1
|
Muthuraj PG, Krishnamoorthy C, Anderson-Berry A, Hanson C, Natarajan SK. Novel Therapeutic Nutrients Molecules That Protect against Zika Virus Infection with a Special Note on Palmitoleate. Nutrients 2022; 15:124. [PMID: 36615782 PMCID: PMC9823984 DOI: 10.3390/nu15010124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/11/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022] Open
Abstract
Zika virus (ZIKV) is a Flavivirus from the Flaviviridae family and a positive-sense single strand RNA virus. ZIKV infection can cause a mild infection to the mother but can be vertically transmitted to the developing fetus, causing congenital anomalies. The prevalence of ZIKV infections was relatively insignificant with sporadic outbreaks in the Asian and African continents until 2006. However, recent epidemic in the Caribbean showed significant increased incidence of Congenital Zika Syndrome. ZIKV infection results in placental pathology which plays a crucial role in disease transmission from mother to fetus. Currently, there is no Food and Drug Administration (FDA) approved vaccine or therapeutic drug against ZIKV. This review article summarizes the recent advances on ZIKV transmission and diagnosis and reviews nutraceuticals which can protect against the ZIKV infection. Further, we have reviewed recent advances related to the novel therapeutic nutrient molecules that have been shown to possess activity against Zika virus infected cells. We also review the mechanism of ZIKV-induced endoplasmic reticulum and apoptosis and the protective role of palmitoleate (nutrient molecule) against ZIKV-induced ER stress and apoptosis in the placental trophoblasts.
Collapse
Affiliation(s)
- Philma Glora Muthuraj
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Chandan Krishnamoorthy
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Ann Anderson-Berry
- Child Health Research Institute, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Corrine Hanson
- Child Health Research Institute, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Medical Nutrition Education, College of Allied Health Profession, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Sathish Kumar Natarajan
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
- Child Health Research Institute, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Medical Nutrition Education, College of Allied Health Profession, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
2
|
Stokes R, Kohlbrand AJ, Seo H, Sankaran B, Karges J, Cohen SM. Carboxylic Acid Isostere Derivatives of Hydroxypyridinones as Core Scaffolds for Influenza Endonuclease Inhibitors. ACS Med Chem Lett 2022; 14:75-82. [PMID: 36655124 PMCID: PMC9841593 DOI: 10.1021/acsmedchemlett.2c00434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 12/02/2022] [Indexed: 12/14/2022] Open
Abstract
Among the most important influenza virus targets is the RNA-dependent RNA polymerase acidic N-terminal (PAN) endonuclease, which is a critical component of the viral replication machinery. To inhibit the activity of this metalloenzyme, small-molecule inhibitors employ metal-binding pharmacophores (MBPs) that coordinate to the dinuclear Mn2+ active site. In this study, several metal-binding isosteres (MBIs) were examined where the carboxylic acid moiety of a hydroxypyridinone MBP is replaced with other groups to modulate the physicochemical properties of the compound. MBIs were evaluated for their ability to inhibit PAN using a FRET-based enzymatic assay, and their mode of binding in PAN was determined using X-ray crystallography.
Collapse
Affiliation(s)
- Ryjul
W. Stokes
- Department
of Chemistry and Biochemistry, University
of California, La Jolla, California 92093, United States
| | - Alysia J. Kohlbrand
- Department
of Chemistry and Biochemistry, University
of California, La Jolla, California 92093, United States
| | - Hyeonglim Seo
- Department
of Chemistry and Biochemistry, University
of California, La Jolla, California 92093, United States
| | - Banumathi Sankaran
- The
Berkeley Center for Structural Biology, Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Johannes Karges
- Department
of Chemistry and Biochemistry, University
of California, La Jolla, California 92093, United States
| | - Seth M. Cohen
- Department
of Chemistry and Biochemistry, University
of California, La Jolla, California 92093, United States,
| |
Collapse
|
3
|
Sikdar A, Gupta R, Boura E. Reviewing Antiviral Research Against Viruses Causing Human Diseases - A Structure Guided Approach. Curr Mol Pharmacol 2021; 15:306-337. [PMID: 34348638 DOI: 10.2174/1874467214666210804152836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 01/24/2021] [Accepted: 01/25/2021] [Indexed: 11/22/2022]
Abstract
The littlest of all the pathogens, viruses have continuously been the foremost strange microorganisms to consider. Viral Infections can cause extreme sicknesses as archived by the HIV/AIDS widespread or the later Ebola or Zika episodes. Apprehensive framework distortions are too regularly watched results of numerous viral contaminations. Besides, numerous infections are oncoviruses, which can trigger different sorts of cancer. Nearly every year a modern infection species rises debilitating the world populace with an annihilating episode. Subsequently, the need of creating antivirals to combat such rising infections. In any case, from the innovation of to begin with antiviral medicate Idoxuridine in 1962 to the revelation of Baloxavir marboxil (Xofluza) that was FDA-approved in 2018, the hone of creating antivirals has changed significantly. In this article, different auxiliary science strategies have been described that can be referral for therapeutics innovation.
Collapse
Affiliation(s)
- Arunima Sikdar
- Department of Hematology and Oncology, School of Medicine, The University of Tennessee Health Science Center, 920 Madison Ave, P.O.Box-38103, Memphis, Tennessee. United States
| | - Rupali Gupta
- Department of Neurology, Duke University Medical Center, Durham, North Carolina. United States
| | - