1
|
Liu Y, Wenren M, Cheng W, Zhou X, Xu D, Chi C, Lü Z, Liu H. Identification, functional characterization and immune response profiles of interleukin-10 in Nibea albiflora. FISH & SHELLFISH IMMUNOLOGY 2024; 151:109654. [PMID: 38810711 DOI: 10.1016/j.fsi.2024.109654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/23/2024] [Accepted: 05/23/2024] [Indexed: 05/31/2024]
Abstract
Interleukin-10 (IL-10) is an immunosuppressive cytokine, which plays a vital role in regulating inflammation for inhibiting the generation and function of pro-inflammatory cytokines in vivo or in vitro. In the present study, the full length cDNA of IL-10 was characterized from Nibea albiflora (named as NaIL-10) of 1238 base pairs (bp), containing a 5'-UTR (untranslated region) of 350 bp, a 3'-UTR of 333 bp and an open reading frame (ORF) of 555 bp (Fig. 1A) to encode 184 amino acid residues with a signal peptide at the N-terminus. The sequence analysis showed that NaIL-10 possessed the typical IL-10 family symbolic motif and conversed cysteine residues, similar to its teleost orthologues. Real-time PCR indicated that NaIL-10 had wide distribution in different healthy tissues, with a relatively high expression in immune-related tissues (head kidney, spleen, kidney, liver and gill). Significantly, up-regulations of NaIL-10 after infection against Vibrio parahaemolyticus, Vibrio alginolyticus and Poly I:C were also observed. Subcellular localization manifested that NaIL-10 mainly distributed in the cytoplasm unevenly and aggregately, and there was also a small amount on the cell membrane, indicating that NaIL-10 was secreted to the extracellular space as the known IL-10 homologous molecules. It could co-locate with IL-10 Rα on the membrane of HEK293T cells for their potential interaction, and GST pull-down and Co-IP studies certified the specific and direct interaction between NaIL-10 and NaIL-10 Rα, confirming that an IL-10 ligand-receptor system existed in N.albiflora. The expression of pro-inflammatory cytokines, including TNF-α, IL-6, IL-1β, were dramatically inhibited in LPS-stimulated RAW264.7 macrophages pre-incubated with recombinant NaIL-10 protein, demonstrating its anti-inflammatory roles. Taken together, the results demonstrated the existence of IL-10 ligand-receptor system in N.albiflora for the first time, and indicated the suppressive function of NaIL-10 on pro-inflammatory cytokine expression in inflammatory response, which would be conducive to better comprehending the role of IL-10 in the immunomodulatory mechanisms of teleost.
Collapse
Affiliation(s)
- Yue Liu
- National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Mingming Wenren
- National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Wei Cheng
- National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Xu Zhou
- National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Dongdong Xu
- Zhejiang Marine Fisheries Research Institute, Key Lab of Mariculture and Enhancement of Zhejiang province, Zhoushan, 316100, China
| | - Changfeng Chi
- National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Zhenming Lü
- National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Huihui Liu
- National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, China.
| |
Collapse
|
2
|
Wang Q, Zhao Z, Sun R, Shi Z, Zhang Y, Wang B, Zhang X, Ji W. Bioinformatics characteristics and expression analysis of IL-8 and IL-10 in largemouth bass (Micropterus salmoides) upon Nocardia seriolae infection. FISH & SHELLFISH IMMUNOLOGY 2024; 148:109465. [PMID: 38408547 DOI: 10.1016/j.fsi.2024.109465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/21/2024] [Accepted: 02/24/2024] [Indexed: 02/28/2024]
Abstract
IL-8 and IL-10 are crucial inflammatory cytokines that participate in defending host cells against infections. To demonstrate the function of the two interleukin genes in largemouth bass (Micropterus salmoides), we initially cloned and identified the cDNA sequences of il-8 and il-10 in largemouth bass, referred to as Msil-8 and Msil-10, respectively. The open reading frame (ORF) of Msil-8 was 324 bp in length, encoding 107 amino acids, while the ORF of Msil-10 consisted of 726 bp and encoded 241 amino acids. Furthermore, the functional domains of the SCY domain in MsIL-8 and the IL-10 family signature motif in MsIL-10 were highly conserved across vertebrates. Additionally, both MsIL-8 and MsIL-10 showed close relationships with M. dolomieu. Constitutive expression of Msil-8 and Msil-10 was observed in various tissues, with the highest level found in the head kidney. Subsequently, largemouth bass were infected with Nocardia seriolae via intraperitoneal injection to gain a further understanding of the function of these two genes. Bacterial loads were initially detected in the foregut, followed by the midgut, hindgut, and liver. The mRNA expression of Msil-8 was significantly down-regulated after infection, especially at 2 days post-infection (DPI), with a similar expression to Msil-10. In contrast, the expression of Msil-8 and Msil-10 was significantly upregulated in the foregut at 14 DPI. Taken together, these results reveal that the function of IL-8 and IL-10 was likely hindered by N. seriolae, which promoted bacterial proliferation and intercellular diffusion.
Collapse
Affiliation(s)
- Qin Wang
- Department of Aquatic Animal Medicines, College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affair/Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhangchun Zhao
- Department of Aquatic Animal Medicines, College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affair/Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ruhan Sun
- Department of Aquatic Animal Medicines, College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affair/Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zechao Shi
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China
| | - Yaqian Zhang
- Department of Aquatic Animal Medicines, College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affair/Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Bingchao Wang
- Department of Aquatic Animal Medicines, College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affair/Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xuezhen Zhang
- Department of Aquatic Animal Medicines, College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affair/Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wei Ji
- Department of Aquatic Animal Medicines, College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affair/Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
3
|
Speirs ZC, Loynes CA, Mathiessen H, Elks PM, Renshaw SA, Jørgensen LVG. What can we learn about fish neutrophil and macrophage response to immune challenge from studies in zebrafish. FISH & SHELLFISH IMMUNOLOGY 2024; 148:109490. [PMID: 38471626 DOI: 10.1016/j.fsi.2024.109490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/06/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024]
Abstract
Fish rely, to a high degree, on the innate immune system to protect them against the constant exposure to potential pathogenic invasion from the surrounding water during homeostasis and injury. Zebrafish larvae have emerged as an outstanding model organism for immunity. The cellular component of zebrafish innate immunity is similar to the mammalian innate immune system and has a high degree of sophistication due to the needs of living in an aquatic environment from early embryonic stages of life. Innate immune cells (leukocytes), including neutrophils and macrophages, have major roles in protecting zebrafish against pathogens, as well as being essential for proper wound healing and regeneration. Zebrafish larvae are visually transparent, with unprecedented in vivo microscopy opportunities that, in combination with transgenic immune reporter lines, have permitted visualisation of the functions of these cells when zebrafish are exposed to bacterial, viral and parasitic infections, as well as during injury and healing. Recent findings indicate that leukocytes are even more complex than previously anticipated and are essential for inflammation, infection control, and subsequent wound healing and regeneration.
Collapse
Affiliation(s)
- Zoë C Speirs
- The Bateson Centre, School of Medicine and Population Health, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK
| | - Catherine A Loynes
- The Bateson Centre, School of Medicine and Population Health, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK
| | - Heidi Mathiessen
- Laboratory of Experimental Fish Models, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C., Denmark
| | - Philip M Elks
- The Bateson Centre, School of Medicine and Population Health, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK
| | - Stephen A Renshaw
- The Bateson Centre, School of Medicine and Population Health, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK
| | - Louise von Gersdorff Jørgensen
- Laboratory of Experimental Fish Models, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C., Denmark.
| |
Collapse
|
4
|
Abdel-Tawwab M, Khalil RH, Abdel-Razek N, Younis NA, Shady SHH, Monier MN, Abdel-Latif HMR. Dietary effects of microalga Tetraselmis suecica on growth, antioxidant-immune activity, inflammation cytokines, and resistance of Nile tilapia fingerlings to Aeromonas sobria infection. J Anim Physiol Anim Nutr (Berl) 2024; 108:511-526. [PMID: 38054788 DOI: 10.1111/jpn.13911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/27/2023] [Accepted: 11/18/2023] [Indexed: 12/07/2023]
Abstract
The dietary effects of the green microalga Tetraselmis suecica (TS) on the growth, digestive enzymes, immune and antioxidant responses, genes expression, and disease resistance of Nile tilapia (Oreochromis niloticus) fingerlings were investigated. This microalga was mixed with the diet' ingredients at doses of 0.0 (the control), 5, 10, 15, and 20 g/kg diet and then fed to fish daily for 84 days. After the feeding trial, fish were experimentally challenged with Aeromonas sobria, infection and fish mortalities were recorded for another 10 days. Dietary TS significantly (p < 0.05) enhanced growth, digestive enzymes activities, and blood proteins, particularly at the level of 15 g/kg diet. Feeding the fish on 15 TS/kg feed exhibited highest mRNA expressions of GH and IGF-1 genes as well as SOD, CAT, and GPx genes compared to other TS groups. Moreover, highest levels of hepatic antioxidant and immune indices were found in the treatment of 15 g TS/kg feed. Significant downregulation of IL-1β and IL-8 genes expression and significant upregulation of IL-10 gene expression were observed in TS-fed fish, principally in fish groups fed on 15-20 g TS/kg feed. Conversely, hepatic malondialdehyde levels, blood glucose, and the activities of transaminases (ALT and AST) were significantly (p < 0.05) decreased in fish fed with 15-20 g TS/kg diet. Serum bactericidal activity against A. sobria was significantly higher in TS-fed fish groups, and its highest levels were found in treatments of 15-20 g/kg diet. Of interest, the survival rates of fish groups fed diets with 10-20 g TS/kg feed were higher after the challenge with A. sobria infection than the control group. Accordingly, we can conclude that supplementing fish diets with a 15 g TS/kg diet enhanced the growth, antioxidant and immune activities, and resistance of Nile tilapia fingerlings to possible A. sobria infection.
