1
|
Baek S, Naing AH, Kang H, Chung MY, Kim CK. Overexpression of acdS in petunia reduces ethylene production and improves tolerance to heat stress. PLANT BIOLOGY (STUTTGART, GERMANY) 2024; 26:789-797. [PMID: 38858861 DOI: 10.1111/plb.13672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/16/2024] [Indexed: 06/12/2024]
Abstract
Petunia hybrida, widely grown as a bedding plant, has reduced growth and flower quality at temperatures above 30 °C (heat stress), primarily due to heat stress-induced ethylene (ET) production. The gene acdS encodes the 1-aminocyclopropane-1-carboxylate (ACC) deaminase (ACCD) enzyme, which is known for its role in reducing ET production by breaking down the ET precursor, ACC, in plant tissues. This study investigated the impact of heat stress on both 'Mirage Rose' WT petunia and its acdS-overexpressing transgenic lines. Heat stress-induced growth inhibition was observed in WT plants but not in transgenic plants. The increased stress tolerance of transgenic plants over WT plants was associated with lower ET production, ROS accumulation, higher SPAD values, water content, and relative water content. Furthermore, higher sensitivity of the WT to heat stress than the transgenic plants was confirmed by analysing ET signalling genes, heat shock transcription factor genes, and antioxidant- and proline-related genes, more strongly induced in WT than in transgenic plants. Overall, this study suggests the potential application of acdS overexpression in other floriculture plants as a viable strategy for developing heat stress-tolerant varieties. This approach holds promise for advancing the floricultural industry by overcoming challenges related to heat-induced growth inhibition and loss of flower quality.
Collapse
Affiliation(s)
- S Baek
- Department of Horticultural Science, Kyungpook National University, Daegu, South Korea
| | - A H Naing
- Department of Horticultural Science, Kyungpook National University, Daegu, South Korea
| | - H Kang
- Department of Horticultural Science, Kyungpook National University, Daegu, South Korea
| | - M Y Chung
- Department of Agricultural Education, Sunchon National University, Suncheon, South Korea
| | - C K Kim
- Department of Horticultural Science, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
2
|
Jin J, Yang L, Fan D, Li L, Hao Q. Integration analysis of miRNA-mRNA pairs between two contrasting genotypes reveals the molecular mechanism of jujube (Ziziphus jujuba Mill.) response to high-temperature stress. BMC PLANT BIOLOGY 2024; 24:612. [PMID: 38937704 PMCID: PMC11209981 DOI: 10.1186/s12870-024-05304-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 06/17/2024] [Indexed: 06/29/2024]
Abstract
With global warming, high temperature (HT) has become one of the most common abiotic stresses resulting in significant crop yield losses, especially for jujube (Ziziphus jujuba Mill.), an important temperate economic crop cultivated worldwide. This study aims to explore the coping mechanism of jujube to HT stress at the transcriptional and post-transcriptional levels, including identifying differentially expressed miRNAs and mRNAs as well as elucidating the critical pathways involved. High-throughput sequencing analyses of miRNA and mRNA were performed on jujube leaves, which were collected from "Fucumi" (heat-tolerant) and "Junzao" (heat-sensitive) cultivars subjected to HT stress (42 °C) for 0, 1, 3, 5, and 7 days, respectively. The results showed that 45 known miRNAs, 482 novel miRNAs, and 13,884 differentially expressed mRNAs (DEMs) were identified. Among them, integrated analysis of miRNA target genes prediction and mRNA-seq obtained 1306 differentially expressed miRNAs-mRNAs pairs, including 484, 769, and 865 DEMIs-DEMs pairs discovered in "Fucuimi", "Junzao" and two genotypes comparative groups, respectively. Furthermore, functional enrichment analysis of 1306 DEMs revealed that plant-pathogen interaction, starch and sucrose metabolism, spliceosome, and plant hormone signal transduction were crucial pathways in jujube leaves response to HT stress. The constructed miRNA-mRNA network, composed of 20 DEMIs and 33 DEMs, displayed significant differently expressions between these two genotypes. This study further proved the regulatory role of miRNAs in the response to HT stress in plants and will provide a theoretical foundation for the innovation and cultivation of heat-tolerant varieties.
