1
|
Battafarano G, Rossi M, De Martino V, Marampon F, Borro L, Secinaro A, Del Fattore A. Strategies for Bone Regeneration: From Graft to Tissue Engineering. Int J Mol Sci 2021; 22:ijms22031128. [PMID: 33498786 PMCID: PMC7865467 DOI: 10.3390/ijms22031128] [Citation(s) in RCA: 100] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/08/2021] [Accepted: 01/20/2021] [Indexed: 12/12/2022] Open
Abstract
Bone is a regenerative organ characterized by self-renewal ability. Indeed, it is a very dynamic tissue subjected to continuous remodeling in order to preserve its structure and function. However, in clinical practice, impaired bone healing can be observed in patients and medical intervention is needed to regenerate the tissue via the use of natural bone grafts or synthetic bone grafts. The main elements required for tissue engineering include cells, growth factors and a scaffold material to support them. Three different materials (metals, ceramics, and polymers) can be used to create a scaffold suitable for bone regeneration. Several cell types have been investigated in combination with biomaterials. In this review, we describe the options available for bone regeneration, focusing on tissue engineering strategies based on the use of different biomaterials combined with cells and growth factors.
Collapse
Affiliation(s)
- Giulia Battafarano
- Bone Physiopathology Research Unit, Genetics and Rare Diseases Research Division, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (G.B.); (M.R.)
| | - Michela Rossi
- Bone Physiopathology Research Unit, Genetics and Rare Diseases Research Division, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (G.B.); (M.R.)
| | - Viviana De Martino
- Department of Clinical, Internal, Anesthesiology and Cardiovascular Sciences, “Sapienza” University of Rome, 00161 Rome, Italy;
| | - Francesco Marampon
- Department of Radiotherapy, “Sapienza” University of Rome, 00161 Rome, Italy;
| | - Luca Borro
- Advanced Cardiovascular Imaging Unit, Department of Imaging, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (L.B.); (A.S.)
| | - Aurelio Secinaro
- Advanced Cardiovascular Imaging Unit, Department of Imaging, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (L.B.); (A.S.)
| | - Andrea Del Fattore
- Bone Physiopathology Research Unit, Genetics and Rare Diseases Research Division, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (G.B.); (M.R.)
- Correspondence: ; Tel.: +39-066-859-3740
| |
Collapse
|
2
|
A biomimetic engineered bone platform for advanced testing of prosthetic implants. Sci Rep 2020; 10:22154. [PMID: 33335113 PMCID: PMC7747643 DOI: 10.1038/s41598-020-78416-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 11/09/2020] [Indexed: 02/08/2023] Open
Abstract
Existing methods for testing prosthetic implants suffer from critical limitations, creating an urgent need for new strategies that facilitate research and development of implants with enhanced osseointegration potential. Herein, we describe a novel, biomimetic, human bone platform for advanced testing of implants in vitro, and demonstrate the scientific validity and predictive value of this approach using an assortment of complementary evaluation methods. We anchored titanium (Ti) and stainless steel (SS) implants into biomimetic scaffolds, seeded with human induced mesenchymal stem cells, to recapitulate the osseointegration process in vitro. We show distinct patterns of gene expression, matrix deposition, and mineralization in response to the two materials, with Ti implants ultimately resulting in stronger integration strength, as seen in other preclinical and clinical studies. Interestingly, RNAseq analysis reveals that the TGF-beta and the FGF2 pathways are overexpressed in response to Ti implants, while the Wnt, BMP, and IGF pathways are overexpressed in response to SS implants. High-resolution imaging shows significantly increased tissue mineralization and calcium deposition at the tissue-implant interface in response to Ti implants, contributing to a twofold increase in pullout strength compared to SS implants. Our technology creates unprecedented research opportunities towards the design of implants and biomaterials that can be personalized, and exhibit enhanced osseointegration potential, with reduced need for animal testing.