Collapse
Affiliation(s)
- Mohsen Abdel-Tawwab
- Department of Fish Biology and Ecology, Central Laboratory for Aquaculture Research, Agricultural Research Center, Abbassa, Abo-Hammad, Sharqia, Egypt
| | - Riad H Khalil
- Department of Poultry and Fish Diseases, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Nashwa Abdel-Razek
- Department of Fish Health and Management, Central Laboratory for Aquaculture Research, Agricultural Research Center, Abbassa, Abo-Hammad, Sharqia, Egypt
| | - Nehal A Younis
- Department of Aquatic Animal Medicine and Management, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt
| | - Sherien H H Shady
- Department of Fish Biology and Ecology, Central Laboratory for Aquaculture Research, Agricultural Research Center, Abbassa, Abo-Hammad, Sharqia, Egypt
| | - Mohamed N Monier
- Department of Fish Biology and Ecology, Central Laboratory for Aquaculture Research, Agricultural Research Center, Abbassa, Abo-Hammad, Sharqia, Egypt
| | - Hany M R Abdel-Latif
- Department of Poultry and Fish Diseases, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| |
Collapse
|
5
|
Liang Y, Zhu KC, You YZ, Guo HY, Chen HD, Liu BS, Zhang N, Dai YB, Zeng FR, Lin HY, Zhang DC. Molecular characterization of TNF-β and IFN-γ in yellowfin seabream (Acanthopagrus latus, Hottuyn, 1782) and their immune responses to density stress during transport. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 147:104747. [PMID: 37276930 DOI: 10.1016/j.dci.2023.104747] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/28/2023] [Accepted: 05/28/2023] [Indexed: 06/07/2023]
Abstract
The inflammatory cytokines TNF-β and IFN-γ are important mediators of the vertebrate inflammatory response and coordinators of the immune system in regard to NF-κB signalling pathways. In this study, the TNF-β and IFN-γ genes of yellowfin seabream, Acanthopagrus latus were identified, and the multiple sequence alignments, evolutionary relationships and gene expressions of the two genes were also determined. AlTNF-β contained a 762 bp open reading frame (ORF) encoding 253 amino acids, while AlIFN-γ contained a 582 bp ORF encoding 193 amino acids. An amino-acid sequence alignment analysis showed that these proteins have highly conserved transmembrane structural domains among teleosts. Moreover, AlTNF-β has a close affinity with TNF-β of yellowfin seabream while AlIFN-γ has a high evolutionary correlation with A. regius and Sparus aurata. In addition, the mRNAs of AlTNF-β and AlIFN-γ are widely expressed in various tissues. AlTNF-β is highly expressed in gill and intestinal tissues, and the mRNA levels of AlIFN-γ are higher in spleen, skin, and gill tissues than in other tissues. Under transportation density stress, the mRNA level of AlTNF-β was significantly elevated in the intestine of the high-density group, while AlTNF-β transcription in the gills did not vary significantly among the density groups. Furthermore, AlIFN-γ expression was increased in liver, intestinal, and gill tissues under high transportation density. The results of this study show that TNF-β and IFN-γ expression in yellowfin seabream is greatly affected by density stress. The density of 125 per bag for 4-5 cm fry or 1200 per bag for 1-2 cm fry is most suitable for the transportation of live fish. These results might provide a reference for further studies on the immunomodulatory response process and auxiliary function of immune stress of TNF and IFN genes in fish under density stress.
Collapse
Affiliation(s)
- Yu Liang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300, Guangzhou, Guangdong Province, PR China
| | - Ke-Cheng Zhu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300, Guangzhou, Guangdong Province, PR China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, 510300, Guangzhou, Guangdong Province, PR China; Sanya Tropical Fisheries Research Institute, Sanya, 572018, China
| | - Ying-Zhe You
- Zhangzhou Aquatic Technology Promotion Station, 363000, Zhangzhou, Fujian Province, PR China
| | - Hua-Yang Guo
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300, Guangzhou, Guangdong Province, PR China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, 510300, Guangzhou, Guangdong Province, PR China; Sanya Tropical Fisheries Research Institute, Sanya, 572018, China
| | - He-Dong Chen
- Zhangzhou Aquatic Technology Promotion Station, 363000, Zhangzhou, Fujian Province, PR China
| | - Bao-Suo Liu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300, Guangzhou, Guangdong Province, PR China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, 510300, Guangzhou, Guangdong Province, PR China; Sanya Tropical Fisheries Research Institute, Sanya, 572018, China
| | - Nan Zhang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300, Guangzhou, Guangdong Province, PR China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, 510300, Guangzhou, Guangdong Province, PR China; Sanya Tropical Fisheries Research Institute, Sanya, 572018, China
| | - Yan-Bin Dai
- Zhangzhou Aquatic Technology Promotion Station, 363000, Zhangzhou, Fujian Province, PR China
| | - Fan-Rong Zeng
- Zhangzhou Aquatic Technology Promotion Station, 363000, Zhangzhou, Fujian Province, PR China
| | - Huan-Yang Lin
- Zhangzhou Marine Environmental Monitoring Center, 363000, Zhangzhou, Fujian Province, PR China
| | - Dian-Chang Zhang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300, Guangzhou, Guangdong Province, PR China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, 510300, Guangzhou, Guangdong Province, PR China; Sanya Tropical Fisheries Research Institute, Sanya, 572018, China.
| |
Collapse
|
6
|
Zhu X, Liu Y, Xu N, Ai X, Yang Y. Molecular Characterization and Expression Analysis of IL-10 and IL-6 in Channel Catfish ( Ictalurus punctatus). Pathogens 2023; 12:886. [PMID: 37513733 PMCID: PMC10384647 DOI: 10.3390/pathogens12070886] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/25/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023] Open
Abstract
IL-10 and IL-6 play important roles in protecting against inflammation and clearing pathogens from the body. In this study, homologous compounds of IL-10 and IL-6 were identified in channel catfish, and their immune responses were analyzed. The CDS sequences of IL-10 and IL-6 were 549 bp and 642 bp, respectively, and showed the highest homology with Ameiurus melas. In addition, the expression of the IL-10 and IL-6 genes was ubiquitous in 10 tissues examined. IL-10 is highly expressed in the liver and slightly expressed in the gill. The high expression of the IL-6 gene was observed in the spleen, heart, and gonad, with the lowest levels in the liver. LPS, Poly(I:C), PHA, and PMA showed a highly significant increase in IL-10 and IL-6 expression 48 h after CCK stimulation (p < 0.01). Otherwise, Yersinia ruckeri, Streptococcus iniae, channel catfish virus, and deltamethrin induced IL-10 and IL-6 expression, varying in intensity between different organs. Our results suggest that IL-10 and IL-6 are involved in the immune response of the host against the pathogen.
