1
|
Oestreich WK, Benoit-Bird KJ, Abrahms B, Margolina T, Joseph JE, Zhang Y, Rueda CA, Ryan JP. Evidence for seasonal migration by a cryptic top predator of the deep sea. MOVEMENT ECOLOGY 2024; 12:65. [PMID: 39313840 PMCID: PMC11421108 DOI: 10.1186/s40462-024-00500-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 08/20/2024] [Indexed: 09/25/2024]
Abstract
BACKGROUND In ecosystems influenced by strong seasonal variation in insolation, the fitness of diverse taxa depends on seasonal movements to track resources along latitudinal or elevational gradients. Deep pelagic ecosystems, where sunlight is extremely limited, represent Earth's largest habitable space and yet ecosystem phenology and effective animal movement strategies in these systems are little understood. Sperm whales (Physeter macrocephalus) provide a valuable acoustic window into this world: the echolocation clicks they produce while foraging in the deep sea are the loudest known biological sounds on Earth and convey detailed information about their behavior. METHODS We analyze seven years of continuous passive acoustic observations from the Central California Current System, using automated methods to identify both presence and demographic information from sperm whale echolocation clicks. By integrating empirical results with individual-level movement simulations, we test hypotheses about the movement strategies underlying sperm whales' long-distance movements in the Northeast Pacific. RESULTS We detect foraging sperm whales of all demographic groups year-round in the Central California Current System, but also identify significant seasonality in frequency of presence. Among several previously hypothesized movement strategies for this population, empirical acoustic observations most closely match simulated results from a population undertaking a "seasonal resource-tracking migration", in which individuals move to track moderate seasonal-latitudinal variation in resource availability. DISCUSSION Our findings provide evidence for seasonal movements in this cryptic top predator of the deep sea. We posit that these seasonal movements are likely driven by tracking of deep-sea resources, based on several lines of evidence: (1) seasonal-latitudinal patterns in foraging sperm whale detection across the Northeast Pacific; (2) lack of demographic variation in seasonality of presence; and (3) the match between simulations of seasonal resource-tracking migration and empirical results. We show that sperm whales likely track oceanographic seasonality in a manner similar to many surface ocean predators, but with dampened seasonal-latitudinal movement patterns. These findings shed light on the drivers of sperm whales' long-distance movements and the shrouded phenology of the deep-sea ecosystems in which they forage.
Collapse
Affiliation(s)
| | | | - Briana Abrahms
- Center for Ecosystem Sentinels, Department of Biology, University of Washington, Seattle, WA, USA
| | | | | | - Yanwu Zhang
- Monterey Bay Aquarium Research Institute, Moss Landing, CA, USA
| | - Carlos A Rueda
- Monterey Bay Aquarium Research Institute, Moss Landing, CA, USA
| | - John P Ryan
- Monterey Bay Aquarium Research Institute, Moss Landing, CA, USA
| |
Collapse
|
2
|
Setash CM, Behney AC, Gammonley JH, Koons DN. Riding the wetland wave: Can ducks locate macroinvertebrate resources across the breeding season? Ecol Evol 2024; 14:e11568. [PMID: 38932948 PMCID: PMC11199343 DOI: 10.1002/ece3.11568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024] Open
Abstract
Food availability varies considerably over space and time in wetland systems, and consumers must be able to track those changes during energetically-demanding points in the life cycle like breeding. Resource tracking has been studied frequently among herbivores, but receives less attention among consumers of macroinvertebrates. We evaluated the change in resource availability across habitat types and time and the simultaneous density of waterfowl consumers throughout their breeding season in a high-elevation, flood-irrigated system. We also assessed whether the macroinvertebrate resource density better predicted waterfowl density across habitats, compared to consistency (i.e., temporal evenness) of the invertebrate resource or taxonomic richness. Resource density varied marginally across wetland types but was highest in basin wetlands (i.e., ponds) and peaked early in the breeding season, whereas it remained relatively low and stable in other wetland habitats. Breeding duck density was positively related to resource density, more so than temporal resource stability, for all species. Resource density was negatively related to duckling density, however. These results have the potential to not only elucidate mechanisms of habitat selection among breeding ducks in flood-irrigated landscapes but also suggest there is not a consequential trade-off to selecting wetland sites based on energy density versus temporal resource stability and that good-quality wetland sites provide both.