Collapse
Affiliation(s)
- Juan Jin
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang, 830091, China
- The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Urumqi, Xinjiang, 830091, China
- Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Urumqi, Xinjiang, 830091, China
| | - Lei Yang
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang, 830091, China
- The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Urumqi, Xinjiang, 830091, China
- Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Urumqi, Xinjiang, 830091, China
| | - Dingyu Fan
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang, 830091, China
- The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Urumqi, Xinjiang, 830091, China
- Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Urumqi, Xinjiang, 830091, China
| | - Lili Li
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang, 830091, China
- The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Urumqi, Xinjiang, 830091, China
- Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Urumqi, Xinjiang, 830091, China
| | - Qing Hao
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang, 830091, China.
- The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Urumqi, Xinjiang, 830091, China.
- Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Urumqi, Xinjiang, 830091, China.
| |
Collapse
|
3
|
Panzade KP, Tribhuvan KU, Pawar DV, Jasrotia RS, Gaikwad K, Dalal M, Kumar RR, Singh MP, Awasthi OP, Padaria JC. Discovering the regulators of heat stress tolerance in Ziziphus nummularia (Burm.f) wight and walk.-arn. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:497-511. [PMID: 38633271 PMCID: PMC11018567 DOI: 10.1007/s12298-024-01431-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 12/14/2023] [Accepted: 03/01/2024] [Indexed: 04/19/2024]
Abstract
Ziziphus nummularia an elite heat-stress tolerant shrub, grows in arid regions of desert. However, its molecular mechanism responsible for heat stress tolerance is unexplored. Therefore, we analysed whole transcriptome of Jaisalmer (heat tolerant) and Godhra (heat sensitive) genotypes of Z. nummularia to understand its molecular mechanism responsible for heat stress tolerance. De novo assembly of 16,22,25,052 clean reads yielded 276,029 transcripts. A total of 208,506 unigenes were identified which contains 4290 and 1043 differentially expressed genes (DEG) in TGO (treated Godhra at 42 °C) vs. CGO (control Godhra) and TJR (treated Jaisalmer at 42 °C) vs. CJR (control Jaisalmer), respectively. A total of 987 (67 highly enriched) and 754 (34 highly enriched) pathways were obsorved in CGO vs. TGO and CJR vs. TJR, respectively. Antioxidant pathways and TFs like Homeobox, HBP, ARR, PHD, GRAS, CPP, and E2FA were uniquely observed in Godhra genotype and SET domains were uniquely observed in Jaisalmer genotype. Further transposable elements were highly up-regulated in Godhra genotype but no activation in Jaisalmer genotype. A total of 43,093 and 39,278 simple sequence repeats were identified in the Godhra and Jaisalmer genotypes, respectively. A total of 10 DEGs linked to heat stress were validated in both genotypes for their expression under different heat stresses using quantitative real-time PCR. Comparing expression patterns of the selected DEGs identified ClpB1 as a potential candidate gene for heat tolerance in Z. nummularia. Here we present first characterized transcriptome of Z. nummularia in response to heat stress for the identification and characterization of heat stress-responsive genes. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-024-01431-y.