Collapse
Affiliation(s)
- Xia Zhu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Yongtao Liu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Ning Xu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Xiaohui Ai
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Yibin Yang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| |
Collapse
|
7
|
Zhang Y, Su J. Interleukin-2 family cytokines: An overview of genes, expression, signaling and functional roles in teleost. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 141:104645. [PMID: 36696924 DOI: 10.1016/j.dci.2023.104645] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 01/11/2023] [Accepted: 01/20/2023] [Indexed: 06/17/2023]
Abstract
The interleukin-2 (IL-2) family cytokines include IL-2, IL-4, IL-7, IL-9, IL-15, and IL-21, which share γ chain (γc) subunit in receptors. The IL-2 family cytokines have unique biological effects that regulate differentiation, survival and activation of multiple lymphocyte lineages. Deficiency of IL-2 family signaling pathway in mammals prevents CD4+ T cells from developing effector functions and CD8+ T cells from developing immunological memory. In the present review, we addressed available information from teleost IL-2 family cytokines and discussed implications in teleost immunity. Also, we described and discussed their expression profiles, receptors, signaling transductions and functions. In teleost, IL-2 family has 5 members (IL-2, IL-4/13, IL-7, IL-15, IL-21) without IL-9, and their receptors share a common γc subunit and include other 6 subunits (IL-2Rβ1/2, IL-4Rα1/2, IL-13Rα1/2, IL-7Rα, IL-15Rα, and IL-21Rα1/2). Some paralogues have changes in domain structure and show differential expression, modulation, functions. IL-2 family cytokines constitutively express in many immune associated tissues and are largely induced after pathogenic microbial stimulation. In general, there are relatively conserved functions in the IL-2 family throughout vertebrates, and many of the key IL-2 family members are important in lymphocyte proliferation and differentiation, development, inflammation from fishes to mammals. This review will give an update on the effective information of teleost IL-2 family cytokines. Thus, it will provide a source of reference for other researchers/readers and inspire further interest.
Collapse
Affiliation(s)
- Yanqi Zhang
- College of Fisheries, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Jianguo Su
- College of Fisheries, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| |
Collapse
|
8
|
Cafora M, Poerio N, Forti F, Loberto N, Pin D, Bassi R, Aureli M, Briani F, Pistocchi A, Fraziano M. Evaluation of phages and liposomes as combination therapy to counteract Pseudomonas aeruginosa infection in wild-type and CFTR-null models. Front Microbiol 2022; 13:979610. [PMID: 36188006 PMCID: PMC9520727 DOI: 10.3389/fmicb.2022.979610] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/15/2022] [Indexed: 11/17/2022] Open
Abstract
Multi drug resistant (MDR) bacteria are insensitive to the most common antibiotics currently in use. The spread of antibiotic-resistant bacteria, if not contained, will represent the main cause of death for humanity in 2050. The situation is even more worrying when considering patients with chronic bacterial infections, such as those with Cystic Fibrosis (CF). The development of alternative approaches is essential and novel therapies that combine exogenous and host-mediated antimicrobial action are promising. In this work, we demonstrate that asymmetric phosphatidylserine/phosphatidic acid (PS/PA) liposomes administrated both in prophylactic and therapeutic treatments, induced a reduction in the bacterial burden both in wild-type and cftr-loss-of-function (cftr-LOF) zebrafish embryos infected with Pseudomonas aeruginosa (Pa) PAO1 strain (PAO1). These effects are elicited through the enhancement of phagocytic activity of macrophages. Moreover, the combined use of liposomes and a phage-cocktail (CKΦ), already validated as a PAO1 “eater”, improves the antimicrobial effects of single treatments, and it is effective also against CKΦ-resistant bacteria. We also address the translational potential of the research, by evaluating the safety of CKΦ and PS/PA liposomes administrations in in vitro model of human bronchial epithelial cells, carrying the homozygous F508del-CFTR mutation, and in THP-1 cells differentiated into a macrophage-like phenotype with pharmacologically inhibited CFTR. Our results open the way to the development of novel pharmacological formulations composed of both phages and liposomes to counteract more efficiently the infections caused by Pa or other bacteria, especially in patients with chronic infections such those with CF.
Collapse
Affiliation(s)
- Marco Cafora
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Segrate, MI, Italy
- Dipartimento di Scienze Cliniche e Comunità, Università degli Studi di Milan, Milan, MI, Italy
| | - Noemi Poerio
- Dipartimento di Biologia, Università degli Studi di Roma “Tor Vergata”, Rome, Italy
| | - Francesca Forti
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milan, Italy
| | - Nicoletta Loberto
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Segrate, MI, Italy
| | - Davide Pin
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Segrate, MI, Italy
- Dipartimento di Biologia e Biotecnologie Charles Darwin, Università degli Studi di Roma “La Sapienza”, Rome, Italy
| | - Rosaria Bassi
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Segrate, MI, Italy
| | - Massimo Aureli
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Segrate, MI, Italy
| | - Federica Briani
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milan, Italy
| | - Anna Pistocchi
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Segrate, MI, Italy
- *Correspondence: Anna Pistocchi,
| | - Maurizio Fraziano
- Dipartimento di Biologia, Università degli Studi di Roma “Tor Vergata”, Rome, Italy
| |
Collapse
|
9
|
Wang J, Chen Z, Li M, Song Y, Xu W, Wang L, Chen S. Genome-wide identification, immune response profile and functional characterization of IL-10 from spotted knifejaw (Oplegnathus punctatus) during host defense against bacterial and viral infection. FISH & SHELLFISH IMMUNOLOGY 2022; 124:513-524. [PMID: 35472402 DOI: 10.1016/j.fsi.2022.04.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 04/18/2022] [Accepted: 04/20/2022] [Indexed: 06/14/2023]
Abstract
Interleukin 10 (IL-10), a pleiotropic cytokine, plays an essential role in multiple immunity responses. In the current study, the sequences of IL-10 family were identified from spotted knifejaw (Oplegnathus punctatus) whole genome, and O. punctatus IL-10 (OpIL-10) was cloned and characterized. OpIL-10 encodes 187 amino acids with a typical IL-10 family signature motif and predicted α-helices. It shared high identities with Notolabrus celidotus IL-10 and Epinephelus Lanceolatus IL-10. OpIL-10 was widely detected in healthy tissues, with the abundant expression in liver and skin. It was significantly up-regulated in the six immune-related tissues (liver, spleen, kidney, intestine, gill and skin) after infection against Vibrio harveyi and spotted knifejaw iridovirus (SKIV). Dual-luciferase analysis showed that OpIL-10 overexpression could suppress the activity of NF-κB. Meanwhile, OpIL-10 knockdown caused the down-regulation of five immune-related genes in JAK2/STAT3 signaling pathway and NF-κB signaling pathway, including IL-10R2, TYK2, STAT3, NOD2, and IκB. In addition, LPS and poly I:C stimulated expression of pro-inflammatory cytokines, including IL-6, IL-1β, IL-8, and IL-12, were lower with recombinant OpIL-10 (rOp IL-10) than the control group, indicating the anti-inflammatory roles of rOpIL-10. Taken together, these results indicated OpIL-10 as a negative regulator in the inflammatory responses of spotted knifejaw against bacterial and viral infection, which would help us better understand the role of IL-10 in teleost immunity.
Collapse
Affiliation(s)
- Jie Wang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Zhangfan Chen
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao, 266071, China; Shandong Key Laboratory of Marine Fisheries Biotechnology and Genetic Breeding, Qingdao, 266071, China.
| | - Ming Li
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Yu Song
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Wenteng Xu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao, 266071, China; Shandong Key Laboratory of Marine Fisheries Biotechnology and Genetic Breeding, Qingdao, 266071, China
| | - Lei Wang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao, 266071, China; Shandong Key Laboratory of Marine Fisheries Biotechnology and Genetic Breeding, Qingdao, 266071, China
| | - Songlin Chen
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao, 266071, China; Shandong Key Laboratory of Marine Fisheries Biotechnology and Genetic Breeding, Qingdao, 266071, China.
| |
Collapse
|
10
|
Consequences of excessive glucosylsphingosine in glucocerebrosidase-deficient zebrafish. J Lipid Res 2022; 63:100199. [PMID: 35315333 PMCID: PMC9058576 DOI: 10.1016/j.jlr.2022.100199] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 02/26/2022] [Accepted: 03/08/2022] [Indexed: 12/01/2022] Open
Abstract
In Gaucher disease (GD), the deficiency of glucocerebrosidase causes lysosomal accumulation of glucosylceramide (GlcCer), which is partly converted by acid ceramidase to glucosylsphingosine (GlcSph) in the lysosome. Chronically elevated blood and tissue GlcSph is thought to contribute to symptoms in GD patients as well as to increased risk for Parkinson’s disease. On the other hand, formation of GlcSph may be beneficial since the water soluble sphingoid base is excreted via urine and bile. To study the role of excessive GlcSph formation during glucocerebrosidase deficiency, we studied zebrafish that have two orthologs of acid ceramidase, Asah1a and Asah1b. Only the latter is involved in the formation of GlcSph in glucocerebrosidase-deficient zebrafish as revealed by knockouts of Asah1a or Asah1b with glucocerebrosidase deficiency (either pharmacologically induced or genetic). Comparison of zebrafish with excessive GlcSph (gba1-/- fish) and without GlcSph (gba1-/-:asah1b-/- fish) allowed us to study the consequences of chronic high levels of GlcSph. Prevention of excessive GlcSph in gba1-/-:asah1b-/- fish did not restrict storage cells, GlcCer accumulation, or neuroinflammation. However, GD fish lacking excessive GlcSph show an ameliorated course of disease reflected by significantly increased lifespan, delayed locomotor abnormality, and delayed development of an abnormal curved back posture. The loss of tyrosine hydroxylase 1 (th1) mRNA, a marker of dopaminergic neurons, is slowed down in brain of GD fish lacking excessive GlcSph. In conclusion, in the zebrafish GD model, excess GlcSph has little impact on (neuro)inflammation or the presence of GlcCer-laden macrophages but rather seems harmful to th1-positive dopaminergic neurons.