Collapse
Affiliation(s)
- Casey M. Setash
- Colorado Parks and WildlifeFort CollinsColoradoUSA
- Department of Fish, Wildlife, and Conservation BiologyColorado State UniversityFort CollinsColoradoUSA
| | | | | | - David N. Koons
- Department of Fish, Wildlife, and Conservation BiologyColorado State UniversityFort CollinsColoradoUSA
| |
Collapse
|
3
|
Shardlow TF, Van Elslander J, Mowat G. The influence of human disturbance on Pacific salmon ( Oncorhynchus spp.) in the diet of American black bears ( Ursus americanus) in two areas of coastal British Columbia, Canada. CAN J ZOOL 2022. [DOI: 10.1139/cjz-2021-0198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recent studies have highlighted the importance of salmon (genus Oncorhynchus Suckley, 1861) in the diet of bears, and of bears as consumers and key agents supporting the transport of salmon-derived nutrients to riparian ecosystems. Salmon abundance and human disturbance are known influences on bear ecology and behaviour, though few studies have quantified shifts in bear diet due to these effects. We used stable isotope analysis to investigate how salmon escapement and human presence influenced the proportion of salmon in the diet of American black bears ( Ursus americanus Pallas, 1780) in two locations in coastal British Columbia, Canada. We found that salmon constituted a small proportion of black bear diet across sexes and ecosystems, while bears appeared to gain a similar amount of energy and lean mass from terrestrial sources. Salmon consumption was not related to the total annual abundance of salmon in a watershed but was significantly lower in large streams with regular human presence, suggesting that human disturbance can cause a dietary shift in bears that could have important consequences to their fitness. We also observed that the isotopic signatures of key bear foods did not vary between foliage and fruit, simplifying data collection for future isotopic studies on bear diet.
Collapse
Affiliation(s)
| | - Jonathan Van Elslander
- Department of Earth, Environmental and Geographic Sciences, Irving K. Barber School of Arts and Sciences, University of British Columbia Okanagan, 1177 Research Road, Kelowna, BC V1V 1V7, Canada
| | - G. Mowat
- Department of Earth, Environmental and Geographic Sciences, Irving K. Barber School of Arts and Sciences, University of British Columbia Okanagan, 1177 Research Road, Kelowna, BC V1V 1V7, Canada
- Ministry of Forests, Lands and Natural Resource Operations and Rural Development, Wildlife and Habitat Branch, Suite 401-333 Victoria Street, Nelson, BC V1L 4K3, Canada
| |
Collapse
|
4
|
Twining CW, Shipley JR, Matthews B. Climate change creates nutritional phenological mismatches. Trends Ecol Evol 2022; 37:736-739. [PMID: 35811171 DOI: 10.1016/j.tree.2022.06.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 11/25/2022]
Abstract
Climate change is creating phenological mismatches between consumers and their resources. However, while the importance of nutritional quality in ecological interactions is widely appreciated, most studies of phenological mismatch focus on energy content alone. We argue that mismatches in terms of phenology and nutrition will increase with climate change.