Collapse
|
3
|
Peired AJ, Mazzinghi B, De Chiara L, Guzzi F, Lasagni L, Romagnani P, Lazzeri E. Bioengineering strategies for nephrologists: kidney was not built in a day. Expert Opin Biol Ther 2020; 20:467-480. [DOI: 10.1080/14712598.2020.1709439] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Anna Julie Peired
- Excellence Centre for Research, Transfer and High Education for the development of DE NOVO Therapies (DENOTHE), University of Florence, Florence, Italy
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Florence, Italy
| | - Benedetta Mazzinghi
- Excellence Centre for Research, Transfer and High Education for the development of DE NOVO Therapies (DENOTHE), University of Florence, Florence, Italy
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Florence, Italy
- Nephrology and Dialysis Unit, Meyer Children’s University Hospital, Florence, Italy
| | - Letizia De Chiara
- Excellence Centre for Research, Transfer and High Education for the development of DE NOVO Therapies (DENOTHE), University of Florence, Florence, Italy
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Florence, Italy
| | - Francesco Guzzi
- Excellence Centre for Research, Transfer and High Education for the development of DE NOVO Therapies (DENOTHE), University of Florence, Florence, Italy
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Florence, Italy
- Nephrology and Dialysis Unit, Meyer Children’s University Hospital, Florence, Italy
| | - Laura Lasagni
- Excellence Centre for Research, Transfer and High Education for the development of DE NOVO Therapies (DENOTHE), University of Florence, Florence, Italy
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Florence, Italy
| | - Paola Romagnani
- Excellence Centre for Research, Transfer and High Education for the development of DE NOVO Therapies (DENOTHE), University of Florence, Florence, Italy
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Florence, Italy
- Nephrology and Dialysis Unit, Meyer Children’s University Hospital, Florence, Italy
| | - Elena Lazzeri
- Excellence Centre for Research, Transfer and High Education for the development of DE NOVO Therapies (DENOTHE), University of Florence, Florence, Italy
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Florence, Italy
| |
Collapse
|
4
|
Marolt Presen D, Traweger A, Gimona M, Redl H. Mesenchymal Stromal Cell-Based Bone Regeneration Therapies: From Cell Transplantation and Tissue Engineering to Therapeutic Secretomes and Extracellular Vesicles. Front Bioeng Biotechnol 2019; 7:352. [PMID: 31828066 PMCID: PMC6890555 DOI: 10.3389/fbioe.2019.00352] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 11/06/2019] [Indexed: 12/12/2022] Open
Abstract
Effective regeneration of bone defects often presents significant challenges, particularly in patients with decreased tissue regeneration capacity due to extensive trauma, disease, and/or advanced age. A number of studies have focused on enhancing bone regeneration by applying mesenchymal stromal cells (MSCs) or MSC-based bone tissue engineering strategies. However, translation of these approaches from basic research findings to clinical use has been hampered by the limited understanding of MSC therapeutic actions and complexities, as well as costs related to the manufacturing, regulatory approval, and clinical use of living cells and engineered tissues. More recently, a shift from the view of MSCs directly contributing to tissue regeneration toward appreciating MSCs as "cell factories" that secrete a variety of bioactive molecules and extracellular vesicles with trophic and immunomodulatory activities has steered research into new MSC-based, "cell-free" therapeutic modalities. The current review recapitulates recent developments, challenges, and future perspectives of these various MSC-based bone tissue engineering and regeneration strategies.
Collapse
Affiliation(s)
- Darja Marolt Presen
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Andreas Traweger
- Austrian Cluster for Tissue Regeneration, Vienna, Austria.,Spinal Cord Injury & Tissue Regeneration Center Salzburg, Institute of Tendon and Bone Regeneration, Paracelsus Medical University, Salzburg, Austria
| | - Mario Gimona
- GMP Unit, Spinal Cord Injury & Tissue Regeneration Center Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Heinz Redl
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria
| |
Collapse
|
5
|
Tam E, McGrath M, Sladkova M, AlManaie A, Alostaad A, de Peppo GM. Hypothermic and cryogenic preservation of tissue-engineered human bone. Ann N Y Acad Sci 2019; 1460:77-87. [PMID: 31667884 PMCID: PMC7027566 DOI: 10.1111/nyas.14264] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 09/30/2019] [Accepted: 10/07/2019] [Indexed: 02/06/2023]
Abstract
To foster translation and commercialization of tissue-engineered products, preservation methods that do not significantly compromise tissue properties need to be designed and tested. Robust preservation methods will enable the distribution of tissues to third parties for research or transplantation, as well as banking of off-the-shelf products. We recently engineered bone grafts from induced pluripotent stem cells and devised strategies to facilitate a tissue-engineering approach to segmental bone defect therapy. In this study, we tested the effects of two potential preservation methods on the survival, quality, and function of tissue-engineered human bone. Engineered bone grafts were cultured for 5 weeks in an osteogenic environment and then stored in phosphate-buffered saline (PBS) solution at 4 °C or in Synth-a-Freeze™ at -80 °C. After 48 h, samples were warmed up in a water bath at 37 °C, incubated in osteogenic medium, and analyzed 1 and 24 h after revitalization. The results show that while storage in Synth-a-Freeze at -80 °C results in cell death and structural alteration of the extracellular matrix, hypothermic storage in PBS does not significantly affect tissue viability and integrity. This study supports the use of short-term hypothermic storage for preservation and distribution of high-quality tissue-engineered bone grafts for research and future clinical applications.