Collapse
|
11
|
Padovani BN, Abrantes do Amaral M, Fénero CM, Paredes LC, Boturra de Barros GJ, Xavier IK, Hiyane MI, Ghirotto B, Feijóo CG, Saraiva Câmara NO, Takiishi T. Different wild type strains of zebrafish show divergent susceptibility to TNBS-induced intestinal inflammation displaying distinct immune cell profiles. CURRENT RESEARCH IN IMMUNOLOGY 2022; 3:13-22. [PMID: 35496825 PMCID: PMC9040082 DOI: 10.1016/j.crimmu.2021.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 12/05/2021] [Accepted: 12/26/2021] [Indexed: 12/09/2022] Open
Abstract
Little is known about the diversity in immune profile of the different wild type strains of zebrafish (Danio rerio), despite its growing popularity as an animal model to study human diseases and drug testing. In the case of data resulting from modeling human diseases, differences in the background Danio fishes have rarely been taken into consideration when interpreting results and this is potentially problematic, as many studies not even mention the source and strain of the animals. In this study, we hypothesized that different wild type zebrafish strains could present distinct immune traits. To address the differences in immune responses between two commonly used wild type strains of zebrafish, AB and Tübingen (TU), we used an intestinal inflammation model induced by 2,4,6-Trinitrobenzenesulfonic acid (TNBS) and characterized the susceptibility and immune profile in these two strains. Our data demonstrates significant differences in survival between AB and TU strains when exposed to TNBS, suggesting important physiological differences in how these strains respond to inflammatory challenges. We observed that the AB strain presented increased mortality, higher neutrophilic intestinal infiltration, decreased goblet cell numbers and decreased IL-10 expression when exposed to TNBS, compared to the TU strain. In summary, our study demonstrates strain-specific immunological responses in AB and TU animals. Finally, the significant variations in strain-related susceptibility to inflammation and the differences in the immune profile shown here, highlight that the background of each strain need to be considered when utilizing zebrafish to model diseases and for drug screening purposes, thus better immune characterization of the diverse wild type strains of zebrafish is imperative. Strain-specific immunological profiles exist in wild-type zebrafish strains (AB and TU). AB and TU showed different responses to induced intestinal inflammation. AB strain had increased mortality and higher inflammatory profile. TU strain had better survival and higher IL-10 expression.
Collapse
|
12
|
Interleukin-10 regulates goblet cell numbers through Notch signaling in the developing zebrafish intestine. Mucosal Immunol 2022; 15:940-951. [PMID: 35840681 PMCID: PMC9385495 DOI: 10.1038/s41385-022-00546-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 06/20/2022] [Accepted: 06/27/2022] [Indexed: 02/04/2023]
Abstract
Cytokines are immunomodulatory proteins that orchestrate cellular networks in health and disease. Among these, interleukin (IL)-10 is critical for the establishment of intestinal homeostasis, as mutations in components of the IL-10 signaling pathway result in spontaneous colitis. Whether IL-10 plays other than immunomodulatory roles in the intestines is poorly understood. Here, we report that il10, il10ra, and il10rb are expressed in the zebrafish developing intestine as early as 3 days post fertilization. CRISPR/Cas9-generated il10-deficient zebrafish larvae showed an increased expression of pro-inflammatory genes and an increased number of intestinal goblet cells compared to WT larvae. Mechanistically, Il10 promotes Notch signaling in zebrafish intestinal epithelial cells, which in turn restricts goblet cell expansion. Using murine organoids, we showed that IL-10 modulates goblet cell frequencies in mammals, suggesting conservation across species. This study demonstrates a previously unappreciated IL-10-Notch axis regulating goblet cell homeostasis in the developing zebrafish intestine and may help explain the disease severity of IL-10 deficiency in the intestines of mammals.
Collapse
|
13
|
Li S, Jiang C, Chen H, Zhang L, Ke L, Chen X, Lin C. Pre-injection of Zebrafish ( Danio rerio) tnfb Polyclonal Antibody Decreases the Mortality of Vibrio vulnificus Infected Zebrafish. Front Vet Sci 2021; 8:741242. [PMID: 34869718 PMCID: PMC8637402 DOI: 10.3389/fvets.2021.741242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/08/2021] [Indexed: 11/25/2022] Open
Abstract
Tumor necrosis factor (TNF) plays an important role in an inflammatory cytokine storm. Over-secretion of TNF by the host in response to infection aggravates the disease. TNF expression level is positively correlated with the mortality caused by some bacterial infections. Therefore, using TNF antibody may alleviate the inflammation to resist bacterial infections. The function of fish TNF-b antibody in bacterial infection is still unclear. In this study, infection models of Vibrio vulnificus FJ03-X2 strain with high pathogenicity and strong virulence were established in zebrafish (Danio rerio) fibroblast cell line (ZF4 cells) and zebrafish. Zebrafish tnfb (Zetnf-b) gene was cloned and expressed by Escherichia coli BL21 (DE3), and Zetnf-b polyclonal antibody was prepared. Pre-injection of Zetnf-b polyclonal antibody and AG-126 before infecting with V. vulnificus could increase the survival rate of zebrafish by 36.6 and 46.7%, respectively. Pre-injection of Zetnf-b polyclonal antibody could effectively decrease the mortality of zebrafish infected by V. vulnificus. Thus, TNF polyclonal antibody therapy could be considered as an effective strategy to control V. vulnificus in fish.
Collapse
Affiliation(s)
- Suyi Li
- Institute of Biotechnology, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Cong Jiang
- Fujian Key Laboratory of Marine Enzyme Engineering, College of Biological Sciences and Engineering, Fuzhou University, Fuzhou, China
| | - Hua Chen
- Institute of Biotechnology, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Lijuan Zhang
- Institute of Biotechnology, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Ling Ke
- Institute of Biotechnology, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Xu Chen
- Institute of Biotechnology, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Chentao Lin
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Product of State Oceanic Administration, Fujian Normal University, Fuzhou, China.,Center of Engineering Technology Research for Microalgae Germplasm Improvement of Fujian, Southern Institute of Oceanography, Fujian Normal University, Fuzhou, China
| |
Collapse
|
14
|
Kidess E, Kleerebezem M, Brugman S. Colonizing Microbes, IL-10 and IL-22: Keeping the Peace at the Mucosal Surface. Front Microbiol 2021; 12:729053. [PMID: 34603258 PMCID: PMC8484919 DOI: 10.3389/fmicb.2021.729053] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 08/25/2021] [Indexed: 12/15/2022] Open
Abstract
Our world is filled with microbes. Each multicellular organism has developed ways to interact with this microbial environment. Microbes do not always pose a threat; they can contribute to many processes that benefit the host. Upon colonization both host and microbes adapt resulting in dynamic ecosystems in different host niches. Regulatory processes develop within the host to prevent overt inflammation to beneficial microbes, yet keeping the possibility to respond when pathogens attempt to adhere and invade tissues. This review will focus on microbial colonization and the early (innate) host immune response, with special emphasis on the microbiota-modifying roles of IL-10 and IL-22 in the intestine. IL-10 knock out mice show an altered microbial composition, and spontaneously develop enterocolitis over time. IL-22 knock out mice, although not developing enterocolitis spontaneously, also have an altered microbial composition and increase of epithelial-adherent bacteria, mainly caused by a decrease in mucin and anti-microbial peptide production. Recently interesting links have been found between the IL-10 and IL-22 pathways. While IL-22 can function as a regulatory cytokine at the mucosal surface, it also has inflammatory roles depending on the context. For example, lack of IL-22 in the IL-10–/– mice model prevents spontaneous colitis development. Additionally, the reduced microbial diversity observed in IL-10–/– mice was also reversed in IL-10/IL-22 double mutant mice (Gunasekera et al., 2020). Since in early life, host immunity develops in parallel and in interaction with colonizing microbes, there is a need for future studies that focus on the effect of the timing of colonization in relation to the developmental phase of the host. To illustrate this, examples from zebrafish research will be compared with studies performed in mammals. Since zebrafish develop from eggs and are directly exposed to the outside microbial world, timing of the development of host immunity and subsequent control of microbial composition, is different from mammals that develop in utero and only get exposed after birth. Likewise, colonization studies using adult germfree mice might yield different results from those using neonatal germfree mice. Lastly, special emphasis will be given to the need for host genotype and environmental (co-housing) control of experiments.
