1
|
Wei J, Zhang Q, Yin Y, Peng K, Wang L, Cai Y, Gong Z. Limited Impacts of Water Diversion on Micro-eukaryotic Community along the Eastern Route of China's South-to-North Water Diversion Project. WATER RESEARCH 2024; 262:122109. [PMID: 39096537 DOI: 10.1016/j.watres.2024.122109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/11/2024] [Accepted: 07/15/2024] [Indexed: 08/05/2024]
Abstract
The Eastern Route of the South-to-North Water Diversion Project (ER-SNWDP) represents a crucial initiative aimed at alleviating water scarcity in China's northern region. Understanding the dynamics governing the composition and assembly processes of micro-eukaryotic communities within the canal during different water diversion periods holds paramount significance for the effective management of the ER-SNWDP. Our study systematically tracks the dynamics of the micro-eukaryotic community and its assembly processes along the 1045.4 km of canals and four impounded lakes, totaling 3455 km2, constituting the ER-SNWDP during a complete water diversion cycle, utilizing high-throughput sequencing, bioinformatics tools, and null modeling algorithms. The primary objectives of this study are to elucidate the spatial-temporal succession of micro-eukaryotic communities as the water diversion progresses, to delineate the relative importance of deterministic and stochastic processes in community assembly, and to identify the pivotal factors driving changes in micro-eukaryotic communities. Our findings indicate notable variations in the composition and diversity of micro-eukaryotic communities within the ER-SNWDP across different water diversion periods and geographic locations (P < 0.05). This variation is influenced by a confluence of temporal and environmental factors, with limited impacts from water diversion. In essence, the assembly of micro-eukaryotic communities within the ER-SNWDP primarily stemmed from heterogeneous selection driven by deterministic processes. Water diversion exhibited a tendency to decrease community beta diversity while augmenting the influence of stochastic processes in community assembly, albeit this effect attenuated over time. Furthermore, our analysis identified several pivotal environmental parameters, notably including nitrite-nitrogen, nitrate-nitrogen, orthophosphate, and water temperature, as exerting significant effects on micro-eukaryotic communities across different water diversion periods. Collectively, our study furnishes the inaugural comprehensive exploration of the dynamics, assembly processes, and influencing factors governing micro-eukaryotic communities within the ER-SNWDP, thus furnishing indispensable insights to inform the water quality management of this important project.
Collapse
Affiliation(s)
- Jiahao Wei
- School of Geography and Ocean Science, Nanjing University, Nanjing 210023, China; Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingji Zhang
- School of Geography and Ocean Science, Nanjing University, Nanjing 210023, China; Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yi Yin
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kai Peng
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Lachun Wang
- School of Geography and Ocean Science, Nanjing University, Nanjing 210023, China
| | - Yongjiu Cai
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Zhijun Gong
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Huang W, Li S, Li S, Laanbroek HJ, Zhang Q. Pro- and eukaryotic keystone taxa as potential bio-indicators for the water quality of subtropical Lake Dongqian. Front Microbiol 2023; 14:1151768. [PMID: 37180236 PMCID: PMC10169824 DOI: 10.3389/fmicb.2023.1151768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 04/04/2023] [Indexed: 05/16/2023] Open
Abstract
The microbial community plays an important role in the biogeochemical cycles in water aquatic ecosystems, and it is regulated by environmental variables. However, the relationships between microbial keystone taxa and water variables, which play a pivotal role in aquatic ecosystems, has not been clarified in detail. We analyzed the seasonal variation in microbial communities and co-occurrence network in the representative areas taking Lake Dongqian as an example. Both pro- and eukaryotic community compositions were more affected by seasons than by sites, and the prokaryotes were more strongly impacted by seasons than the eukaryotes. Total nitrogen, pH, temperature, chemical oxygen demand, dissolved oxygen and chlorophyll a significantly affected the prokaryotic community, while the eukaryotic community was significantly influenced by total nitrogen, ammonia, pH, temperature and dissolved oxygen. The eukaryotic network was more complex than that of prokaryotes, whereas the number of eukaryotic keystone taxa was less than that of prokaryotes. The prokaryotic keystone taxa belonged mainly to Alphaproteobacteria, Betaproteobacteria, Actinobacteria and Bacteroidetes. It is noteworthy that some of the keystone taxa involved in nitrogen cycling are significantly related to total nitrogen, ammonia, temperature and chlorophyll a, including Polaromonas, Albidiferax, SM1A02 and Leptolyngbya so on. And the eukaryotic keystone taxa were found in Ascomycota, Choanoflagellida and Heterophryidae. The mutualistic pattern between pro- and eukaryotes was more evident than the competitive pattern. Therefore, it suggests that keystone taxa could be as bio-indicators of aquatic ecosystems.