Collapse
Affiliation(s)
- Cornelia W Twining
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Fish Ecology and Evolution, Seestrasse 79, CH-6057 Kastanienbaum, Switzerland.
| | - J Ryan Shipley
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Fish Ecology and Evolution, Seestrasse 79, CH-6057 Kastanienbaum, Switzerland
| | - Blake Matthews
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Fish Ecology and Evolution, Seestrasse 79, CH-6057 Kastanienbaum, Switzerland
| |
Collapse
|
5
|
Bartel SL, Orrock JL. The important role of animal social status in vertebrate seed dispersal. Ecol Lett 2022; 25:1094-1109. [PMID: 35235713 DOI: 10.1111/ele.13988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/08/2021] [Accepted: 02/09/2022] [Indexed: 11/30/2022]
Abstract
Seed dispersal directly affects plant establishment, gene flow and fitness. Understanding patterns in seed dispersal is, therefore, fundamental to understanding plant ecology and evolution, as well as addressing challenges of extinction and global change. Our ability to understand dispersal is limited because seeds may be dispersed by multiple agents, and the effectiveness of these agents can be highly variable both among and within species. We provide a novel framework that links seed dispersal to animal social status, a key component of behaviour. Because social status affects individual resource access and movement, it provides a critical link to two factors that determine seed dispersal: the quantity of seeds dispersed and the spatial patterns of dispersal. Social status may have unappreciated effects on post-dispersal seed survival and recruitment when social status affects individual habitat use. Hence, environmental changes, such as selective harvesting and urbanisation, that affect animal social structure may have unappreciated consequences for seed dispersal. This framework highlights these exciting new hypotheses linking environmental change, social structure and seed dispersal. By outlining experimental approaches to test these hypotheses, we hope to facilitate studies across a wide diversity of plant-animal networks, which may uncover emerging hotspots or significant declines in seed dispersal.
Collapse
Affiliation(s)
- Savannah L Bartel
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - John L Orrock
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
6
|
Ettinger AK, Harvey CJ, Emmons C, Hanson MB, Ward EJ, Olson JK, Samhouri JF. Shifting phenology of an endangered apex predator mirrors changes in its favored prey. ENDANGER SPECIES RES 2022. [DOI: 10.3354/esr01192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
7
|
Javornik J, Šturm MB, Jerina K. Four approaches for estimating isotope discrimination factors produce contrasting dietary estimates for bears. URSUS 2021. [DOI: 10.2192/ursus-d-19-00028.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Jernej Javornik
- University of Ljubljana, Biotechnical faculty, Department of Forestry, Večna pot 83, 1000 Ljubljana, Slovenia
| | - Martina Burnik Šturm
- University of Natural Resources and Life Sciences (BOKU), Institute of Analytical Chemistry, Mutgasse 18, 1190 Vienna, Austria
| | - Klemen Jerina
- University of Ljubljana, Biotechnical faculty, Department of Forestry, Večna pot 83, 1000 Ljubljana, Slovenia
| |
Collapse
|
8
|
Wolkovich EM, Donahue MJ. How phenological tracking shapes species and communities in non-stationary environments. Biol Rev Camb Philos Soc 2021; 96:2810-2827. [PMID: 34288337 DOI: 10.1111/brv.12781] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 07/02/2021] [Accepted: 07/07/2021] [Indexed: 01/27/2023]
Abstract
Climate change alters the environments of all species. Predicting species responses requires understanding how species track environmental change, and how such tracking shapes communities. Growing empirical evidence suggests that how species track phenologically - how an organism shifts the timing of major biological events in response to the environment - is linked to species performance and community structure. Such research tantalizingly suggests a potential framework to predict the winners and losers of climate change, and the future communities we can expect. But developing this framework requires far greater efforts to ground empirical studies of phenological tracking in relevant ecological theory. Here we review the concept of phenological tracking in empirical studies and through the lens of coexistence theory to show why a community-level perspective is critical to accurate predictions with climate change. While much current theory for tracking ignores the importance of a multi-species context, basic community assembly theory predicts that competition will drive variation in tracking and trade-offs with other traits. We highlight how existing community assembly theory can help understand tracking in stationary and non-stationary systems. But major advances in predicting the species- and community-level consequences of climate change will require advances in theoretical and empirical studies. We outline a path forward built on greater efforts to integrate priority effects into modern coexistence theory, improved empirical estimates of multivariate environmental change, and clearly defined estimates of phenological tracking and its underlying environmental cues.
