion. Current methods for detection of this process mainly rely on optical microscopy of cellular morphology and measurements of cell deformability and blood rheology. As electrical impedance of cells is a sensitive indicator of changes in cellular structure and biophysical characteristics, it can be a promising marker for characterization of abnormal blood rheology and a means more convenient than optics to be integrated into point-of-care devices. In this work, a microfluidics-based electrical impedance sensor has been developed for characterizing the dynamic cell sickling-unsickling processes in sickle blood. The sensor is capable of measuring the continuous variation in the sickle cell suspension due to cyclic hypoxia-induced intracellular HbS polymerization and depolymerization. Simultaneous microscopic imaging of cell morphological change shows the reliability and repeatability of the electrical impedance-based measurements of cell sickling and unsickling processes. Strong correlation is found between the electrical impedance measurement and patients' hematological parameters such as levels of HbS and fetal hemoglobin. The combination of electrical impedance measurement and on-chip hypoxia control provides a promising method for rapid assessment of the dynamic processes of cell sickling and unsickling in patients with sickle cell disease.
Collapse
Affiliation(s)
- Jia Liu
- Department of Ocean and Mechanical Engineering, Florida Atlantic University, Boca Raton, Florida 33431, United States
| | - Yuhao Qiang
- Department of Ocean and Mechanical Engineering, Florida Atlantic University, Boca Raton, Florida 33431, United States
| | - Ofelia Alvarez
- Division of Pediatric Hematology and Oncology, University of Miami, Miami, Florida 33136, United States
| | - E Du
- Department of Ocean and Mechanical Engineering, Florida Atlantic University, Boca Raton, Florida 33431, United States
| |
Collapse
|