Collapse
Affiliation(s)
- Weihong Huang
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou, China
| | - Shuantong Li
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou, China
| | - Saisai Li
- Zhejiang Wanli University, Ningbo, China
| | - Hendrikus J. Laanbroek
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, Netherlands
- Ecology and Biodiversity Group, Department of Biology, Utrecht University, Utrecht, Netherlands
| | - Qiufang Zhang
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou, China
| |
Collapse
|
3
|
Yue Y, Wang F, Pan J, Chen XP, Tang Y, Yang Z, Ma J, Li M, Yang M. Spatiotemporal dynamics, community assembly and functional potential of sedimentary archaea in reservoirs: coaction of stochasticity and nutrient load. FEMS Microbiol Ecol 2022; 98:6701916. [PMID: 36111740 DOI: 10.1093/femsec/fiac109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 08/16/2022] [Accepted: 09/14/2022] [Indexed: 01/21/2023] Open
Abstract
Archaea participate in biogeochemical cycles in aquatic ecosystems, and deciphering their community dynamics and assembly mechanisms is key to understanding their ecological functions. Here, sediments from 12 selected reservoirs from the Wujiang and Pearl River basins in southwest China were investigated using 16S rRNA Illumina sequencing and quantitative PCR for archaeal abundance and richness in all seasons. Generally, archaeal abundance and α-diversity were significantly correlated with temperature; however, β-diversity analysis showed that community structures varied greatly among locations rather than seasons, indicating a distance-decay pattern with geographical variation. The null model revealed the major contribution of stochasticity to archaeal community assembly, which was further confirmed by the neutral community model that could explain 71.7% and 90.2% of the variance in archaeal assembly in the Wujiang and Pearl River basins, respectively. Moreover, sediment total nitrogen and organic carbon levels were significantly correlated with archaeal abundance and α-diversity. Interestingly, these nutrient levels were positively and negatively correlated, respectively, with the abundance of methanogenic and ammonia-oxidized archaea: the dominant sedimentary archaea in these reservoirs. Taken together, this work systematically characterized archaeal community profiles in reservoir sediments and demonstrated the combined action of stochastic processes and nutrient load in shaping archaeal communities in reservoir ecosystems.
Collapse
Affiliation(s)
- Yihong Yue
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Fushun Wang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Jie Pan
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, 518060, China.,Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Xue-Ping Chen
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Yi Tang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Zhihong Yang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Jing Ma
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Meng Li
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, 518060, China.,Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Ming Yang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| |
Collapse
|
4
|
Rangaswamy B, Ji CW, Kim WS, Park JW, Kim YJ, Kwak IS. Profiling Analysis of Filter Feeder Polypedilum (Chironomidae) Gut Contents Using eDNA Metabarcoding Following Contrasting Habitat Types-Weir and Stream. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:10945. [PMID: 36078662 PMCID: PMC9517803 DOI: 10.3390/ijerph191710945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/23/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023]
Abstract
We analyzed the dietary composition of Polypedilum larvae among two contrasting habitats (river and weir). Our approach was (i) to apply eDNA-based sampling to reveal the gut content of the chironomid larvae, (ii) the diversity of gut contents in the two aquatic habitats, and (iii) assessment of habitat sediment condition with the food sources in the gut. The most abundant food was Chlorophyta in the gut of the river (20%) and weir (39%) chironomids. The average ratio of fungi, protozoa, and zooplankton in river chironomids gut was 5.9%, 7.2%, and 3.8%, while it was found decreased to 1.2%, 2.5%, and 0.1% in weir chironomids. Aerobic fungi in river midge guts were 3.6% and 10.34% in SC and IS, while they were in the range of 0.34-2.58% in weir midges. The hierarchical clustering analysis showed a relationship of environmental factors with food contents. Abiotic factors (e.g., pH) in the river and weir habitats correlated the clustered pattern with phytoplankton and minor groups of fungi. This study could help understand the food source diversity in the chironomid and habitat environmental conditions by using eDNA metabarcoding as an effective tool to determine dietary composition.
