1
|
Lin Y, Sun L, Lv Y, Liao R, Zhang K, Zhou J, Zhang S, Xu J, He M, Wu C, Zhang D, Shen X, Dai J, Gao J. Transcriptomic and metabolomic dissection of skeletal muscle of crossbred Chongming white goats with different meat production performance. BMC Genomics 2024; 25:443. [PMID: 38704563 PMCID: PMC11069289 DOI: 10.1186/s12864-024-10304-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 04/12/2024] [Indexed: 05/06/2024] Open
Abstract
BACKGROUND The transcriptome and metabolome dissection of the skeletal muscle of high- and low- growing individuals from a crossbred population of the indigenous Chongming white goat and the Boer goat were performed to discover the potential functional differentially expressed genes (DEGs) and differential expression metabolites (DEMs). RESULTS A total of 2812 DEGs were detected in 6 groups at three time stages (3,6,12 Month) in skeletal muscle using the RNA-seq method. A DEGs set containing seven muscle function related genes (TNNT1, TNNC1, TNNI1, MYBPC2, MYL2, MHY7, and CSRP3) was discovered, and their expression tended to increase as goat muscle development progressed. Seven DEGs (TNNT1, FABP3, TPM3, DES, PPP1R27, RCAN1, LMOD2) in the skeletal muscle of goats in the fast-growing and slow-growing groups was verified their expression difference by reverse transcription-quantitative polymerase chain reaction. Further, through the Liquid chromatography-mass spectrometry (LC-MS) approach, a total of 183 DEMs in various groups of the muscle samples and these DEMs such as Queuine and Keto-PGF1α, which demonstrated different abundance between the goat fast-growing group and slow-growing group. Through weighted correlation network analysis (WGCNA), the study correlated the DEGs with the DEMs and identified 4 DEGs modules associated with 18 metabolites. CONCLUSION This study benefits to dissection candidate genes and regulatory networks related to goat meat production performance, and the joint analysis of transcriptomic and metabolomic data provided insights into the study of goat muscle development.
Collapse
Affiliation(s)
- Yuexia Lin
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China
- Shanghai Municipal Key Laboratory of Agri-Genetics and Breeding, Shanghai, 201106, China
| | - Lingwei Sun
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China
- Shanghai Municipal Key Laboratory of Agri-Genetics and Breeding, Shanghai, 201106, China
- Key Laboratory of Livestock and Poultry Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai, 201106, China
| | - Yuhua Lv
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China
- Shanghai Municipal Key Laboratory of Agri-Genetics and Breeding, Shanghai, 201106, China
| | - Rongrong Liao
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China
- Shanghai Municipal Key Laboratory of Agri-Genetics and Breeding, Shanghai, 201106, China
| | - Keqing Zhang
- Shanghai Municipal Key Laboratory of Agri-Genetics and Breeding, Shanghai, 201106, China
| | - Jinyong Zhou
- Shanghai Municipal Key Laboratory of Agri-Genetics and Breeding, Shanghai, 201106, China
| | - Shushan Zhang
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China
- Shanghai Municipal Key Laboratory of Agri-Genetics and Breeding, Shanghai, 201106, China
- Key Laboratory of Livestock and Poultry Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai, 201106, China
| | - Jiehuan Xu
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China
- Shanghai Municipal Key Laboratory of Agri-Genetics and Breeding, Shanghai, 201106, China
- Key Laboratory of Livestock and Poultry Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai, 201106, China
| | - Mengqian He
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China
- Shanghai Municipal Key Laboratory of Agri-Genetics and Breeding, Shanghai, 201106, China
- Key Laboratory of Livestock and Poultry Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai, 201106, China
| | - Caifeng Wu
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China
- Shanghai Municipal Key Laboratory of Agri-Genetics and Breeding, Shanghai, 201106, China
- Key Laboratory of Livestock and Poultry Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai, 201106, China
| | - Defu Zhang
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China
- Shanghai Municipal Key Laboratory of Agri-Genetics and Breeding, Shanghai, 201106, China
- Key Laboratory of Livestock and Poultry Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai, 201106, China
| | - Xiaohui Shen
- Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China.
| | - Jianjun Dai
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China.