Collapse
Affiliation(s)
- E M Wolkovich
- Forest & Conservation Sciences, Faculty of Forestry, University of British Columbia, 2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Megan J Donahue
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Kān'eohe, HI, 96744, U.S.A
| |
Collapse
|
9
|
Perkin EK, Wilson MJ. Anthropogenic alteration of flow, temperature, and light as life-history cues in stream ecosystems. Integr Comp Biol 2021; 61:1134-1146. [PMID: 33871033 DOI: 10.1093/icb/icab024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Life history events, from mating and voltinism to migration and emergence, are governed by external and historically predictable environmental factors. The ways humans have altered natural environments during the Anthropocene have created myriad and compounding changes to these historically predictable environmental cues. Over the past few decades, there has been an increased interest in the control temperature exerts on life history events as concern over climate change has increased. However, temperature is not the only life history cue that humans have altered. In stream ecosystems, flow and light serve as important life history cues in addition to temperature. The timing and magnitude of peak flows can trigger migrations, decreases in stream temperature may cause a stream insect to enter diapause, and photoperiod appears to prompt spawning in some species of fish. Two or more of these cues may interact with one another in complex and sometimes unpredictable ways. Large dams and increasing impervious cover in urban ecosystems have modified flows and altered the timing of spawning and migration in fish. Precipitation draining hot impervious surfaces increases stream temperature and adds variability to the general pattern of stream warming from climate change. The addition of artificial light in urban and suburban areas is bright enough to eliminate or dampen the photoperiod signal and has resulted in caddisfly emergence becoming acyclical. The resulting changes in the timing of life history events also have the potential to influence the evolutionary trajectory of an organism and its interactions with other species. This paper offers a review and conceptual framework for future research into how flow, temperature, and light interact to drive life history events of stream organisms and how humans have changed these cues. We then present some of the potential evolutionary and ecological consequences of altered life history events, and conclude by highlighting what we perceive to be the most pressing research needs.
Collapse
Affiliation(s)
- Elizabeth K Perkin
- Native Fish Society, 813 7th St, Oregon City, Oregon, USA.,Department of Forest and Conservation Sciences, University of British Columbia, 3041-2424 Main Mall, Vancouver, BC, V6T 1Z4
| | - Matthew J Wilson
- Freshwater Research Institute, Susquehanna University, 514 University Avenue, Selinsgrove, Pennsylvania, USA
| |
Collapse
|
10
|
Abrahms B, Aikens EO, Armstrong JB, Deacy WW, Kauffman MJ, Merkle JA. Emerging Perspectives on Resource Tracking and Animal Movement Ecology. Trends Ecol Evol 2021; 36:308-320. [DOI: 10.1016/j.tree.2020.10.018] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 10/14/2020] [Accepted: 10/23/2020] [Indexed: 12/26/2022]
|
11
|
Stable Isotopes Reveal Variation in Consumption of Pacific Salmon by Brown Bears, Despite Ready Access in Small Streams. JOURNAL OF FISH AND WILDLIFE MANAGEMENT 2020. [DOI: 10.3996/jfwm-20-034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Abstract
Brown bears Ursus arctos consume a wide range of organisms, including ungulates and plants, but Pacific salmon Oncorhynchus spp. are especially important to their diet where their ranges overlap. Although some brown bears minimize antagonistic encounters with other brown bears or infanticide by avoiding streams where salmon spawn, studies generally assume that brown bears with ready access to salmon feed heavily on them. To test this assumption, and the hypothesis that male brown bears would feed more heavily on salmon than females (owing to their sexual size dimorphism), we collected hair samples from brown bears by using barbed wire placed on six small tributaries of Lake Aleknagik, Alaska, USA, where adult Sockeye Salmon Oncorhynchus nerka are readily accessible and frequently consumed by brown bears. Analysis of DNA distinguished among the different brown bears leaving the hair samples, some of which were sampled multiple times within and among years. We assessed the contribution of salmon to the diet of individual brown bears by using carbon and nitrogen stable isotope signatures. The 77 samples analyzed from 31 different bears over 4 y showed isotopic ratios consistent with reliance on salmon, but the wide range of isotopic signatures included values suggesting variable, and in one case considerable, use of terrestrial resources. Stable isotope signatures did not differ between male and female brown bears, nor did they differ between two sides of the lake, despite marked differences in Sockeye Salmon density. We collected the hair samples when salmon were present, so there was some uncertainty regarding whether they reflected feeding during the current or previous season. Notwithstanding this caveat, the results are consistent with the hypothesis that salmon were sufficiently available to provide food for the brown bears and that the considerable isotopic variation among brown bears with access to salmon reflected their age, status, and behavior.