Collapse
Affiliation(s)
- Boobal Rangaswamy
- Fisheries Science Institute, Chonnam National University, Yeosu 59626, Korea
| | - Chang Woo Ji
- Fisheries Science Institute, Chonnam National University, Yeosu 59626, Korea
| | - Won-Seok Kim
- Department of Ocean Integrated Science, Chonnam National University, Yeosu 59626, Korea
| | - Jae-Won Park
- Department of Ocean Integrated Science, Chonnam National University, Yeosu 59626, Korea
| | - Yong Jun Kim
- Department of Ocean Integrated Science, Chonnam National University, Yeosu 59626, Korea
| | - Ihn-Sil Kwak
- Fisheries Science Institute, Chonnam National University, Yeosu 59626, Korea
- Department of Ocean Integrated Science, Chonnam National University, Yeosu 59626, Korea
| |
Collapse
|
5
|
Wang J, Zhang C, Xiong L, Song G, Liu F. Changes of antibiotic occurrence and hydrochemistry in groundwater under the influence of the South-to-North Water Diversion (the Hutuo River, China). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 832:154779. [PMID: 35339547 DOI: 10.1016/j.scitotenv.2022.154779] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/19/2022] [Accepted: 03/19/2022] [Indexed: 06/14/2023]
Abstract
The occurrence of antibiotics in groundwater has significant spatial variability, owing to the complexity of pollutant properties, pollution sources and groundwater recharge and discharge conditions. This study aimed to identify the relationship between antibiotic occurrence and hydrochemistry in groundwater. Thus, we undertook this study in a characteristic alluvial-diluvial aquifer where groundwater receives unidirectional recharge from surface water. In total, 47 samples were collected from the Hutuo River before and after an artificial replenishment project. We screened up to four classes of antibiotics and detected 28 types. The statistical analysis of antibiotic concentrations, indicated that there were two pollution areas. Next, we discussed the results pertaining to the occurrence and source of antibiotics by comparing them with hydrochemical data. In the study area, a positive correlation has been found between inorganic compounds, as SO42- and Cl-, and the most mobile antibiotics given that both share the same source. This shows that a previous sound geochemical study may provide evidence of the extend of antibiotic occurrence, as in the Hutuo River aquifer. The relationship between antibiotics and hydrochemistry in groundwater is determined by recharge sources (rainwater and surface water contaminated with antibiotics). Antibiotics from wastewater treatment plants enter groundwater indirectly through surface water with high SO42- in lightly polluted areas, while in heavily polluted areas, there are high concentrations of inorganic components in garbage leachate and wastewater leakage that carry antibiotics directly into groundwater. In summarized, the relationship between antibiotics and hydrochemistry observed in this study shows that a previous sound geochemical study may provide evidence of the extend of antibiotic occurrence.
Collapse
Affiliation(s)
- Jialin Wang
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, PR China; Beijing Key Laboratory of Water Resources and Environmental Engineering, China University of Geosciences (Beijing), Beijing, PR China
| | - Chong Zhang
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, PR China; Beijing Key Laboratory of Water Resources and Environmental Engineering, China University of Geosciences (Beijing), Beijing, PR China
| | - Ling Xiong
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, PR China; Beijing Key Laboratory of Water Resources and Environmental Engineering, China University of Geosciences (Beijing), Beijing, PR China
| | - Guangdong Song
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, PR China; Beijing Key Laboratory of Water Resources and Environmental Engineering, China University of Geosciences (Beijing), Beijing, PR China
| | - Fei Liu
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, PR China; Beijing Key Laboratory of Water Resources and Environmental Engineering, China University of Geosciences (Beijing), Beijing, PR China.
| |
Collapse
|
6
|
Li Y, Khan FH, Wu J, Zhang Y, Jiang Y, Chen X, Yao Y, Pan Y, Han X. Drivers of Spatiotemporal Eukaryote Plankton Distribution in a Trans-Basin Water Transfer Canal in China. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.899993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Planktonic eukaryotes are important components of aquatic ecosystems, and analyses of the whole eukaryotic planktonic community composition and function have far-reaching significance for water resource management. We aimed to understand the spatiotemporal variation and drivers of eukaryotic plankton distribution in the Middle Route Project of the South-to-North Water Diversion in Henan Province, China. Specifically, we examined planktonic assemblages and water quality at five stations along the canal and another one located before the dam in March, June, September, and December 2019. High-throughput sequencing revealed that the eukaryotic plankton community was primarily composed of 53 phyla, 200 genera, and 277 species, with Cryptophyta, Ciliophora, and norank_k_Cryptophyta being the dominant phyla. Redundancy analysis of the eukaryotic community and environmental factors showed that five vital factors affecting eukaryotic plankton distribution were oxidation-reduction potential, nitrate nitrogen, pH, total phosphorus, and water flow velocity. Furthermore, the geographical distribution of eukaryotic communities was consistent with the distance decay model. Importantly, environmental selection dominantly shaped the geographical distribution of the eukaryotic community. In summary, our study elucidates the ecological response of planktonic eukaryotes by identifying the diversity and ecological distribution of planktonic eukaryotes in trans-basin diversion channels.