Collapse
Affiliation(s)
- Evelien Kidess
- Animal Sciences Group, Host-Microbe Interactomics, Wageningen University and Research, Wageningen, Netherlands
| | - Michiel Kleerebezem
- Animal Sciences Group, Host-Microbe Interactomics, Wageningen University and Research, Wageningen, Netherlands
| | - Sylvia Brugman
- Animal Sciences Group, Host-Microbe Interactomics, Wageningen University and Research, Wageningen, Netherlands
| |
Collapse
|
15
|
Jacome Sanz D, Saralahti AK, Pekkarinen M, Kesseli J, Nykter M, Rämet M, Ojanen MJT, Pesu M. Proprotein convertase subtilisin/kexin type 9 regulates the production of acute-phase reactants from the liver. Liver Int 2021; 41:2511-2522. [PMID: 34174143 DOI: 10.1111/liv.14993] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/07/2021] [Accepted: 06/24/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS Proprotein convertase subtilisin/kexin type 9 (PCSK9) controls blood cholesterol levels by fostering the LDL receptor (LDLR) degradation in hepatocytes. Additionally, PCSK9 has been suggested to participate in immunoregulation by modulating cytokine production. We studied the immunological role of PCSK9 in Streptococcus pneumoniae bacteraemia in vivo and in a human hepatocyte cell line. METHODS CRISPR/Cas9 mutagenesis was utilized to create pcsk9 knock-out (KO) zebrafish, which were infected with S pneumoniae to assess the role of PCSK9 for the survival of the fish and in the transcriptomic response of the liver. The direct effects of PCSK9 on the expression of acute-phase reaction (APR) genes were studied in HepG2 cells. RESULTS The pcsk9 KO zebrafish lines (pcsk9tpu-13 and pcsk9tpu-2,+15 ) did not show developmental defects or gross phenotypical differences. In the S pneumoniae infected zebrafish, the mortality of pcsk9 KOs was similar to the controls. A liver-specific gene expression analysis revealed that a pneumococcal challenge upregulated pcsk9, and that the pcsk9 deletion reduced the expression of APR genes, including hepcidin antimicrobial peptide (hamp) and complement component 7b (c7b). Accordingly, silencing PCSK9 in vitro in HepG2 cells using small interfering RNAs (siRNAs) decreased HAMP expression. CONCLUSIONS We demonstrate that PCSK9 is not critical for zebrafish survival in a systemic pneumococcal infection. However, PCSK9 deficiency was associated with the lower expression of APR genes in zebrafish and altered the expression of innate immunity genes in a human hepatocyte cell line. Overall, our data suggest an evolutionarily conserved function for PCSK9 in APR in the liver.
Collapse
Affiliation(s)
- Dafne Jacome Sanz
- Laboratory of Immunoregulation, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Anni K Saralahti
- Laboratory of Experimental Immunology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Meeri Pekkarinen
- Laboratory of Computational Biology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Juha Kesseli
- Laboratory of Computational Biology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Matti Nykter
- Laboratory of Computational Biology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Mika Rämet
- Laboratory of Experimental Immunology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,Vaccine Research Center, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,PEDEGO Research Unit, Medical Research Center, University of Oulu, Oulu, Finland.,Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland
| | - Markus J T Ojanen
- Laboratory of Immunoregulation, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Marko Pesu
- Laboratory of Immunoregulation, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,Fimlab laboratories Ltd, Tampere, Finland
| |
Collapse
|
16
|
Tang H, Jiang X, Zhang J, Pei C, Zhao X, Li L, Kong X. Teleost CD4 + helper T cells: Molecular characteristics and functions and comparison with mammalian counterparts. Vet Immunol Immunopathol 2021; 240:110316. [PMID: 34474261 DOI: 10.1016/j.vetimm.2021.110316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 06/21/2021] [Accepted: 08/24/2021] [Indexed: 12/24/2022]
Abstract
CD4+ helper T cells play key and diverse roles in inducing adaptive immune responses in vertebrates. The CD4 molecule, which is found on the surfaces of CD4+ helper T cells, can be used to distinguish subsets of helper T cells. Teleosts are the oldest living species with bona-fide CD4 coreceptors. Although some components of immune systems of teleosts and mammals appear to be similar, many physiological differences are represented between them. Previous studies have shown that two CD4 paralogs are present in teleosts, whereas only one is present in mammals. Therefore, in this review, the CD4 molecular structure, expression profiles, subpopulations, and biological functions of teleost CD4+ helper T cells were summarized and compared with those of their mammalian counterparts to understand the differences in CD4 molecules between teleosts and mammals. This review provides suggestions for further studies on the CD4 molecular function and regulatory mechanism of CD4+ helper T cells in teleost fish and will help establish therapeutic strategies to control fish diseases in the future.
Collapse
Affiliation(s)
- Hairong Tang
- College of Life Science, Henan Normal University, Henan Province, PR China; Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan Province, PR China
| | - Xinyu Jiang
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan Province, PR China
| | - Jie Zhang
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan Province, PR China
| | - Chao Pei
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan Province, PR China
| | - Xianliang Zhao
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan Province, PR China
| | - Li Li
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan Province, PR China
| | - Xianghui Kong
- College of Life Science, Henan Normal University, Henan Province, PR China; Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan Province, PR China.
| |
Collapse
|
17
|
Kubick N, Klimovich P, Flournoy PH, Bieńkowska I, Łazarczyk M, Sacharczuk M, Bhaumik S, Mickael ME, Basu R. Interleukins and Interleukin Receptors Evolutionary History and Origin in Relation to CD4+ T Cell Evolution. Genes (Basel) 2021; 12:genes12060813. [PMID: 34073576 PMCID: PMC8226699 DOI: 10.3390/genes12060813] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/19/2021] [Accepted: 05/25/2021] [Indexed: 12/12/2022] Open
Abstract
Understanding the evolution of interleukins and interleukin receptors is essential to control the function of CD4+ T cells in various pathologies. Numerous aspects of CD4+ T cells’ presence are controlled by interleukins including differentiation, proliferation, and plasticity. CD4+ T cells have emerged during the divergence of jawed vertebrates. However, little is known about the evolution of interleukins and their origin. We traced the evolution of interleukins and their receptors from Placozoa to primates. We performed phylogenetic analysis, ancestral reconstruction, HH search, and positive selection analysis. Our results indicated that various interleukins’ emergence predated CD4+ T cells divergence. IL14 was the most ancient interleukin with homologs in fungi. Invertebrates also expressed various interleukins such as IL41 and IL16. Several interleukin receptors also appeared before CD4+ T cells divergence. Interestingly IL17RA and IL17RD, which are known to play a fundamental role in Th17 CD4+ T cells first appeared in mollusks. Furthermore, our investigations showed that there is not any single gene family that could be the parent group of interleukins. We postulate that several groups have diverged from older existing cytokines such as IL4 from TGFβ, IL10 from IFN, and IL28 from BCAM. Interleukin receptors were less divergent than interleukins. We found that IL1R, IL7R might have diverged from a common invertebrate protein that contained TIR domains, conversely, IL2R, IL4R and IL6R might have emerged from a common invertebrate ancestor that possessed a fibronectin domain. IL8R seems to be a GPCR that belongs to the rhodopsin-like family and it has diverged from the Somatostatin group. Interestingly, several interleukins that are known to perform a critical function for CD4+ T cells such as IL6, IL17, and IL1B have gained new functions and evolved under positive selection. Overall evolution of interleukin receptors was not under significant positive selection. Interestingly, eight interleukin families appeared in lampreys, however, only two of them (IL17B, IL17E) evolved under positive selection. This observation indicates that although lampreys have a unique adaptive immune system that lacks CD4+ T cells, they could be utilizing interleukins in homologous mode to that of the vertebrates’ immune system. Overall our study highlights the evolutionary heterogeneity within the interleukins and their receptor superfamilies and thus does not support the theory that interleukins evolved solely in jawed vertebrates to support T cell function. Conversely, some of the members are likely to play conserved functions in the innate immune system.
Collapse
Affiliation(s)
- Norwin Kubick
- Institute of Biochemistry, Molecular Cell Biology, University Clinic Hamburg-Eppendorf, 0251 Hamburg, Germany;
| | - Pavel Klimovich
- PM Research Center, 20 Kaggeholm, Ekerö, 178 54 Stockholm, Sweden; (P.K.); (P.H.F.)
| | | | - Irmina Bieńkowska
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, ul. Postepu 36A, Jastrzebiec, 05-552 Magdalenka, Poland; (I.B.); (M.Ł.); (M.S.)
| | - Marzena Łazarczyk
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, ul. Postepu 36A, Jastrzebiec, 05-552 Magdalenka, Poland; (I.B.); (M.Ł.); (M.S.)
| | - Mariusz Sacharczuk
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, ul. Postepu 36A, Jastrzebiec, 05-552 Magdalenka, Poland; (I.B.); (M.Ł.); (M.S.)
| | - Suniti Bhaumik
- Bevill Biomedical Sciences Research Building, The University of Alabama at Birmingham, Birmingham, AL 35294-2170, USA;
| | - Michel-Edwar Mickael
- PM Research Center, 20 Kaggeholm, Ekerö, 178 54 Stockholm, Sweden; (P.K.); (P.H.F.)