- Shanghai Municipal Key Laboratory of Agri-Genetics and Breeding, Shanghai, 201106, China.
- Key Laboratory of Livestock and Poultry Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai, 201106, China.
| | - Jun Gao
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China.
- Shanghai Municipal Key Laboratory of Agri-Genetics and Breeding, Shanghai, 201106, China.
- Key Laboratory of Livestock and Poultry Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai, 201106, China.
| |
Collapse
|
2
|
Revelo HA, López-Alvarez D, Palacios YA, Vergara OD, Yánez MB, Ariza MF, Molina SLC, Sanchez YO, Alvarez LÁ. Genome-wide association study reveals candidate genes for traits related to meat quality in Colombian Creole hair sheep. Trop Anim Health Prod 2023; 55:357. [PMID: 37823994 PMCID: PMC10570192 DOI: 10.1007/s11250-023-03688-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 07/06/2023] [Indexed: 10/13/2023]
Abstract
Genome-wide association studies (GWAS) allow identifying genomic regions related to traits of economic importance in animals of zootechnical interest. The objective of this research was to conduct a genome-wide association study on meat quality traits using the Illumina OvineSNPs50 BeadChip array. The animals were sampled in the departments of Córdoba, Cesar, and Valle del Cauca. The genotypes obtained with the Illumina OvineSNP50 BeadChip microarray were analyzed SNP (single-nucleotide polymorphism) data to conduct a GWAS for pH and water-holding capacity (WHC) traits measured after 7 days of maturation, in the Longissimus dorsi (LD) muscle, in 167 Creole hair sheep of 12 months old belonging to Pelibuey (CHSP, n = 60), Ethiopian (CHSE, n = 44), and Sudan (CHSS, n = 63) breeds. The GWAS was done using a mixed linear model (MLMA) and based on the Ovis aries v3.1 genome. The CHSE showed the lowest meat juice release and, consequently, the highest water-holding capacity (WHC = 30.6 ± 0.1), suggesting that this breed has better performance in the meat industry compared with CHSS (WHC = 41.7 ± 0.1) and CHSP (WHC = 36.8 ± 0.1), since there is a relationship between WHC and juiciness. For the character pH, it was not possible to annotate genes related to meat quality, while, for the WHC, they have obtained 11 candidate genes associated (ELOVL2, ARAP2, LOC101102527, SHOC2, AIPL1, CSRNP3, IFRD, KDM8, NANS, DAPK1, IBN2, TPM2). Particularly, ELOVL2, ARAP2, IBN2, and TPM2 genes are involved in muscle contraction and fatty acid composition in sheep. In this study, we generated a baseline for GWAS related to meat quality traits in Colombian Creole hair sheep that can be used for future genomic selection plans.