Collapse
|
7
|
Chen ZJ, Liu YQ, Li YY, Lin LA, Zheng BH, Ji MF, Li BL, Han XM. The Seasonal Patterns, Ecological Function and Assembly Processes of Bacterioplankton Communities in the Danjiangkou Reservoir, China. Front Microbiol 2022; 13:884765. [PMID: 35783417 PMCID: PMC9240478 DOI: 10.3389/fmicb.2022.884765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 05/24/2022] [Indexed: 11/13/2022] Open
Abstract
As the water source for the Middle Route Project of the South-to-North Water Diversion Project (MR-SNWD) of China, the Danjiangkou Reservoir (DJR) is in the process of ecosystem reassembly, but the composition, function, and assembly mechanisms of bacterioplankton communities are not yet clear. In this study, the composition, distribution characteristics and influencing factors of bacterioplankton communities were analyzed by high-throughput sequencing (HTS); PICRUSt2 was used to predict community function; a molecular ecological network was used to analyze bacterioplankton interactions; and the assembly process of bacterioplankton communities was estimated with a neutral model. The results indicated that the communities, function and interaction of bacterioplankton in the DJR had significant annual and seasonal variations and that the seasonal differences were greater than that the annual differences. Excessive nitrogen (N) and phosphorus (P) nutrients in the DJR are the most important factors affecting water quality in the reservoir, N and P nutrients are the main factors affecting bacterial communities. Season is the most important factor affecting bacterioplankton N and P cycle functions. Ecological network analysis indicated that the average clustering coefficient and average connectivity of the spring samples were lower than those of the autumn samples, while the number of modules for the spring samples was higher than that for the autumn samples. The neutral model explained 66.3%, 63.0%, 63.0%, and 70.9% of the bacterioplankton community variations in samples in the spring of 2018, the autumn of 2018, the spring of 2019, and the autumn of 2019, respectively. Stochastic processes dominate bacterioplankton community assembly in the DJR. This study revealed the composition, function, interaction, and assembly of bacterioplankton communities in the DJR, providing a reference for the protection of water quality and the ecological functions of DJR bacterioplankton.
Collapse
Affiliation(s)
- Zhao-Jin Chen
- International Joint Laboratory of Watershed Ecological Security and Collaborative Innovation Center of Water Security for Water Source Region of Middle Route Project of South-North Water Diversion in Henan Province, School of Water Resource and Environmental Engineering, Nanyang Normal University, Nanyang, China
| | - Yong-Qi Liu
- International Joint Laboratory of Watershed Ecological Security and Collaborative Innovation Center of Water Security for Water Source Region of Middle Route Project of South-North Water Diversion in Henan Province, School of Water Resource and Environmental Engineering, Nanyang Normal University, Nanyang, China
| | - Yu-Ying Li
- International Joint Laboratory of Watershed Ecological Security and Collaborative Innovation Center of Water Security for Water Source Region of Middle Route Project of South-North Water Diversion in Henan Province, School of Water Resource and Environmental Engineering, Nanyang Normal University, Nanyang, China
| | - Li-An Lin
- International Joint Laboratory of Watershed Ecological Security and Collaborative Innovation Center of Water Security for Water Source Region of Middle Route Project of South-North Water Diversion in Henan Province, School of Water Resource and Environmental Engineering, Nanyang Normal University, Nanyang, China
| | - Bao-Hai Zheng
- International Joint Laboratory of Watershed Ecological Security and Collaborative Innovation Center of Water Security for Water Source Region of Middle Route Project of South-North Water Diversion in Henan Province, School of Water Resource and Environmental Engineering, Nanyang Normal University, Nanyang, China
| | - Ming-Fei Ji
- International Joint Laboratory of Watershed Ecological Security and Collaborative Innovation Center of Water Security for Water Source Region of Middle Route Project of South-North Water Diversion in Henan Province, School of Water Resource and Environmental Engineering, Nanyang Normal University, Nanyang, China
| | - B. Larry Li
- Ecological Complexity and Modelling Laboratory, Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA, United States
| | - Xue-Mei Han
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, College of Life Sciences, Hainan Normal University, Haikou, China
| |
Collapse
|
8
|
Jing Z, Chen H, Cao H, Tang X, Shang Y, Liang Y, Luo P, Luo H. Spatial and temporal characteristics, influencing factors and prediction models of water quality and algae in early stage of Middle Route of South-North Water Diversion Project. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:23520-23544. [PMID: 34807380 DOI: 10.1007/s11356-021-16917-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 10/03/2021] [Indexed: 06/13/2023]
Abstract
The Middle Route (MR) of the South-to-North Water Diversion Project (SNWDP) of China is one of the world's largest inter-basin water diversion projects. As an important source of drinking water in North China, its water quality safety determines the success or failure of a sizable water supply. At present, there is a lack of in-depth and systematic understanding of the interaction between hydrodynamics and the water environment as well as water ecological processes in the main canal at the early stages of operation. It is not currently possible to accurately predict water quality and algae status at the early stage of canal ecosystem succession. Change trends and distribution characteristics of the main water ecological environment elements in the main canal at the early MR stage are analyzed in this study. The main factors influencing algae are investigated by principal component analysis (PCA) to characterize the water quality and algae transport distribution in the main MR canal under the complex multi-sluice joint dispatching conditions. The relationship between environmental factors, hydrodynamic, water quality, and algae in the coupled canal-sluice system in the SNWDP MR is determined. Algae distributions under different water transmission conditions in a typical canal section are predicted accordingly. CODMn and algal density in the main canal are shown to increase from south to north along the canal. DO decreases from south to north; other water quality indexes do not significantly differ from north to south. Algal density along the canal differs to the greatest extent in summer, followed by spring and autumn, and is the weakest in winter. The predicted algae densities in the main canal under different water conveying conditions show that single sluice control and strong water flow from Taocha Head Section increase the flow velocity after passing through the sluice with a fixed opening. Algal density decreases flow rate increases under single sluice regulation conditions. The maximum rate of algal density change reaches 22.13% and 29.55% under double sluice and four sluice scheduling. Algae control effects grow significantly as the number of control sluices increases. The results of this work may provide technical support for water quality forecasting and algae risk warning in the SNWDP MR as well as a workable reference for similar projects.