Collapse
|
12
|
Jimbo M, Matsumoto N, Sakamoto H, Yanagawa Y, Torii Y, Yamanaka M, Ishinazaka T, Shirane Y, Sashika M, Tsubota T, Shimozuru M. Hair Growth in Brown Bears and Its Application to Ecological Studies on Wild Bears. MAMMAL STUDY 2020. [DOI: 10.3106/ms2020-0021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Mina Jimbo
- Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Kita 18 Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan
| | - Naoya Matsumoto
- Noboribetsu Bear Park, 224 Noboribetsuonsencho, Noboribetsu, Hokkaido 059-0515, Japan
| | - Hideyuki Sakamoto
- Noboribetsu Bear Park, 224 Noboribetsuonsencho, Noboribetsu, Hokkaido 059-0515, Japan
| | - Yojiro Yanagawa
- Department of Clinical Sciences, Division of Veterinary Medicine, Faculty of Veterinary Medicine, Hokkaido University, Kita 18 Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan
| | - Yoshiko Torii
- Department of Clinical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Kita 18 Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan
| | - Masami Yamanaka
- Shiretoko Nature Foundation, 531 Iwaubetsu, Shari, Hokkaido 099-4356, Japan
| | | | - Yuri Shirane
- Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Kita 18 Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan
| | - Mariko Sashika
- Department of Environmental Veterinary Sciences, Division of Veterinary Medicine, Faculty of Veterinary Medicine, Hokkaido University, Kita 18 Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan
| | - Toshio Tsubota
- Department of Environmental Veterinary Sciences, Division of Veterinary Medicine, Faculty of Veterinary Medicine, Hokkaido University, Kita 18 Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan
| | - Michito Shimozuru
- Department of Environmental Veterinary Sciences, Division of Veterinary Medicine, Faculty of Veterinary Medicine, Hokkaido University, Kita 18 Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan
| |
Collapse
|
13
|
Armstrong JB, Schindler DE, Cunningham CJ, Deacy W, Walsh P. Watershed complexity increases the capacity for salmon–wildlife interactions in coastal ecosystems. Conserv Lett 2019. [DOI: 10.1111/conl.12689] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Affiliation(s)
| | - Daniel E. Schindler
- School of Aquatic and Fishery Sciences University of Washington Seattle Washington
| | - Curry J. Cunningham
- College of Fisheries and Ocean Sciences University of Alaska Fairbanks Juneau Alaska
| | - William Deacy
- Department of Fisheries and Wildlife Oregon State University Corvallis Oregon
- Arctic Network U.S. National Park Service 4175 Geist Road Fairbanks Alaska 99709 USA
| | - Patrick Walsh
- U.S. Fish and Wildlife Service Togiak National Wildlife Refuge Togiak Alaska
| |
Collapse
|
14
|
Aerial surveys cause large but ephemeral decreases in bear presence at salmon streams in Kodiak, Alaska. PLoS One 2019; 14:e0222085. [PMID: 31504063 PMCID: PMC6736237 DOI: 10.1371/journal.pone.0222085] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 08/21/2019] [Indexed: 11/20/2022] Open
Abstract
Aerial surveys are often used to monitor wildlife and fish populations, but rarely are the effects on animal behavior documented. For over 30 years, the Kodiak National Wildlife Refuge has conducted low-altitude aerial surveys to assess Kodiak brown bear (Ursus arctos middendorffi) space use and demographic composition when bears are seasonally congregated near salmon spawning streams in southwestern Kodiak Island, Alaska. Salmon (Oncorhynchus spp.) are an important bear food and salmon runs are brief, so decreases in time spent fishing for salmon may reduce salmon consumption by bears. The goal of this study was to apply different and complementary field methods to evaluate the response of bears to these aerial surveys. Ground-based counts at one stream indicated 62% of bears departed