Collapse
Affiliation(s)
- Herman Alberto Revelo
- Grupo de Investigación de Recursos Zoogenéticos, Departamento de Ciencia Animal, Facultad de Ciencias Agropecuarias, Universidad Nacional de Colombia, 763533 Palmira, Colombia
- Present Address: Facultad de Medicina Veterinaria y Zootecnia, Universidad San Martin Cali Colombia, Carrera 122 #23-395 del, Vía Cali-Puerto Tejada, 760022 Cali, Colombia
| | - Diana López-Alvarez
- Grupo de Investigación de Recursos Zoogenéticos, Departamento de Ciencia Animal, Facultad de Ciencias Agropecuarias, Universidad Nacional de Colombia, 763533 Palmira, Colombia
- Grupo de Investigación en Diversidad Biológica, Departamento de Ciencias Biológicas, Facultad de Ciencias Agropecuarias, Universidad Nacional de Colombia, 763533 Palmira, Colombia
| | - Yineth Alexandra Palacios
- Grupo de Investigación de Recursos Zoogenéticos, Departamento de Ciencia Animal, Facultad de Ciencias Agropecuarias, Universidad Nacional de Colombia, 763533 Palmira, Colombia
| | - Oscar David Vergara
- Grupo de Investigación en Producción Animal Tropical, Universidad de Córdoba, 14014 Córdoba, Colombia
| | - Moris Bustamante Yánez
- Grupo de Investigación en Producción Animal Tropical, Universidad de Córdoba, 14014 Córdoba, Colombia
| | - Manuel Fernando Ariza
- Department of Animal Production, Universidad Nacional de Colombia, 111321 Bogotá D.C, Colombia
| | | | - Yurany Ortiz Sanchez
- Department of Animal Production, Universidad Nacional de Colombia, 111321 Bogotá D.C, Colombia
| | - Luz Ángela Alvarez
- Grupo de Investigación de Recursos Zoogenéticos, Departamento de Ciencia Animal, Facultad de Ciencias Agropecuarias, Universidad Nacional de Colombia, 763533 Palmira, Colombia
| |
Collapse
|
3
|
Listyarini K, Sumantri C, Rahayu S, Islam MA, Akter SH, Uddin MJ, Gunawan A. Hepatic Transcriptome Analysis Reveals Genes, Polymorphisms, and Molecules Related to Lamb Tenderness. Animals (Basel) 2023; 13:ani13040674. [PMID: 36830461 PMCID: PMC9951696 DOI: 10.3390/ani13040674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
Tenderness is a key meat quality trait that determines the public acceptance of lamb consumption, so genetic improvement toward lamb with higher tenderness is pivotal for a sustainable sheep industry. However, unravelling the genomics controlling the tenderness is the first step. Therefore, this study aimed to identify the transcriptome signatures and polymorphisms related to divergent lamb tenderness using RNA deep sequencing. Since the molecules and enzymes that control muscle growth and tenderness are metabolized and synthesized in the liver, hepatic tissues of ten sheep with divergent phenotypes: five high- and five low-lamb tenderness samples were applied for deep sequencing. Sequence analysis identified the number of reads ranged from 21.37 to 25.37 million bases with a mean value of 22.90 million bases. In total, 328 genes are detected as differentially expressed (DEGs) including 110 and 218 genes that were up- and down-regulated, respectively. Pathway analysis showed steroid hormone biosynthesis as the dominant pathway behind the lamb tenderness. Gene expression analysis identified the top high (such as TP53INP1, CYP2E1, HSD17B13, ADH1C, and LPIN1) and low (such as ANGPTL2, IGFBP7, FABP5, OLFML3, and THOC5) expressed candidate genes. Polymorphism and association analysis revealed that mutation in OLFML3, ANGPTL2, and THOC5 genes could be potential candidate markers for tenderness in sheep. The genes and pathways identified in this study cause variation in tenderness, thus could be potential genetic markers to improve meat quality in sheep. However, further validation is needed to confirm the effect of these markers in different sheep populations so that these could be used in a selection program for lamb with high tenderness.
Collapse
Affiliation(s)
- Kasita Listyarini
- Graduate School of Animal Production and Technology, Faculty of Animal Science, IPB University, Bogor 16680, Indonesia
| | - Cece Sumantri
- Department of Animal Production and Technology, Faculty of Animal Science, IPB University, Bogor 16680, Indonesia
| | - Sri Rahayu
- Department of Animal Production and Technology, Faculty of Animal Science, IPB University, Bogor 16680, Indonesia
| | - Md. Aminul Islam
- Immunogenomics and Alternative Medicine (IAM) Laboratory, Department of Medicine, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Syeda Hasina Akter
- Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Muhammad Jasim Uddin
- School of Veterinary Medicine, Murdoch University, Murdoch, WA 6150, Australia
- Center for Biosecurity and One Health, Harry Butler Institute, Murdoch University, Murdoch, WA 6150, Australia
- Correspondence: (M.J.U.); (A.G.)