Collapse
Affiliation(s)
- Zheng Jing
- Watershed Water Environment Institute, Changjiang River Scientific Research Institute, Wuhan, 430010, China
- Hubei Key Laboratory of Watershed Water Resources and Ecological Environment Science, Wuhan, 430010, China
| | - Hao Chen
- Watershed Water Environment Institute, Changjiang River Scientific Research Institute, Wuhan, 430010, China
| | - Huiqun Cao
- Watershed Water Environment Institute, Changjiang River Scientific Research Institute, Wuhan, 430010, China.
- Hubei Key Laboratory of Watershed Water Resources and Ecological Environment Science, Wuhan, 430010, China.
- Construction and Administration Bureau of the Middle Route of the South-To-North Water Diversion Project, Beijing, 100038, China.
- School of Hydrology and Water Resources, Hohai University, Nanjing, 210098, China.
| | - Xianqiang Tang
- Watershed Water Environment Institute, Changjiang River Scientific Research Institute, Wuhan, 430010, China
- Hubei Key Laboratory of Watershed Water Resources and Ecological Environment Science, Wuhan, 430010, China
| | - Yuming Shang
- Construction and Administration Bureau of the Middle Route of the South-To-North Water Diversion Project, Beijing, 100038, China
| | - Yuhan Liang
- School of Hydrology and Water Resources, Hohai University, Nanjing, 210098, China
| | - Ping'an Luo
- Watershed Water Environment Institute, Changjiang River Scientific Research Institute, Wuhan, 430010, China
- Hubei Key Laboratory of Watershed Water Resources and Ecological Environment Science, Wuhan, 430010, China
| | - Huiping Luo
- Watershed Water Environment Institute, Changjiang River Scientific Research Institute, Wuhan, 430010, China
- Hubei Key Laboratory of Watershed Water Resources and Ecological Environment Science, Wuhan, 430010, China
| |
Collapse
|
9
|
Liu Q, Lai Z, Wang C, Ni J, Gao Y. Seasonal variation significantly affected bacterioplankton and eukaryoplankton community composition in Xijiang River, China. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:55. [PMID: 34988711 DOI: 10.1007/s10661-021-09712-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 12/23/2021] [Indexed: 06/14/2023]
Abstract
Both bacterioplankton and eukaryoplankton communities play important roles in the geochemical cycles and energy flows of river ecosystems. However, whether a seasonal change in bacterioplankton and eukaryoplankton communities is synchronous remains unclear. To test the synchronicity and analyze how physical and chemical environmental factors affect these communities, we compared bacterioplankton and eukaryoplankton communities in surface water samples between March (dry season) and June (rainfall season) considering water environmental factors. Our results showed that there was no significant difference in operational taxonomic unit number, Shannon index, and Chao1 index in bacterioplankton and eukaryoplankton communities between March and June. However, principal component analysis showed that the communities were significantly different between the sampling times and sampling sites. Water temperature (WT), oxidation-reduction potential (ORP), water transparency (SD), NO3-N, and NH3 significantly influenced bacterioplankton communities, and WT, SD, ORP, and NH4-N significantly influenced eukaryoplankton communities in the river. These results implied that compared with the sampling sites, sampling times more significantly affected the bacterioplankton and eukaryoplankton river communities by influencing WT, ORP, SD, and nitrogen forms.
Collapse
Affiliation(s)
- Qianfu Liu
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
- Guangzhou Scientific Observing and Experimental Station of National Fisheries Resources and Environment, Guangzhou, 510380, China
- Fishery Ecological Environment Monitoring Center of Pearl River Basin, Ministry of Agriculture and Rural Affairs, Guangzhou, 510380, China
- Guangdong Provincial Key Laboratory of Aquatic Animal Immune Technology, Guangzhou, 510380, China
| | - Zini Lai
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
- Guangzhou Scientific Observing and Experimental Station of National Fisheries Resources and Environment, Guangzhou, 510380, China
- Fishery Ecological Environment Monitoring Center of Pearl River Basin, Ministry of Agriculture and Rural Affairs, Guangzhou, 510380, China
- Guangdong Provincial Key Laboratory of Aquatic Animal Immune Technology, Guangzhou, 510380, China
| | - Chao Wang
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
- Guangzhou Scientific Observing and Experimental Station of National Fisheries Resources and Environment, Guangzhou, 510380, China
- Fishery Ecological Environment Monitoring Center of Pearl River Basin, Ministry of Agriculture and Rural Affairs, Guangzhou, 510380, China
- Guangdong Provincial Key Laboratory of Aquatic Animal Immune Technology, Guangzhou, 510380, China
| | - Jiajia Ni
- Research and Development Center, Guangdong Meilikang Bio-Science Ltd, Dongguan, 523808, China
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Medical University, Dongguan, 523808, China
| | - Yuan Gao
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China.