Collapse
Affiliation(s)
- Kishor Prabhakar Panzade
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012 Delhi India
- PG School, Indian Agricultural Research Institute, New Delhi, 110 012 Delhi India
| | - Kishor U. Tribhuvan
- ICAR-Indian Institute of Agricultural Biotechnology, Ranchi, Jharkhand 834 003 India
| | - Deepak V. Pawar
- ICAR- Directorate of Weed Research, Maharajpur, Jabalpur, Madhya Pradesh 482004 India
| | - Rahul Singh Jasrotia
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012 Delhi India
- University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Dr., San Antonio, TX 78229 USA
| | - Kishor Gaikwad
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012 Delhi India
- PG School, Indian Agricultural Research Institute, New Delhi, 110 012 Delhi India
| | - Monika Dalal
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012 Delhi India
- PG School, Indian Agricultural Research Institute, New Delhi, 110 012 Delhi India
| | - Ranjeet Ranjan Kumar
- Division of Biochemistry, ICAR–Indian Agricultural Research Institute, New Delhi, 110 012 Delhi India
- PG School, Indian Agricultural Research Institute, New Delhi, 110 012 Delhi India
| | - Madan Pal Singh
- Division of Plant Physiology, ICAR-Indian Agrcultural Research Institute, New Delhi, 110 012 Delhi India
- PG School, Indian Agricultural Research Institute, New Delhi, 110 012 Delhi India
| | - Om Prakash Awasthi
- Division of Horticulture, ICAR-Indian Agrcultural Research Institute, New Delhi, 110 012 Delhi India
- PG School, Indian Agricultural Research Institute, New Delhi, 110 012 Delhi India
| | - Jasdeep Chatrath Padaria
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012 Delhi India
- PG School, Indian Agricultural Research Institute, New Delhi, 110 012 Delhi India
| |
Collapse
|
4
|
You YH, Park JM, Ku YB, Jeong TY, Lim K, Shin JH, Kim JS, Hong JW. Fungal Microbiome of Alive and Dead Korean Fir in its Native Habitats. MYCOBIOLOGY 2024; 52:68-84. [PMID: 38415173 PMCID: PMC10896143 DOI: 10.1080/12298093.2024.2307117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 01/15/2024] [Indexed: 02/29/2024]
Abstract
A rapid decline of Abies koreana has been reported in most of the natural alpine habitats in Korea. It is generally accepted that this phenomenon is due to climate change even though no clear conclusions have been drawn. Most research has focused on abiotic environmental factors, but studies on the relationships between A. koreana and soil fungal microbiomes are scarce. In this study, the rhizoplane and rhizosphere fungal communities in the alive and dead Korean fir trees from its three major natural habitats including Mt. Deogyu, Mt. Halla, and Mt. Jiri in Korea were investigated to identify specific soil fungal groups closely associated with A. koreana. Soil fungal diversity in each study site was significantly different from another based on the beta diversity calculations. Heat tree analysis at the genus level showed that Clavulina, Beauveria, and Tomentella were most abundant in the healthy trees probably by forming ectomycorrhizae with Korean fir growth and controlling pests and diseases. However, Calocera, Dacrymyces, Gyoerffyella, Hydnotrya, Microdochium, Hyaloscypha, Mycosymbioces, and Podospora were abundant in the dead trees. Our findings suggested that Clavulina, Beauveria, and Tomentella are the major players that could be considered in future reforestation programs to establish ectomycorrhizal networks and promote growth. These genera may have played a significant role in the survival and growth of A. koreana in its natural habitats. In particular, the genus Gyoerffyella may account for the death of the seedlings. Our work presented exploratory research on the specific fungal taxa associated with the status of A. koreana.
Collapse
Affiliation(s)
- Young-Hyun You
- Biological Resources Utilization Division, National Institute of Biological Resources, Incheon, Republic of Korea
| | - Jong Myong Park
- Water Quality Research Institute, Waterworks Headquarters Incheon Metropolitan City, Incheon, Republic of Korea
| | - Youn-Bong Ku
- Biological Resources Utilization Division, National Institute of Biological Resources, Incheon, Republic of Korea
| | - Tae-Yong Jeong
- Department of Environmental Science, College of Natural Sciences, Hankuk University of Foreign Studies, Yongin, Republic of Korea
| | - Kyeongmo Lim
- Department of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - Jae-Ho Shin