| | - Asep Gunawan
- Department of Animal Production and Technology, Faculty of Animal Science, IPB University, Bogor 16680, Indonesia
- Correspondence: (M.J.U.); (A.G.)
| |
Collapse
|
4
|
The trehalose glycolipid C18Brar promotes antibody and T-cell immune responses to Mannheimia haemolytica and Mycoplasma ovipneumoniae whole cell antigens in sheep. PLoS One 2023; 18:e0278853. [PMID: 36656850 PMCID: PMC9851559 DOI: 10.1371/journal.pone.0278853] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 11/23/2022] [Indexed: 01/20/2023] Open
Abstract
Bronchopneumonia is a common respiratory disease in livestock. Mannheimia haemolytica is considered the main causative pathogen leading to lung damage in sheep, with Mycoplasma ovipneumoniae and ParaInfluenza virus type 3, combined with adverse physical and physiological stress, being predisposing factors. A balance of humoral and cellular immunity is thought to be important for protection against developing respiratory disease. In the current study, we compared the ability of the trehalose glycolipid adjuvant C18Brar (C18-alkylated brartemicin analogue) and three commercially available adjuvant systems i.e., Quil-A, Emulsigen-D, and a combination of Quil-A and aluminium hydroxide gel, to stimulate antibody and cellular immune responses to antigens from inactivated whole cells of M. haemolytica and M. ovipneumoniae in sheep. C18Brar and Emulsigen-D induced the strongest antigen-specific antibody responses to both M. haemolytica and M. ovipneumoniae, while C18Brar and Quil-A promoted the strongest antigen-specific IL-17A responses. The expression of genes with known immune functions was determined in antigen-stimulated blood cultures using Nanostring nCounter technology. The expression levels of CD40, IL22, TGFB1, and IL2RA were upregulated in antigen-stimulated blood cultures from animals vaccinated with C18Brar, which is consistent with T-cell activation. Collectively, the results demonstrate that C18Brar can promote both antibody and cellular responses, notably Th17 immune responses in a ruminant species.
Collapse
|
5
|
Sadeghi M, Bahrami A, Hasankhani A, Kioumarsi H, Nouralizadeh R, Abdulkareem SA, Ghafouri F, Barkema HW. lncRNA-miRNA-mRNA ceRNA Network Involved in Sheep Prolificacy: An Integrated Approach. Genes (Basel) 2022; 13:genes13081295. [PMID: 35893032 PMCID: PMC9332185 DOI: 10.3390/genes13081295] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/15/2022] [Accepted: 07/19/2022] [Indexed: 02/06/2023] Open
Abstract
Understanding the molecular pattern of fertility is considered as an important step in breeding of different species, and despite the high importance of the fertility, little success has been achieved in dissecting the interactome basis of sheep fertility. However, the complex mechanisms associated with prolificacy in sheep have not been fully understood. Therefore, this study aimed to use competitive endogenous RNA (ceRNA) networks to evaluate this trait to better understand the molecular mechanisms responsible for fertility. A competitive endogenous RNA (ceRNA) network of the corpus luteum was constructed between Romanov and Baluchi sheep breeds with either good or poor genetic merit for prolificacy using whole-transcriptome analysis. First, the main list of lncRNAs, miRNAs, and mRNA related to the corpus luteum that alter with the breed were extracted, then miRNA−mRNA and lncRNA−mRNA interactions were predicted, and the ceRNA network was constructed by integrating these interactions with the other gene regulatory networks and the protein−protein interaction (PPI). A total of 264 mRNAs, 14 lncRNAs, and 34 miRNAs were identified by combining the GO and KEGG enrichment analyses. In total, 44, 7, 7, and 6 mRNAs, lncRNAs, miRNAs, and crucial modules, respectively, were disclosed through clustering for the corpus luteum ceRNA network. All these RNAs involved in biological processes, namely proteolysis, actin cytoskeleton organization, immune system process, cell adhesion, cell differentiation, and lipid metabolic process, have an overexpression pattern (Padj < 0.01). This study increases our understanding of the contribution of different breed transcriptomes to phenotypic fertility differences and constructed a ceRNA network in sheep (Ovis aries) to provide insights into further research on the molecular mechanism and identify new biomarkers for genetic improvement.