- Guangzhou Scientific Observing and Experimental Station of National Fisheries Resources and Environment, Guangzhou, 510380, China.
- Fishery Ecological Environment Monitoring Center of Pearl River Basin, Ministry of Agriculture and Rural Affairs, Guangzhou, 510380, China.
- Guangdong Provincial Key Laboratory of Aquatic Animal Immune Technology, Guangzhou, 510380, China.
| |
Collapse
|
10
|
Zhang L, Yin W, Wang C, Zhang A, Zhang H, Zhang T, Ju F. Untangling Microbiota Diversity and Assembly Patterns in the World's Largest Water Diversion Canal. WATER RESEARCH 2021; 204:117617. [PMID: 34555587 DOI: 10.1016/j.watres.2021.117617] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 06/13/2023]
Abstract
Large water diversion projects are important constructions for reallocation of human-essential water resources. Deciphering microbiota dynamics and assembly mechanisms underlying canal water ecosystem services especially during long-distance diversion is a prerequisite for water quality monitoring, biohazard warning and sustainable management. Using a 1432-km canal of the South-to-North Water Diversion Projects as a model system, we answer three central questions: how bacterial and micro-eukaryotic communities spatio-temporally develop, how much ecological stochasticity contributes to microbiota assembly, and which immigrating populations better survive and navigate across the canal. We applied quantitative ribosomal RNA gene sequence analyses to investigate canal water microbial communities sampled over a year, as well as null model- and neutral model-based approaches to disentangle the microbiota assembly processes. Our results showed clear microbiota dynamics in community composition driven by seasonality more than geographic location, and seasonally dependent influence of environmental parameters. Overall, bacterial community was largely shaped by deterministic processes, whereas stochasticity dominated micro-eukaryotic community assembly. We defined a local growth factor (LGF) and demonstrated its innovative use to quantitatively infer microbial proliferation, unraveling taxonomically dependent population response to local environmental selection across canal sections. Using LGF as a quantitative indicator of immigrating capacities, we also found that most micro-eukaryotic populations (82%) from the source water sustained growth in the canal and better acclimated to the hydrodynamical water environment than bacteria (67%). Taxa inferred to largely propagate include Limnohabitans sp. and Cryptophyceae, potentially contributing to water auto-purification. Combined, our work poses first and unique insights into the microbiota assembly patterns and dynamics in the world's largest water diversion canal, providing important ecological knowledge for long-term sustainable water quality maintenance in such a giant engineered system.
Collapse
Affiliation(s)
- Lu Zhang
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China; Institute of Advanced Technology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Wei Yin
- Changjiang Water Resources Protection Institute, 515 Qintai Street, Wuhan 430051, Hubei Province, China
| | - Chao Wang
- Changjiang Water Resources Protection Institute, 515 Qintai Street, Wuhan 430051, Hubei Province, China
| | - Aijing Zhang
- Construction and Administration Bureau of South-to-North Water Diversion Middle Route Project, 1 Yuyuantan South Road, Beijing 100038, China
| | - Hong Zhang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085, China
| | - Tong Zhang
- Environmental Microbiome Engineering and Biotechnology Laboratory, Department of Civil Engineering, Pokfulam Road, The University of Hong Kong, Hong Kong 999077, China
| | - Feng Ju
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China; Institute of Advanced Technology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China.