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, ul. Postepu 36A, Jastrzebiec, 05-552 Magdalenka, Poland; (I.B.); (M.Ł.); (M.S.)
- Correspondence: (M.-E.M.); (R.B.)
| | - Rajatava Basu
- Bevill Biomedical Sciences Research Building, The University of Alabama at Birmingham, Birmingham, AL 35294-2170, USA;
- Correspondence: (M.-E.M.); (R.B.)
| |
Collapse
|
18
|
Cutaneous Mycobacterial Infections in Returning Travelers. CURRENT TROPICAL MEDICINE REPORTS 2021. [DOI: 10.1007/s40475-021-00228-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
19
|
Li XP, Zhang J. Tongue sole (Cynoglossus semilaevis) interleukin 10 receptors are involved in the immune response against bacterial infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 115:103885. [PMID: 33045275 DOI: 10.1016/j.dci.2020.103885] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 10/06/2020] [Accepted: 10/06/2020] [Indexed: 06/11/2023]
Abstract
Interleukin (IL)-10, an immune-regulatory cytokine, exerts various biological functions through interaction with IL-10 receptors. In teleost, very limited functional studies on IL-10 receptors have been documented. In this study, we reported the expression patterns of IL-10 receptor 1 (CsIL-10R1) and receptor 2 (CsIL-10R2) of tongue sole (Cynoglossus semilaevis) and examined their biological properties. The expression of CsIL-10R1 and CsIL-10R2 occurred in multiple tissues and were regulated by bacterial challenge. In vitro binding studies showed that recombinant extracellular region of CsIL-10R1 (rCsIL-10R1ex) rather than rCsIL-10R2ex could bind with rCsIL-10. Cellular study showed that both CsIL-10R1 and CsIL-10R2 were expressed on peripheral blood leukocytes (PBLs), and blockade of CsIL-10R1 or CsIL-10R2 by antibody could reduce inhibitory effect of CsIL-10 on ROS production of PBLs. When injected in vivo, anti-rCsIL-10R1 or anti-rCsIL-10R2 antibody dramatically promoted the expression of proinflammatory cytokines and suppressed bacterial dissemination in tongue sole tissues. Consistently, the overexpression of CsIL-10R1 or CsIL-10R2 significantly enhanced bacterial dissemination, and the overexpression of CsIL-10R1M bearing STAT3 site mutation reduced bacterial dissemination. Overall, these results demonstrate for the first time teleost IL-10 receptors play a negative role in antibacterial immunity and add insight into the function of CsIL-10 receptors.
Collapse
Affiliation(s)
- Xue-Peng Li
- CAS Key Laboratory of Experimental Marine Biology, CAS Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; School of Ocean, Yantai University, Yantai, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jian Zhang
- CAS Key Laboratory of Experimental Marine Biology, CAS Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; School of Ocean, Yantai University, Yantai, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
20
|
Modeling Tubercular ESX-1 Secretion Using Mycobacterium marinum. Microbiol Mol Biol Rev 2020; 84:84/4/e00082-19. [DOI: 10.1128/mmbr.00082-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Pathogenic mycobacteria cause chronic and acute diseases ranging from human tuberculosis (TB) to nontubercular infections.
Mycobacterium tuberculosis
causes both acute and chronic human tuberculosis. Environmentally acquired nontubercular mycobacteria (NTM) cause chronic disease in humans and animals. Not surprisingly, NTM and
M. tuberculosis
often use shared molecular mechanisms to survive within the host. The ESX-1 system is a specialized secretion system that is essential for virulence and is functionally conserved between
M. tuberculosis
and
Mycobacterium marinum
.
Collapse
|
21
|
Mohammadi H, Manouchehri H, Changizi R, Bootorabi F, Khorramizadeh MR. Concurrent metformin and silibinin therapy in diabetes: assessments in zebrafish ( Danio rerio) animal model. J Diabetes Metab Disord 2020; 19:1233-1244. [PMID: 33553026 DOI: 10.1007/s40200-020-00637-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/14/2020] [Indexed: 01/11/2023]
Abstract
Objective In this study, zebrafish was used as a biological model to induce type 2 diabetes mellitus through glucose. Then, the effect of metformin and silibinin combination was examined on elevated blood glucose, intestinal tissues, liver enzymes, and TNF-α, IFN-γ, INL1β genes as inflammation marker genes. Methods The liver enzymes (AST, ALT, and ALP) derived from fish viscera homogenate supernatants were assayed in an auto-analyzer. The expression of target genes was quantified on RNA extracted from the tails by an in-house RT-PCR method, with fine intestine tissue staining performed by hematoxylin and eosin protocol (H&E). Result In the glucose-free treatments, metformin and silymarin decreased the levels of AST, ALT, and ALP enzymes in the blood. The combination of these two drugs had also a significant role in reducing glucose levels. The body weight increased significantly in the control group which was affected by glucose concentration, with the lowest body weight gain observed in the metformin group. The expression of INL-1β gene was significantly enhanced in the control group and the highest IFN-γ expression was observed in both control groups with glucose (G + CTRL) and without glucose (G-CTRL) (p < 0.05). The lowest level of TNF-α gene expression was observed in the control + glucose group (G + CTRL) (p < 0.05). Diabetic state causes weak absorption whereby the fish body demands to increase absorption level by enhancing the amount of acidic goblet cells thereby acidifying the environment in the gastric tracts. Conclusion Collectively, this study indicated that treatment with metformin and Silibinin could improve metabolic-mediated performances by reducing the expression of inflammatory genes and blood glucose, modulating liver enzymes, and ameliorating the intestinal inflammation in type 2 diabetic zebrafish model.
Collapse
Affiliation(s)
- Hassan Mohammadi
- Department of Aquaculture Science, Babol Branch, Islamic Azad University, Babol, Iran
| | - Hamed Manouchehri
- Department of Aquaculture Science, Babol Branch, Islamic Azad University, Babol, Iran
| | - Reza Changizi
- Department of Aquaculture Science, Babol Branch, Islamic Azad University, Babol, Iran
| | - Fatemeh Bootorabi
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Mohammad Reza Khorramizadeh
- Biosensor Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, and Zebra fish core Facility (ZFIN ID : ZDB-LAB-190117-2), Endocrinology and Metabolism research Institute, Tehran university of Medical Sciences, Tehran, Iran
| |
Collapse
|
22
|
Yu C, Zhang P, Zhang TF, Sun L. IL-34 regulates the inflammatory response and anti-bacterial immune defense of Japanese flounder Paralichthys olivaceus. FISH & SHELLFISH IMMUNOLOGY 2020; 104:228-236. [PMID: 32502613 DOI: 10.1016/j.fsi.2020.05.073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/24/2020] [Accepted: 05/26/2020] [Indexed: 06/11/2023]
Abstract
Interleukin (IL)-34 is a relatively recently discovered cytokine with pleiotropic effects on various cellular activities, including immune response. In fish, the knowledge on the function of IL-34 is limited. In the present work, we investigated the function of Japanese flounder Paralichthys olivaceus IL-34 (PoIL-34) in association with inflammation and immune defense. PoIL-34 possesses the conserved structure of IL-34 superfamily and shares 21.52% sequence identity with murine IL-34. PoIL-34 expression was detected in a wide range of tissues of flounder, in particular intestine, and was regulated to a significant extent by bacterial infection in a time-dependent fashion. In vitro studies showed that recombinant PoIL-34 (rPoIL-34) bound peripheral blood leukocytes (PBLs) and promoted ROS production, acid phosphatase activity, and cellular resistance against bacterial infection. At the molecular level, rPoIL-34 enhanced the expressions of inflammatory cytokines and specific JAK and STAT genes. Similar stimulatory effects of rPoIL-34 were observed in vivo. When PoIL-34 was overexpressed in flounder, the expressions of pro- and anti-inflammatory mediators were significantly affected in a tissue-dependent manner, which correlated with an augmented ability of the fish to eliminate invading pathogens from tissues. Together, these results indicated that PoIL-34 regulated inflammatory response probably via specific JAK/STAT pathways and had a significant influence on the immune defense of flounder against bacterial infection.