- Department of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - Jin-Suk Kim
- Korea Fern Research Society, Seoul, Republic of Korea
| | - Ji Won Hong
- Department of Hydrogen and Renewable Energy, Kyungpook National University, Daegu, Republic of Korea
- Advanced Bio-resource Research Center, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
5
|
Naing AH, Baek S, Campol JR, Kang H, Kim CK. Loss of ACO4 in petunia improves abiotic stress tolerance by reducing the deleterious effects of stress-induced ethylene. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 203:107998. [PMID: 37678091 DOI: 10.1016/j.plaphy.2023.107998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/07/2023] [Accepted: 09/01/2023] [Indexed: 09/09/2023]
Abstract
To investigate the role of ethylene (ET) in abiotic stress tolerance in petunia cv. 'Mirage Rose', petunia plants in which the ET biosynthesis gene 1-aminocyclopropane-1-carboxylic acid oxidase 4 (ACO4) was knocked out (phaco4 mutants) and wild-type (WT) plants were exposed to heat and drought conditions. Loss of function of ACO4 significantly delayed leaf senescence and chlorosis under heat and drought stress by maintaining the SPAD values and the relative water content, indicating a greater stress tolerance of phaco4 mutants than that of WT plants. This tolerance was related to the lower ET and reactive oxygen species levels in the mutants than in WT plants. Furthermore, the stress-induced expression of genes related to ET signal transduction, antioxidant and proline activities, heat response, and biosynthesis of abscisic acid was higher in the mutants than in WT plants, indicating a greater stress tolerance in the former than in the latter. These results demonstrate the deleterious effects of stress-induced ET on plant growth and provide a better physiological and molecular understanding of the role of stress ET in the abiotic stress response of petunia. Because the loss of function of ACO4 in petunia improved stress tolerance, we suggest that ACO4 plays a vital role in stress-induced leaf senescence and acts as a negative regulator of abiotic stress tolerance.
Collapse
Affiliation(s)
- Aung Htay Naing
- Department of Horticultural Science, Kyungpook National University, Daegu, 41566, South Korea
| | - Sangcheol Baek
- Department of Horticultural Science, Kyungpook National University, Daegu, 41566, South Korea
| | - Jova Riza Campol
- Department of Horticultural Science, Kyungpook National University, Daegu, 41566, South Korea
| | - Hyunhee Kang
- Department of Horticultural Science, Kyungpook National University, Daegu, 41566, South Korea
| | - Chang Kil Kim
- Department of Horticultural Science, Kyungpook National University, Daegu, 41566, South Korea.
| |
Collapse
|
6
|
Deciphering the transcriptomic regulation of heat stress responses in Nothofagus pumilio. PLoS One 2021; 16:e0246615. [PMID: 33784314 PMCID: PMC8009359 DOI: 10.1371/journal.pone.0246615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/17/2021] [Indexed: 12/20/2022] Open
Abstract
Global warming is predicted to exert negative impacts on plant growth due to the damaging effect of high temperatures on plant physiology. Revealing the genetic architecture underlying the heat stress response is therefore crucial for the development of conservation strategies, and for breeding heat-resistant plant genotypes. Here we investigated the transcriptional changes induced by heat in Nothofagus pumilio, an emblematic tree species of the sub-Antarctic forests of South America. Through the performance of RNA-seq of leaves of plants exposed to 20°C (control) or 34°C (heat shock), we generated the first transcriptomic resource for the species. We also studied the changes in protein-coding transcripts expression in response to heat. We found 5,214 contigs differentially expressed between temperatures. The heat treatment resulted in a down-regulation of genes related to photosynthesis and carbon metabolism, whereas secondary metabolism, protein re-folding and response to stress were up-regulated. Moreover, several transcription factor families like WRKY or ERF were promoted by heat, alongside spliceosome machinery and hormone signaling pathways. Through a comparative analysis of gene regulation in response to heat in Arabidopsis thaliana, Populus tomentosa and N. pumilio we provide evidence of the existence of shared molecular features of heat stress responses across angiosperms, and identify genes of potential biotechnological application.