Collapse
Affiliation(s)
- Edmund Tam
- The New York Stem Cell Foundation Research Institute, New York, New York
| | - Madison McGrath
- The New York Stem Cell Foundation Research Institute, New York, New York
| | - Martina Sladkova
- The New York Stem Cell Foundation Research Institute, New York, New York
| | - Athbah AlManaie
- The New York Stem Cell Foundation Research Institute, New York, New York
| | - Anaam Alostaad
- The New York Stem Cell Foundation Research Institute, New York, New York
| | | |
Collapse
|
6
|
McGrath M, Tam E, Sladkova M, AlManaie A, Zimmer M, de Peppo GM. GMP-compatible and xeno-free cultivation of mesenchymal progenitors derived from human-induced pluripotent stem cells. Stem Cell Res Ther 2019; 10:11. [PMID: 30635059 PMCID: PMC6329105 DOI: 10.1186/s13287-018-1119-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 12/06/2018] [Accepted: 12/20/2018] [Indexed: 02/07/2023] Open
Abstract
Background Human mesenchymal stem cells are a strong candidate for cell therapies owing to their regenerative potential, paracrine regulatory effects, and immunomodulatory activity. Yet, their scarcity, limited expansion potential, and age-associated functional decline restrict the ability to consistently manufacture large numbers of safe and therapeutically effective mesenchymal stem cells for routine clinical applications. To overcome these limitations and advance stem cell treatments using mesenchymal stem cells, researchers have recently derived mesenchymal progenitors from human-induced pluripotent stem cells. Human-induced pluripotent stem cell-derived progenitors resemble adult mesenchymal stem cells in morphology, global gene expression, surface antigen profile, and multi-differentiation potential, but unlike adult mesenchymal stem cells, it can be produced in large numbers for every patient. For therapeutic applications, however, human-induced pluripotent stem cell-derived progenitors must be produced without animal-derived components (xeno-free) and in accordance with Good Manufacturing Practice guidelines. Methods In the present study we investigate the effects of expanding mesodermal progenitor cells derived from two human-induced pluripotent stem cell lines in xeno-free medium supplemented with human platelet lysates and in a commercial high-performance Good Manufacturing Practice-compatible medium (Unison Medium). Results The results show that long-term culture in xeno-free and Good Manufacturing Practice-compatible media somewhat affects the morphology, expansion potential, gene expression, and cytokine profile of human-induced pluripotent stem cell-derived progenitors but supports cell viability and maintenance of a mesenchymal phenotype equally well as medium supplemented with fetal bovine serum. Conclusions The findings support the potential to manufacture large numbers of clinical-grade human-induced pluripotent stem cell-derived mesenchymal progenitors for applications in personalized regenerative medicine. Graphical abstract ![]()
Electronic supplementary material The online version of this article (10.1186/s13287-018-1119-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Madison McGrath
- The New York Stem Cell Foundation Research Institute, 619 West 54th Street, New York, NY, 10019, USA
| | - Edmund Tam
- The New York Stem Cell Foundation Research Institute, 619 West 54th Street, New York, NY, 10019, USA
| | - Martina Sladkova
- The New York Stem Cell Foundation Research Institute, 619 West 54th Street, New York, NY, 10019, USA
| | - Athbah AlManaie
- The New York Stem Cell Foundation Research Institute, 619 West 54th Street, New York, NY, 10019, USA
| | - Matthew Zimmer
- The New York Stem Cell Foundation Research Institute, 619 West 54th Street, New York, NY, 10019, USA
| | - Giuseppe Maria de Peppo
- The New York Stem Cell Foundation Research Institute, 619 West 54th Street, New York, NY, 10019, USA.
| |
Collapse
|