Collapse
Affiliation(s)
- Chao Yu
- CAS Key Laboratory of Experimental Marine Biology, CAS Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; University of Chinese Academy of Sciences, Beijing, China
| | - Peng Zhang
- CAS Key Laboratory of Experimental Marine Biology, CAS Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; University of Chinese Academy of Sciences, Beijing, China
| | - Teng-Fei Zhang
- CAS Key Laboratory of Experimental Marine Biology, CAS Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; University of Chinese Academy of Sciences, Beijing, China
| | - Li Sun
- CAS Key Laboratory of Experimental Marine Biology, CAS Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
23
|
Saralahti AK, Uusi-Mäkelä MIE, Niskanen MT, Rämet M. Integrating fish models in tuberculosis vaccine development. Dis Model Mech 2020; 13:13/8/dmm045716. [PMID: 32859577 PMCID: PMC7473647 DOI: 10.1242/dmm.045716] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Tuberculosis is a chronic infection by Mycobacterium tuberculosis that results in over 1.5 million deaths worldwide each year. Currently, there is only one vaccine against tuberculosis, the Bacillus Calmette–Guérin (BCG) vaccine. Despite widespread vaccination programmes, over 10 million new M. tuberculosis infections are diagnosed yearly, with almost half a million cases caused by antibiotic-resistant strains. Novel vaccination strategies concentrate mainly on replacing BCG or boosting its efficacy and depend on animal models that accurately recapitulate the human disease. However, efforts to produce new vaccines against an M. tuberculosis infection have encountered several challenges, including the complexity of M. tuberculosis pathogenesis and limited knowledge of the protective immune responses. The preclinical evaluation of novel tuberculosis vaccine candidates is also hampered by the lack of an appropriate animal model that could accurately predict the protective effect of vaccines in humans. Here, we review the role of zebrafish (Danio rerio) and other fish models in the development of novel vaccines against tuberculosis and discuss how these models complement the more traditional mammalian models of tuberculosis. Summary: In this Review, we discuss how zebrafish (Danio rerio) and other fish models can complement the more traditional mammalian models in the development of novel vaccines against tuberculosis.
Collapse
Affiliation(s)
- Anni K Saralahti
- Laboratory of Experimental Immunology, BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere FI-33014, Finland
| | - Meri I E Uusi-Mäkelä
- Laboratory of Experimental Immunology, BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere FI-33014, Finland
| | - Mirja T Niskanen
- Laboratory of Experimental Immunology, BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere FI-33014, Finland
| | - Mika Rämet
- Laboratory of Experimental Immunology, BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere FI-33014, Finland .,Vaccine Research Center, Faculty of Medicine and Health Technology, Tampere University, Tampere FI-33014, Finland.,PEDEGO Research Unit, Medical Research Center, University of Oulu, Oulu FI-90014, Finland.,Department of Children and Adolescents, Oulu University Hospital, Oulu FI-90029, Finland
| |
Collapse
|
24
|
Niskanen M, Myllymäki H, Rämet M. DNA vaccination with the Mycobacterium marinum MMAR_4110 antigen inhibits reactivation of a latent mycobacterial infection in the adult Zebrafish. Vaccine 2020; 38:5685-5694. [PMID: 32624250 DOI: 10.1016/j.vaccine.2020.06.053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 06/03/2020] [Accepted: 06/18/2020] [Indexed: 12/31/2022]
Abstract
BACKGROUND Tuberculosis is a major challenge for health care, as options for its treatment and prevention are limited. Therefore, novel approaches, such as DNA vaccination, to both prevent primary infections and the reactivation of latent infections need to be developed. A Mycobacterium marinum infection in adult zebrafish (Danio rerio) recapitulates features of the human Mycobacterium tuberculosis infection, providing a convenient preclinical animal model for studying tuberculosis. METHODS Hypoxic M. marinum cultures were produced with the Wayne model, and further reaerated to replicate the in vivo reactivation in vitro. Expression levels of M. marinum genes were studied with mRNA sequencing from exponentially growing bacteria, anaerobic cultures and at 2 and 12 h after reaeration. Seven reactivation-associated genes were selected for further studies, where their antigen potentiality as DNA-vaccines to prevent reactivation of a latent mycobacterial infection was investigated in the adult zebrafish model. The Mann-Whitney test was used to evaluate differences in bacterial counts between the groups. RESULTS The mRNA sequencing data showed that, seven M. marinum genes, MMAR_0444, MMAR_0514, MMAR_0552, MMAR_0641, MMAR_1093, MMAR_4110 and MMAR_4524, were upregulated during reactivation when compared to both dormant and logarithmic growing bacteria. Four different MMAR_4110 antigens prevented the reactivation of a latent mycobacterial infection in the adult zebrafish. CONCLUSION This study provides novel information about reactivation-related M. marinum genes. One of the antigens, MMAR_4110, inhibited the reactivation of a latent M. marinum infection in zebrafish, implicating that the characterized genes could be potential targets for further vaccine and drug development against mycobacterial diseases.
Collapse
Affiliation(s)
- Mirja Niskanen
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Henna Myllymäki
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Mika Rämet
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland; Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland; PEDEGO Research Unit and Medical Research Centre, University of Oulu, Finland.
| |
Collapse
|
25
|
Bottiglione F, Dee CT, Lea R, Zeef LAH, Badrock AP, Wane M, Bugeon L, Dallman MJ, Allen JE, Hurlstone AFL. Zebrafish IL-4-like Cytokines and IL-10 Suppress Inflammation but Only IL-10 Is Essential for Gill Homeostasis. THE JOURNAL OF IMMUNOLOGY 2020; 205:994-1008. [PMID: 32641385 PMCID: PMC7416321 DOI: 10.4049/jimmunol.2000372] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 06/09/2020] [Indexed: 12/20/2022]
Abstract
Mucosal surfaces such as fish gills interface between the organism and the external environment and as such are major sites of foreign Ag encounter. In the gills, the balance between inflammatory responses to waterborne pathogens and regulatory responses toward commensal microbes is critical for effective barrier function and overall fish health. In mammals, IL-4 and IL-13 in concert with IL-10 are essential for balancing immune responses to pathogens and suppressing inflammation. Although considerable progress has been made in the field of fish immunology in recent years, whether the fish counterparts of these key mammalian cytokines perform similar roles is still an open question. In this study, we have generated IL-4/13A and IL-4/13B mutant zebrafish (Danio rerio) and, together with an existing IL-10 mutant line, characterized the consequences of loss of function of these cytokines. We demonstrate that IL-4/13A and IL-4/13B are required for the maintenance of a Th2-like phenotype in the gills and the suppression of type 1 immune responses. As in mammals, IL-10 appears to have a more striking anti-inflammatory function than IL-4-like cytokines and is essential for gill homeostasis. Thus, both IL-4/13 and IL-10 paralogs in zebrafish exhibit aspects of conserved function with their mammalian counterparts.
Collapse
Affiliation(s)
- Federica Bottiglione
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, United Kingdom; and
| | - Christopher T Dee
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, United Kingdom; and
| | - Robert Lea
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, United Kingdom; and
| | - Leo A H Zeef
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, United Kingdom; and
| | - Andrew P Badrock
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, United Kingdom; and
| | - Madina Wane
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Laurence Bugeon
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Margaret J Dallman
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Judith E Allen
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, United Kingdom; and
| | - Adam F L Hurlstone
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, United Kingdom; and
| |
Collapse
|
26
|
Yu C, Zhang P, Li XP, Sun L. Japanese flounder Paralichthys olivaceus interleukin 21 induces inflammatory response and plays a vital role in the immune defense against bacterial pathogen. FISH & SHELLFISH IMMUNOLOGY 2020; 98:364-373. [PMID: 31991231 DOI: 10.1016/j.fsi.2020.01.043] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 12/20/2019] [Accepted: 01/22/2020] [Indexed: 06/10/2023]
Abstract
Interleukin (IL)-21 is a pleiotropic cytokine and plays a vital role in immunity. In the current study, we examined the immune function of Japanese flounder Paralichthys olivaceus IL-21 (PoIL-21). PoIL-21 shares moderate (25.17%-46.25%) sequence identities with other teleost IL-21. PoIL-21 expression occurred in multiple tissues, especially intestine, and was regulated by bacterial infection in a time dependent manner. PoIL-21 was secreted by peripheral blood leukocytes (PBL) upon LPS stimulation. Recombinant PoIL-21 (rPoIL-21) bound to a wide range of Gram-negative and Gram-positive bacteria and inhibited the growth of the fish bacterial pathogen Streptococcus iniae. rPoIL-21 also interacted with PBL, resulting in enhanced cell proliferation, ROS production, and expression of IL-1β, TNF-α, CD8β, T-bet, PoIL-21, PoIL-21 receptor, and STAT. Consequently, the presence of rPoIL-21 significantly reduced bacterial infection in PBL. In vivo study showed that rPoIL-21 upregulated the expression of inflammatory cytokines and PoIL-21. Taken together, these results indicate that PoIL-21 is an inducible, secreted cytokine with a broad range of binding capacities and plays an important role in the regulation of anti-bacterial immunity.