the 200m-wide survey zone in response to aerial surveys, but bear counts returned to pre-survey abundance after only three hours. Although this effect was brief, survey flights occurred during the hours of peak daily bear activity (morning and evening), so the three-hour disruption appeared to result in a 25% decline in cumulative daily detections by 38 time-lapse cameras deployed along 10 salmon streams. Bear responses varied by sex—male bears were much more likely than female bears (with or without cubs) to depart streams and female bears with GPS collars did not move from streams following surveys. Although bears displaced by aerial surveys may consume fewer salmon, the actual effect on their fitness depends on whether they compensate by foraging at other times or by switching to other nutritious resources. Data from complementary sources allows managers to more robustly understand the impacts of surveys and whether their benefits are justified. Similar assessments should be made on alternative techniques such as Unmanned Aerial Vehicles and non-invasive sampling to determine whether they supply equivalent data while limiting bear disturbance.
Collapse
|
15
|
Abstract
In terrestrial systems, the green wave hypothesis posits that migrating animals can enhance foraging opportunities by tracking phenological variation in high-quality forage across space (i.e., "resource waves"). To track resource waves, animals may rely on proximate cues and/or memory of long-term average phenologies. Although there is growing evidence of resource tracking in terrestrial migrants, such drivers remain unevaluated in migratory marine megafauna. Here we present a test of the green wave hypothesis in a marine system. We compare 10 years of blue whale movement data with the timing of the spring phytoplankton bloom resulting in increased prey availability in the California Current Ecosystem, allowing us to investigate resource tracking both contemporaneously (response to proximate cues) and based on climatological conditions (memory) during migrations. Blue whales closely tracked the long-term average phenology of the spring bloom, but did not track contemporaneous green-up. In addition, blue whale foraging locations were characterized by low long-term habitat variability and high long-term productivity compared with contemporaneous measurements. Results indicate that memory of long-term average conditions may have a previously underappreciated role in driving migratory movements of long-lived species in marine systems, and suggest that these animals may struggle to respond to rapid deviations from historical mean environmental conditions. Results further highlight that an ecological theory of migration is conserved across marine and terrestrial systems. Understanding the drivers of animal migration is critical for assessing how environmental changes will affect highly mobile fauna at a global scale.
Collapse
|
16
|
Deacy WW, Leacock WB, Stanford JA, Armstrong JB. Variation in spawning phenology within salmon populations influences landscape‐level patterns of brown bear activity. Ecosphere 2019. [DOI: 10.1002/ecs2.2575] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Affiliation(s)
- William W. Deacy
- Department of Fisheries and Wildlife Oregon State University 2820 SW Campus Way Corvallis Oregon 97331 USA
- Flathead Lake Biological Station University of Montana 321125 Bio Station Ln. Polson Montana 59860 USA
| | - William B. Leacock
- Kodiak National Wildlife Refuge United States Fish and Wildlife Service 1390 Buskin River Road Kodiak Alaska 99615 USA
| | - Jack A. Stanford
- Flathead Lake Biological Station University of Montana 321125 Bio Station Ln. Polson Montana 59860 USA
| | - Jonathan B. Armstrong
- Department of Fisheries and Wildlife Oregon State University 2820 SW Campus Way Corvallis Oregon 97331 USA
| |
Collapse
|