Collapse
|
7
|
Phenological Analysis of Sub-Alpine Forest on Jeju Island, South Korea, Using Data Fusion of Landsat and MODIS Products. FORESTS 2021. [DOI: 10.3390/f12030286] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Climate change poses a disproportionate risk to alpine ecosystems. Effective monitoring of forest phenological responses to climate change is critical for predicting and managing threats to alpine populations. Remote sensing can be used to monitor forest communities in dynamic landscapes for responses to climate change at the species level. Spatiotemporal fusion technology using remote sensing images is an effective way of detecting gradual phenological changes over time and seasonal responses to climate change. The spatial and temporal adaptive reflectance fusion model (STARFM) is a widely used data fusion algorithm for Landsat and MODIS imagery. This study aims to identify forest phenological characteristics and changes at the species–community level by fusing spatiotemporal data from Landsat and MODIS imagery. We fused 18 images from March to November for 2000, 2010, and 2019. (The resulting STARFM-fused images exhibited accuracies of RMSE = 0.0402 and R2 = 0.795. We found that the normalized difference vegetation index (NDVI) value increased with time, which suggests that increasing temperature due to climate change has affected the start of the growth season in the study region. From this study, we found that increasing temperature affects the phenology of these regions, and forest management strategies like monitoring phenology using remote sensing technique should evaluate the effects of climate change.
Collapse
|
8
|
Jin J, Yang L, Fan D, Liu X, Hao Q. Comparative transcriptome analysis uncovers different heat stress responses in heat-resistant and heat-sensitive jujube cultivars. PLoS One 2020; 15:e0235763. [PMID: 32956359 PMCID: PMC7505471 DOI: 10.1371/journal.pone.0235763] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 06/20/2020] [Indexed: 12/31/2022] Open
Abstract
Jujube (Ziziphus jujuba Mill.) is an economically and agriculturally significant fruit crop and is widely cultivated throughout the world. Heat stress has recently become a primary abiotic stressor limiting the productivity and growth of jujube, as well as other crops. There are few studies, however, that have performed transcriptome profiling of jujube when it is exposed to heat stress. In this study, we observed the physiochemical changes and analyzed gene expression profiles in resistant jujube cultivar ‘HR’ and sensitive cultivar ‘HS’ subjected to heat stress for 0, 1, 3, and 5d. Twenty-four cDNA libraries from ‘HR’ and ‘HS’ leaves were built with a transcriptome assay. A total of 6887 and 5077 differentially expressed genes were identified in ‘HR’ and ‘HS’ after 1d, 3d, and 5d of heat stress compared with the control treatment, GO and KEGG enrichment analysis revealed that some of the genes were highly enriched in oxidation-reduction process, response to stress, response to water deprivation, response to heat, carbon metabolism, protein processing in endoplasmic reticulum, and plant hormone signal transduction and may play vital roles in the heat stress response in jujube plants. Differentially expressed genes were identified in the two cultivars, including heat shock proteins, transcriptional factors, and ubiquitin-protein ligase genes. And the expression pattern of nine genes was also validated by qRT-PCR. These results will provide useful information for elucidating the molecular mechanism underlying heat stress in different jujube cultivars.
Collapse
Affiliation(s)
- Juan Jin
- Institute of Horticultural crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Lei Yang
- Institute of Horticultural crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Dingyu Fan
- Institute of Horticultural crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Xuxin Liu
- Xinjiang Agricultural Vocational Technical College, Changji, China
| | - Qing Hao
- Institute of Horticultural crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
- * E-mail:
| |
Collapse
|
9
|
Zhang A, Zhu Z, Shang J, Zhang S, Shen H, Wu X, Zha D. Transcriptome profiling and gene expression analyses of eggplant (Solanum melongena L.) under heat stress. PLoS One 2020; 15:e0236980. [PMID: 32780737 PMCID: PMC7419001 DOI: 10.1371/journal.pone.0236980] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 07/18/2020] [Indexed: 12/20/2022] Open
Abstract
Global warming induces heat stress in eggplant, seriously affecting its quality and yield. The response to heat stress is a complex regulatory process; however, the exact mechanism in eggplant is unknown. We analyzed the transcriptome of eggplant under different high-temperature treatments using RNA-Seq technology. Three libraries treated at high temperatures were generated and sequenced. There were 40,733,667, 40,833,852, and 40,301,285 clean reads with 83.98%, 79.69%, and 84.42% of sequences mapped to the eggplant reference genome in groups exposed to 28°C (CK), 38°C (T38), and 43°C (T43), respectively. There were 3,067 and 1,456 DEGs in T38 vs CK and T43 vs CK groups, respectively. In these two DEG groups, 315 and 342 genes were up- and down-regulated, respectively, in common. Differential expression patterns of DEGs in antioxidant enzyme systems, detoxication, phytohormones, and transcription factors under heat stress were investigated. We screened heat stress-related genes for further validation by qRT-PCR. Regulation mechanisms may differ under different temperature treatments, in which heat shock proteins and heat stress transcription factors play vital roles. These results provide insight into the molecular mechanisms of the heat stress response in eggplant and may be useful in crop breeding.