Collapse
Affiliation(s)
- Masoumeh Sadeghi
- Environmental Health, Zahedan University of Medical Sciences, Zahedan 98, Iran;
| | - Abolfazl Bahrami
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj 31, Iran; (A.H.); (F.G.)
- Biomedical Center for Systems Biology Science Munich, Ludwig-Maximilians-University, 80333 Munich, Germany
- Correspondence: (A.B.); (R.N.); Tel.: +98-9199300065 (A.B.)
| | - Aliakbar Hasankhani
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj 31, Iran; (A.H.); (F.G.)
| | - Hamed Kioumarsi
- Department of Animal Science Research, Gilan Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Rasht 43, Iran;
| | - Reza Nouralizadeh
- Department of Food and Drug Control, Faculty of Pharmacy, Jundishapour University of Medical Sciences, Ahvaz 63, Iran
- Correspondence: (A.B.); (R.N.); Tel.: +98-9199300065 (A.B.)
| | - Sarah Ali Abdulkareem
- Department of Computer Science, Al-Turath University College, Al Mansour, Baghdad 10011, Iraq;
| | - Farzad Ghafouri
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj 31, Iran; (A.H.); (F.G.)
| | - Herman W. Barkema
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N4Z6, Canada;
| |
Collapse
|
6
|
Zhang X, Zhang C, Yang C, Kuang L, Zheng J, Tang L, Lei M, Li C, Ren Y, Guo Z, Ji Y, Deng X, Huang D, Wang G, Xie X. Circular RNA, microRNA and Protein Profiles of the Longissimus Dorsi of Germany ZIKA and Sichuan White Rabbits. Front Genet 2022; 12:777232. [PMID: 35003217 PMCID: PMC8740122 DOI: 10.3389/fgene.2021.777232] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/29/2021] [Indexed: 12/13/2022] Open
Abstract
Due to the dietetic properties and remarkable nutritive value of rabbit meat, its industry is increasing rapidly. However, the association between circular RNAs, microRNAs, and proteins and muscle fiber type, and meat quality of rabbit is still unknown. Here, using deep sequencing and iTRAQ proteomics technologies we first identified 3159 circRNAs, 356 miRNAs, and 755 proteins in the longissimus dorsi tissues from Sichuan white (SCWrabs) and Germany great line ZIKA rabbits (ZIKArabs). Next, we identified 267 circRNAs, 3 miRNAs, and 29 proteins differentially expressed in the muscle tissues of SCWrabs and ZIKArabs. Interaction network analysis revealed some key regulation relationships between noncoding RNAs and proteins that might be associated with the muscle fiber type and meat quality of rabbit. Further, miRNA isoforms and gene variants identified in SCWrabs and ZIKArabs revealed some pathways and biological processes related to the muscle development. This is the first study of noncoding RNA and protein profiles for the two rabbit breeds. It provides a valuable resource for future studies in rabbits and will improve our understanding of the molecular regulation mechanisms in the muscle development of livestock. More importantly, the output of our study will benefit the researchers and producers in the rabbit breeding program.