Collapse
Affiliation(s)
- Chao Yu
- CAS Key Laboratory of Experimental Marine Biology, CAS Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; University of Chinese Academy of Sciences, Beijing, China
| | - Peng Zhang
- CAS Key Laboratory of Experimental Marine Biology, CAS Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; University of Chinese Academy of Sciences, Beijing, China
| | - Xue-Peng Li
- CAS Key Laboratory of Experimental Marine Biology, CAS Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Li Sun
- CAS Key Laboratory of Experimental Marine Biology, CAS Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
27
|
Harjula SKE, Saralahti AK, Ojanen MJT, Rantapero T, Uusi-Mäkelä MIE, Nykter M, Lohi O, Parikka M, Rämet M. Characterization of immune response against Mycobacterium marinum infection in the main hematopoietic organ of adult zebrafish (Danio rerio). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 103:103523. [PMID: 31626817 DOI: 10.1016/j.dci.2019.103523] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 10/09/2019] [Accepted: 10/14/2019] [Indexed: 06/10/2023]
Abstract
Tuberculosis remains a major global health challenge. To gain information about genes important for defense against tuberculosis, we used a well-established tuberculosis model; Mycobacterium marinum infection in adult zebrafish. To characterize the immunological response to mycobacterial infection at 14 days post infection, we performed a whole-genome level transcriptome analysis using cells from kidney, the main hematopoietic organ of adult zebrafish. Among the upregulated genes, those associated with immune signaling and regulation formed the largest category, whereas the largest group of downregulated genes had a metabolic role. We also performed a forward genetic screen in adult zebrafish and identified a fish line with severely impaired survival during chronic mycobacterial infection. Based on transcriptome analysis, these fish have decreased expression of several immunological genes. Taken together, these results give new information about the genes involved in the defense against mycobacterial infection in zebrafish.
Collapse
Affiliation(s)
- Sanna-Kaisa E Harjula
- Laboratory of Experimental Immunology, BioMediTech, Faculty of Medicine and Health Technology, FI-33014, Tampere University, Finland.
| | - Anni K Saralahti
- Laboratory of Experimental Immunology, BioMediTech, Faculty of Medicine and Health Technology, FI-33014, Tampere University, Finland.
| | - Markus J T Ojanen
- Laboratory of Experimental Immunology, BioMediTech, Faculty of Medicine and Health Technology, FI-33014, Tampere University, Finland; Laboratory of Immunoregulation, BioMediTech, Faculty of Medicine and Health Technology, FI-33014, Tampere University, Finland.
| | - Tommi Rantapero
- Laboratory of Computational Biology, BioMediTech, Faculty of Medicine and Health Technology, FI-33014, Tampere University, Finland.
| | - Meri I E Uusi-Mäkelä
- Laboratory of Experimental Immunology, BioMediTech, Faculty of Medicine and Health Technology, FI-33014, Tampere University, Finland.
| | - Matti Nykter
- Laboratory of Computational Biology, BioMediTech, Faculty of Medicine and Health Technology, FI-33014, Tampere University, Finland.
| | - Olli Lohi
- Tampere Center for Child Health Research, Tampere University and Tays Cancer Center, Tampere University Hospital, FI-33014, Tampere University, Finland.
| | - Mataleena Parikka
- Laboratory of Infection Biology, BioMediTech, Faculty of Medicine and Health Technology, FI-33014, Tampere University, Finland; Oral and Maxillofacial Unit, Tampere University Hospital, P.O. Box 2000, FI-33521, Tampere, Finland.
| | - Mika Rämet
- Laboratory of Experimental Immunology, BioMediTech, Faculty of Medicine and Health Technology, FI-33014, Tampere University, Finland; Department of Pediatrics, Tampere University Hospital, P.O. Box 2000, FI-33521, Tampere, Finland; PEDEGO Research Unit, Medical Research Center Oulu, P.O. Box 8000, FI-90014, University of Oulu, Finland; Department of Children and Adolescents, Oulu University Hospital, P.O. Box 10, FI-90029, OYS, Finland.
| |
Collapse
|
28
|
Li XP, Jiang S, Sun B, Zhang J. Tongue sole (Cynoglossus semilaevis) interleukin 10 plays a negative role in the immune response against bacterial infection. FISH & SHELLFISH IMMUNOLOGY 2019; 95:93-104. [PMID: 31618681 DOI: 10.1016/j.fsi.2019.10.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 10/09/2019] [Accepted: 10/09/2019] [Indexed: 06/10/2023]
Abstract
Interleukin-10 (IL-10) is a pleiotropic cytokine and plays a crucial role in immunity. In the current study, we examined the expression patterns and biological functions of tongue sole Cynoglossus semilaevis IL-10 (CsIL-10). CsIL-10 is composed of 186 amino acid residues and shares 46.3%-71.7% identities with other teleost IL-10. Csil-10 expression occurred in multiple tissues and was regulated by bacterial infection. Recombinant CsIL-10 (rCsIL-10) in the form of a dimer bound to a wide range of bacterial species but did not affect bacterial growth. rCsIL-10 could interact with peripheral blood leukocytes (PBL) and significantly reduce the phagocytic activity, ROS production, and apoptosis of PBL. When injected in vivo, rCsIL-10 significantly suppressed the expression of proinflammatory cytokines and promoted bacterial dissemination in tongue sole tissues. Consistently, knockdown of Csil-10 significantly inhibited bacterial infection in tongue sole. Taken together, these results indicate that CsIL-10 plays a negative regulatory role in the immune response against bacterial infection.
Collapse
Affiliation(s)
- Xue-Peng Li
- CAS Key Laboratory of Experimental Marine Biology, CAS Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| | - Shuai Jiang
- CAS Key Laboratory of Experimental Marine Biology, CAS Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Bin Sun
- CAS Key Laboratory of Experimental Marine Biology, CAS Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Jian Zhang
- CAS Key Laboratory of Experimental Marine Biology, CAS Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
29
|
Hodgkinson JW, Belosevic M, Elks PM, Barreda DR. Teleost contributions to the understanding of mycobacterial diseases. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 96:111-125. [PMID: 30776420 DOI: 10.1016/j.dci.2019.02.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 02/15/2019] [Accepted: 02/15/2019] [Indexed: 06/09/2023]
Abstract
Few pathogens have shaped human medicine as the mycobacteria. From understanding biological phenomena driving disease spread, to mechanisms of host-pathogen interactions and antibiotic resistance, the Mycobacterium genus continues to challenge and offer insights into the basis of health and disease. Teleost fish models of mycobacterial infections have progressed significantly over the past three decades, now supplying a range of unique tools and new opportunities to define the strategies employed by these Gram-positive bacteria to overcome host defenses, as well as those host antimicrobial pathways that can be used to limit its growth and spread. Herein, we take a comparative perspective and provide an update on the contributions of teleost models to our understanding of mycobacterial diseases.
Collapse
Affiliation(s)
- Jordan W Hodgkinson
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Miodrag Belosevic
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Philip M Elks
- The Bateson Centre, University of Sheffield, Western Bank, Sheffield, United Kingdom; Department of Infection and Immunity and Cardiovascular Disease, University of Sheffield, Western Bank, Sheffield, United Kingdom
| | - Daniel R Barreda
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada; Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
30
|
Intelectin 3 is dispensable for resistance against a mycobacterial infection in zebrafish (Danio rerio). Sci Rep 2019; 9:995. [PMID: 30700796 PMCID: PMC6353920 DOI: 10.1038/s41598-018-37678-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 12/07/2018] [Indexed: 12/20/2022] Open
Abstract
Tuberculosis is a multifactorial bacterial disease, which can be modeled in the zebrafish (Danio rerio). Abdominal cavity infection with Mycobacterium marinum, a close relative of Mycobacterium tuberculosis, leads to a granulomatous disease in adult zebrafish, which replicates the different phases of human tuberculosis, including primary infection, latency and spontaneous reactivation. Here, we have carried out a transcriptional analysis of zebrafish challenged with low-dose of M. marinum, and identified intelectin 3 (itln3) among the highly up-regulated genes. In order to clarify the in vivo significance of Itln3 in immunity, we created nonsense itln3 mutant zebrafish by CRISPR/Cas9 mutagenesis and analyzed the outcome of M. marinum infection in both zebrafish embryos and adult fish. The lack of functional itln3 did not affect survival or the mycobacterial burden in the zebrafish. Furthermore, embryonic survival was not affected when another mycobacterial challenge responsive intelectin, itln1, was silenced using morpholinos either in the WT or itln3 mutant fish. In addition, M. marinum infection in dexamethasone-treated adult zebrafish, which have lowered lymphocyte counts, resulted in similar bacterial burden in both WT fish and homozygous itln3 mutants. Collectively, although itln3 expression is induced upon M. marinum infection in zebrafish, it is dispensable for protective mycobacterial immune response.
Collapse
|