Collapse
Affiliation(s)
- Aidong Zhang
- Horticultural Research Institute, Shanghai Key Laboratory of Protected Horticultural Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Zongwen Zhu
- Horticultural Research Institute, Shanghai Key Laboratory of Protected Horticultural Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Jing Shang
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Shengmei Zhang
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Haibin Shen
- Horticultural Research Institute, Shanghai Key Laboratory of Protected Horticultural Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Xuexia Wu
- Horticultural Research Institute, Shanghai Key Laboratory of Protected Horticultural Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Dingshi Zha
- Horticultural Research Institute, Shanghai Key Laboratory of Protected Horticultural Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China
| |
Collapse
|
10
|
Mohl JE, Fetcher N, Stunz E, Tang J, Moody ML. Comparative transcriptomics of an arctic foundation species, tussock cottongrass (Eriophorum vaginatum), during an extreme heat event. Sci Rep 2020; 10:8990. [PMID: 32488082 PMCID: PMC7265556 DOI: 10.1038/s41598-020-65693-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 05/05/2020] [Indexed: 11/25/2022] Open
Abstract
Tussock cottongrass (Eriophorum vaginatum) is a foundation species for much of the arctic moist acidic tundra, which is currently experiencing extreme effects of climate change. The Arctic is facing higher summer temperatures and extreme weather events are becoming more common. We used Illumina RNA-Seq to analyse cDNA libraries for differential expression of genes from leaves of ecologically well-characterized ecotypes of tussock cottongrass found along a latitudinal gradient in the Alaskan Arctic and transplanted into a common garden. Plant sampling was performed on a typical summer day and during an extreme heat event. We obtained a de novo assembly that contained 423,353 unigenes. There were 363 unigenes up-regulated and 1,117 down-regulated among all ecotypes examined during the extreme heat event. Of these, 26 HSP unigenes had >log2-fold up-regulation. Several TFs associated with heat stress in previous studies were identified that had >log2-fold up- or down-regulation during the extreme heat event (e.g., DREB, NAC). There was consistent variation in DEGs among ecotypes, but not specifically related to whether plants originated from taiga or tundra ecosystems. As the climate changes it is essential to determine ecotypic diversity at the genomic level, especially for widespread species that impact ecosystem function.
Collapse
Affiliation(s)
- Jonathon E Mohl
- Bioinformatics Program, University of Texas at El Paso, El Paso, TX, 79968, USA
| | - Ned Fetcher
- Institute for Environmental Science and Sustainability, Wilkes University, Wilkes-Barre, PA, 18766, USA
| | - Elizabeth Stunz
- Biological Sciences, University of Texas at El Paso, El Paso, TX, 79968, USA
| | - Jianwu Tang
- The Ecosystems Center, Marine Biological Laboratory, Woods Hole, MA, 02543, USA
| | - Michael L Moody
- Biological Sciences, University of Texas at El Paso, El Paso, TX, 79968, USA.