Collapse
Affiliation(s)
- Xiangyu Zhang
- Sichuan Animal Sciences Academy, Chengdu, China.,Animal Breeding and Genetics Key Laboratory of Sichuan Province, Chengdu, China
| | - Cuixia Zhang
- Sichuan Animal Sciences Academy, Chengdu, China.,Animal Breeding and Genetics Key Laboratory of Sichuan Province, Chengdu, China
| | - Chao Yang
- Sichuan Animal Sciences Academy, Chengdu, China.,Animal Breeding and Genetics Key Laboratory of Sichuan Province, Chengdu, China
| | - Liangde Kuang
- Sichuan Animal Sciences Academy, Chengdu, China.,Animal Breeding and Genetics Key Laboratory of Sichuan Province, Chengdu, China
| | - Jie Zheng
- Sichuan Animal Sciences Academy, Chengdu, China.,Animal Breeding and Genetics Key Laboratory of Sichuan Province, Chengdu, China
| | - Li Tang
- Sichuan Animal Sciences Academy, Chengdu, China.,Animal Breeding and Genetics Key Laboratory of Sichuan Province, Chengdu, China
| | - Min Lei
- Sichuan Animal Sciences Academy, Chengdu, China.,Animal Breeding and Genetics Key Laboratory of Sichuan Province, Chengdu, China
| | - Congyan Li
- Sichuan Animal Sciences Academy, Chengdu, China.,Animal Breeding and Genetics Key Laboratory of Sichuan Province, Chengdu, China
| | - Yongjun Ren
- Sichuan Animal Sciences Academy, Chengdu, China.,Animal Breeding and Genetics Key Laboratory of Sichuan Province, Chengdu, China
| | - Zhiqiang Guo
- Sichuan Animal Sciences Academy, Chengdu, China.,Animal Breeding and Genetics Key Laboratory of Sichuan Province, Chengdu, China
| | - Yang Ji
- Sichuan Animal Sciences Academy, Chengdu, China.,Animal Breeding and Genetics Key Laboratory of Sichuan Province, Chengdu, China
| | | | - Dengping Huang
- Sichuan Animal Sciences Academy, Chengdu, China.,Animal Breeding and Genetics Key Laboratory of Sichuan Province, Chengdu, China
| | - Gaofu Wang
- Chongqing Academy of Animal Sciences, Chongqing, China
| | - Xiaohong Xie
- Sichuan Animal Sciences Academy, Chengdu, China.,Animal Breeding and Genetics Key Laboratory of Sichuan Province, Chengdu, China
| |
Collapse
|
7
|
Pazzola M, Vacca GM, Paschino P, Bittante G, Dettori ML. Novel Genes Associated with Dairy Traits in Sarda Sheep. Animals (Basel) 2021; 11:ani11082207. [PMID: 34438665 PMCID: PMC8388407 DOI: 10.3390/ani11082207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/09/2021] [Accepted: 07/23/2021] [Indexed: 11/16/2022] Open
Abstract
The aim of the present research was to analyze the variability of 45 SNPs from different genes involved in metabolism and innate immunity to perform an association analysis with the milk yield, composition and milk coagulation traits. A population of 1112 Sarda breed sheep was sampled. Genotyping was generated by a TaqMan Open ArrayTM. Thirty out of the 45 SNPs were polymorphic, and 12 displayed a minor allele frequency higher than 0.05. An association analysis showed that the variability at genes PRKAG3 and CD14 was significantly associated with the daily milk yield. The variability at PRKAG3 was also associated with the protein and casein content, somatic cell score and bacterial score. The variation at the PRKAA2 gene was associated with the milk lactose concentration. The SNPs at CD14 were also associated with the traditional milk coagulation properties, while the SNPs at GHR and GHRHR were associated with kSR, a derived coagulation parameter related to the rate of syneresis. The information provided here is new and increases our knowledge of genotype-phenotype interactions in sheep. Our findings might be useful in appropriate breeding schemes to be set up for the Sarda sheep breed, but these should be confirmed by further studies, possibly performed on independent populations.
Collapse
Affiliation(s)
- Michele Pazzola
- Department of Veterinary Medicine, University of Sassari, Via Vienna 2, 07100 Sassari, SS, Italy; (M.P.); (P.P.); (M.L.D.)
| | - Giuseppe Massimo Vacca
- Department of Veterinary Medicine, University of Sassari, Via Vienna 2, 07100 Sassari, SS, Italy; (M.P.); (P.P.); (M.L.D.)