| |
Collapse
|
11
|
Nong X, Shao D, Shang Y, Liang J. Analysis of spatio-temporal variation in phytoplankton and its relationship with water quality parameters in the South-to-North Water Diversion Project of China. ENVIRONMENTAL MONITORING AND ASSESSMENT 2021; 193:593. [PMID: 34424412 DOI: 10.1007/s10661-021-09391-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Abstract
The Middle Route of the South-to-North Water Diversion Project of China (MRSNWDPC), the longest trans-basin water diversion project in the world, has been in operation for over 6 years. The water quality of this mega hydro-project affects the safety of more than 60 million people and the health of an ecosystem over 160,000 km2. Abnormal algal proliferation can cause water quality deterioration, eutrophication, and hydro-project operation issues. However, few studies have investigated and reported planktonic algae and their relationship with the water quality of this trans-basin water diversion project. Here, spatio-temporal characteristics of algal cell density (ACD) and 11 water quality parameters, including water temperature (WT), pH, dissolved oxygen (DO), permanganate index (CODMn), 5-day biochemical oxygen demand (BOD5), fecal coliforms (F. coli), total phosphorus (TP), total nitrogen (TN), ammonia nitrogen (NH3-N), fluoride (F-), and sulfate (SO42-) in the MRSNWDPC from May 2015 to February 2019 were determined using multivariate statistical approaches. Consistent seasonal variation in ACD was observed each year, which grew in spring and then continuously decreased from summer to winter. Summer and winter are the seasons with the highest and lowest ACDs, with average values of 572.95 × 104 cell/L and 157.09 × 104 cell/L, respectively. The NH3-N was positively correlated with ACD growth in all seasons, with Pearson correlation coefficients ranging from 0.594 to 0.738 (P < 0.01). The results of the principal component analysis show that the sources affecting the water quality variation in this project are complex, and NH3-N was the most critical water quality parameter affecting ACD variation, which was linked to ACD in four seasons with strong positive loadings ranging from 0.754 to 0.882, followed by CODMn. The management department of the MRSNWDPC should focus on key periods of phytoplankton control in spring and summer; in addition, variation in the concentrations of NH3-N and CODMn merits special attention. This study provides a helpful reference for the water quality security and algae control strategy of the MRSNWDPC and similar projects in the world.
Collapse
Affiliation(s)
- Xizhi Nong
- State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan, 430072, China
| | - Dongguo Shao
- State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan, 430072, China.
| | - Yuming Shang
- Construction and Administration Bureau of the Middle Route of the South-To-North Water Diversion Project of China, Beijing, 100038, China
| | - Jiankui Liang
- Construction and Administration Bureau of the Middle Route of the South-To-North Water Diversion Project of China, Beijing, 100038, China
| |
Collapse
|
12
|
Luo Y, Shi W, You M, Zhang R, Li S, Xu N, Sun W. Polybrominated diphenyl ethers (PBDEs) in the Danjiangkou Reservoir, China: identification of priority PBDE congeners. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:12587-12596. [PMID: 33083955 DOI: 10.1007/s11356-020-11254-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 10/13/2020] [Indexed: 06/11/2023]
Abstract
Although the production of polybrominated diphenyl ethers (PBDEs) has been phased out over the past decade worldwide, they are still potentially hazardous to the environment due to their persistence and toxicity. This study investigated the levels of 55 PBDEs in water and sediments from the Danjiangkou Reservoir, China. The levels of PBDEs were in the range of not detected (ND)-286.67 ng/L in water and ND-236.04 ng/g in sediments. BDE209 was the predominant PBDE congener and constituted 15-50% and 44-68% of the total PBDEs in water and sediments, respectively. Commercial pentaBDE products (70-5DE, DE-71) were the dominant source of tetraBDE, pentaBDE, and hexaBDE, while commercial octaBDE (79-8DE) and decaBDE (102E and 82-0DE) products were the main sources of nonaBDE and decaBDE in water. PBDEs in sediments mainly stemmed from commercial decaBDE products and combustion sources. BDE-209 posed high ecological risks to aquatic organisms and dominated the total ecological risks of PBDEs. No cancer risks and non-cancer risks were observed for PBDEs. A ranking method based on four criteria, i.e., detection frequency, concentration, ecological risk, and health risks, was proposed, and 17 PBDEs were identified as high priority PBDEs for future monitoring and management in the Danjiangkou Reservoir.
Collapse
Affiliation(s)
- Yaomin Luo
- Shenzhen Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Wanzi Shi
- Shenzhen Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Mingtao You
- College of Environmental Sciences and Engineering, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing, 100871, China
| | - Ruijie Zhang
- College of Environmental Sciences and Engineering, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing, 100871, China
| | - Si Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Nan Xu
- Shenzhen Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Weiling Sun
- College of Environmental Sciences and Engineering, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing, 100871, China.
| |
Collapse
|
13
|
Structural Characteristics and Driving Factors of the Planktonic Eukaryotic Community in the Danjiangkou Reservoir, China. WATER 2020. [DOI: 10.3390/w12123499] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Planktonic eukaryotes are widespread in aquatic ecosystems, and the study of their community composition and driving factors is of great significance to protecting and maintaining the balance of these ecosystems. This study evaluates five typical ecological sites in the Danjiangkou Reservoir—the water source for the project. This was done to comprehensively understand the composition of Danjiangkou Reservoir planktonic eukaryotes, and ensure the ecological balance of the water source for the South-to-North Water Diversion Project. The diversity of the planktonic eukaryotes in surface water and the factors driving changes in their abundance are analyzed with an 18S ribosomal DNA sequencing approach. Monitoring shows that the Danjiangkou Reservoir has good water quality. The Danjiangkou Reservoir planktonic eukaryote community is mainly composed of 11 phyla, of which Cryptomonadales is dominant, accounting for an average percentage of 65.19% of the community (47.2–84.90%). LEFSe analysis shows significant differences among samples in the abundances of 13 phyla, 20 classes, 23 orders, 26 families, and 27 genera, and there are also significant differences in the diversity of planktonic eukaryotes at different temporal and spatial scales. Redundancy analysis (RDA) show that water temperature, DO, SD, TN, and Chla are significant factors that affect the composition of the planktonic eukaryote community. Spearman rank correlation analysis combined with taxonomic difference analysis shows that Kathablepharidae and Choanoflagellida are not sensitive to environmental or physicochemical factors and that the interannual variations in their abundance are not significant. Network analysis shows that Protalveolata, Basidiomycota, P1-31, Bicosoecida, and Ochrophyta represent important nodes in the single-factor network, while Chytridiomycota, P1-31, Cryptomycota, Ochrophyta, Ichthyosporea, Bicosoecida, Protalveolata, and physicochemical factors (ORP, TN, WT, DO, SD, NH3-N, and NO3-N) represent important nodes in the two-factor network.