| |
Collapse
|
11
|
Transcriptome analysis of heat stressed seedlings with or without pre-heat treatment in Cryptomeria japonica. Mol Genet Genomics 2020; 295:1163-1172. [PMID: 32472284 DOI: 10.1007/s00438-020-01689-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 05/19/2020] [Indexed: 10/24/2022]
Abstract
With global warming as a major environment concern over the coming years, heat tolerance is an important trait for forest tree survival during the predicted future warmer weather conditions. Cryptomeria japonica is a coniferous species widely distributed throughout Japan, and thus, can adapt to a wide range of air temperatures. To elucidate genes involved in heat response in Cryptomeria japonica, transcriptome analysis was conducted for seedlings under heat shock conditions. To test whether heat acclimation affects levels of gene expression, half of the seedlings were pretreated with moderately high temperatures prior to heat shock. De novo assembly of the transcriptome generated 107,924 unigenes and the analysis of differentially expressed genes was conducted using these unigenes. A total of 5217 differentially expressed genes were identified. Most genes upregulated by heat shock, regardless of pre-heat treatment, were conserved to heat response genes of angiosperm species, such as heat shock factors (Hsf) and heat shock proteins (Hsp). Pre-heating of seedlings affected expression levels of several Hsfs and their induction was lower in pre-heated seedlings than in seedlings without pre-heat treatment. This suggests a conserved role of Hsfs in heat response and heat acclimation in seed plants. On the other hand, many unknown genes were upregulated in only seedlings without pre-heat treatment after heat exposure. Notably, expression of gypsy/Ty3 type retrotransposons was dramatically induced. These findings provide valuable information to develop a better understanding of the molecular mechanisms of heat response and acclimation in C. japonica.
Collapse
|
12
|
Transcriptomic Responses of Dove Tree (Davidia involucrata Baill.) to Heat Stress at the Seedling Stage. FORESTS 2019. [DOI: 10.3390/f10080656] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The dove tree (Davidia involucrata Baill.), a tertiary relic species, is adapted to cool climates. With the progression of global warming, high-temperature stress has become the primary environmental factor restricting geographic distribution, ex situ conservation, and landscape application for D. involucrata resources. However, the detailed molecular events underlying D. involucrata responses to heat stress are poorly understood. Here, we conducted RNA-Seq-based gene expression profiling in D. involucrata seedlings during the time course of a 42 °C heat treatment (0, 1, 6, and 12 h). After de novo assembly, we obtained 138,923 unigenes, of which 69,743 were annotated in public databases. Furthermore, 19,532, 20,497 and 27,716 differentially expressed genes (DEGs) were identified after 1 h (HS1), 6 h (HS6), and 12 h (HS12) of heat treatment in comparison to 0 h (HS0), respectively. Based on a KEGG enrichment analysis, the two pathways “protein processing in endoplasmic reticulum” and “plant hormone signal transduction” are hypothesized to play vital roles during heat response in D. involucrata, and their potential interactions during heat stress are also discussed. In addition, 32 genes encoding putative heat shock transcription factors (Hsfs) were found to be associated with the response of D. involucrata to heat stress. Finally, the expression patterns of eight heat-responsive genes derived from qRT-PCR were in agreement with their transcript level alterations, as determined by a transcriptome analysis. Taken together, our transcriptomic data provide the first comprehensive transcriptional profile affected by heat stress in D. involucrata, which will facilitate further studies on the improvement of heat tolerance in this rare and endangered species.
Collapse
|
13
|
Hierarchical Environmental Factors Affecting the Distribution of Abies koreana on the Korean Peninsula. FORESTS 2018. [DOI: 10.3390/f9120777] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A regional decline in the Korean fir (Abies koreana) has been observed since the 1980s in the subalpine region. To explain this decline, it is important to investigate the degree to which environmental factors have contributed to plant distributions on diverse spatial scales. We applied a hierarchical regression model to determine quantitatively the relationship between the abundance of Korean fir (seedlings) and diverse environmental factors across two different ecological scales. We measured Korean fir density and the occurrence of its seedlings in 102 (84) plots nested at five sites and collected a range of environmental factors at the same plots. Our model included hierarchical explanatory variables at both site-level (weather conditions) and plot-level (micro-topographic factors, soil properties, and competing species). The occurrence of Korean fir seedlings was positively associated with moss cover and rock cover but negatively related to dwarf bamboo cover. At the site level, winter precipitation was significantly and positively related to the occurrence of seedlings. A hierarchical Poisson regression model revealed that Korean fir density was negatively associated with slope aspect, topographic position index, Quercus mongolica cover, and mean summer temperature. Our results suggest that rising temperature, drought, and competition with other species are factors that impede the survival of the Korean fir. We can predict that the population of Korean fir will continue to decline in the subalpine, and only a few Korean fir will survive on northern slopes or valleys due to climate change.
Collapse
|