- Correspondence: ; Tel.: +39-079229442
| | - Pietro Paschino
- Department of Veterinary Medicine, University of Sassari, Via Vienna 2, 07100 Sassari, SS, Italy; (M.P.); (P.P.); (M.L.D.)
| | - Giovanni Bittante
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Viale dell’Università 16, 35020 Legnaro, PD, Italy;
| | - Maria Luisa Dettori
- Department of Veterinary Medicine, University of Sassari, Via Vienna 2, 07100 Sassari, SS, Italy; (M.P.); (P.P.); (M.L.D.)
| |
Collapse
|
8
|
Key Genes Regulating Skeletal Muscle Development and Growth in Farm Animals. Animals (Basel) 2021; 11:ani11030835. [PMID: 33809500 PMCID: PMC7999090 DOI: 10.3390/ani11030835] [Citation(s) in RCA: 106] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 03/08/2021] [Accepted: 03/12/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Skeletal muscle mass is an important economic trait, and muscle development and growth is a crucial factor to supply enough meat for human consumption. Thus, understanding (candidate) genes regulating skeletal muscle development is crucial for understanding molecular genetic regulation of muscle growth and can be benefit the meat industry toward the goal of increasing meat yields. During the past years, significant progress has been made for understanding these mechanisms, and thus, we decided to write a comprehensive review covering regulators and (candidate) genes crucial for muscle development and growth in farm animals. Detection of these genes and factors increases our understanding of muscle growth and development and is a great help for breeders to satisfy demands for meat production on a global scale. Abstract Farm-animal species play crucial roles in satisfying demands for meat on a global scale, and they are genetically being developed to enhance the efficiency of meat production. In particular, one of the important breeders’ aims is to increase skeletal muscle growth in farm animals. The enhancement of muscle development and growth is crucial to meet consumers’ demands regarding meat quality. Fetal skeletal muscle development involves myogenesis (with myoblast proliferation, differentiation, and fusion), fibrogenesis, and adipogenesis. Typically, myogenesis is regulated by a convoluted network of intrinsic and extrinsic factors monitored by myogenic regulatory factor genes in two or three phases, as well as genes that code for kinases. Marker-assisted selection relies on candidate genes related positively or negatively to muscle development and can be a strong supplement to classical selection strategies in farm animals. This comprehensive review covers important (candidate) genes that regulate muscle development and growth in farm animals (cattle, sheep, chicken, and pig). The identification of these genes is an important step toward the goal of increasing meat yields and improves meat quality.
Collapse
|
9
|
Expression patterns and genetic variation of the ovine skeletal muscle transcriptome of sheep from five Spanish meat breeds. Sci Rep 2018; 8:10486. [PMID: 29993012 PMCID: PMC6041298 DOI: 10.1038/s41598-018-28760-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 06/22/2018] [Indexed: 01/29/2023] Open
Abstract
The goal of the current study is to analyse the gene expression profile of the ovine skeletal muscle as well as to characterize the genetic variation of transcripts expressed in such tissue. This aim has been achieved by sequencing the longissimus dorsi transcriptomes of 50 sheep distributed in five pools representing the Canaria de Pelo, Roja Mallorquina, Gallega, Xisqueta and Ripollesa Spanish autochthonous breeds. Approximately, 363 million reads per pool have been produced and 71.9–82.9% have been successfully mapped to the ovine genome in a paired-end mode (2 × 75 bp). The 200 most expressed muscle transcripts (≈1% of the total transcript count) account for 51% (Canaria de Pelo) to 67% (Gallega) of the total ovine skeletal muscle mRNA expression. These highly expressed genes play key roles in pathways related with striated muscle contraction, gluconeogenesis, glycolysis, citric acid cycle and respiratory electron transport. RNA-Sequencing of muscle transcripts has also revealed that ~72% of the SNPs detected with this approach are shared by at least two pools, and 10% of them segregate in the five pools under analysis. Most of the substitutions detected by RNA-Seq are synonymous or missense and only a minority are predicted to have consequences on protein function.
Collapse
|