Collapse
|
14
|
Rhizosphere Bacterial Community Structure and Predicted Functional Analysis in the Water-Level Fluctuation Zone of the Danjiangkou Reservoir in China During the Dry Period. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17041266. [PMID: 32079120 PMCID: PMC7068437 DOI: 10.3390/ijerph17041266] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 02/13/2020] [Accepted: 02/14/2020] [Indexed: 12/24/2022]
Abstract
The water-level fluctuation zone (WLFZ) is a transitional zone between terrestrial and aquatic ecosystems. Plant communities that are constructed artificially in the WLFZ can absorb and retain nutrients such as nitrogen (N) and phosphorus (P). However, the microbial community composition and function associated with this process have not been elucidated. In this study, four artificially constructed plant communities, including those of herbs (Cynodon dactylon and Chrysopogon zizanioides), trees (Metasequoia glyptostroboides), and shrubs (Salix matsudana) from the newly formed WLFZ of the Danjiangkou Reservoir were evaluated. The bacterial community compositions were analyzed by 16S rRNA gene sequencing using a MiSeq platform, and the functions of these communities were assessed via Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) analysis. The results showed that the bacterial communities primarily comprised 362 genera from 24 phyla, such as Proteobacteria, Acidobacteria, Actinobacteria, and Gemmatimonadetes, showing the richness of the community composition. Planting altered the bacterial community composition, with varying effects observed among the different plant types. The bacterial community functional analysis revealed that these bacteria were primarily associated with six biological metabolic pathway categories (e.g., metabolism, genetic information processing, and environmental information processing) with 34 subfunctions, showing the richness of community functions. The planting of M. glyptostroboides, S. matsudana, and C. dactylon improved the metabolic capabilities of bacterial communities. N- and P-cycling gene analysis showed that planting altered the N- and P-cycling metabolic capacities of soil bacteria. The overall N- and P-metabolic capacity was highly similar between C. dactylon and C. zizanioides samples and between S. matsudana and M. glyptostroboides samples. The results of this study provide a preliminary analysis of soil bacterial community structure and function in the WLFZ of the Danjiangkou Reservoir and provides a reference for vegetation construction in this zone.
Collapse
|
15
|
Illumina MiSeq sequencing and network analysis the distribution and co-occurrence of bacterioplankton in Danjiangkou Reservoir, China. Arch Microbiol 2020; 202:859-873. [PMID: 31894394 DOI: 10.1007/s00203-019-01798-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 11/26/2019] [Accepted: 12/15/2019] [Indexed: 10/25/2022]
Abstract
Network analysis has contributed to studies of the interactions of microorganisms and the identification of key populations. However, such analysis has rarely been conducted in the study of reservoir bacterioplankton communities. This study investigated the bacterioplankton community composition in the surface water of the Danjiangkou Reservoir using the Illumina MiSeq sequencing platform. We observed that the bacterioplankton community primarily consisted of 27 phyla and 336 genera, including Actinobacteria, Proteobacteria, and Bacteroidetes, demonstrating the richness of the community composition. Redundancy analysis of the bacterioplankton communities and environmental variables showed that the total nitrogen (TN), pH, chemical oxygen demand (COD), and permanganate index (CODMn) were important factors affecting the bacterioplankton distribution. Network analysis was performed using the relative abundances of bacterioplankton based on the phylogenetic molecular ecological network (pMEN) method. The connectivity of node i within modules (Zi), the connectivity of node i among modules (Pi), and the number of key bacteria were high at the Taizishan and Heijizui sites, which were associated with higher TN contents than at the other sites. Among the physicochemical properties of water, TN, ammonia nitrogen (NH4-N), pH, COD, and dissolved oxygen (DO) might have great influences on the functional units of the bacterial communities in bacterioplankton molecular networks. This study improves the understanding of the structure and function of bacterioplankton communities in the Danjiangkou Reservoir.
Collapse
|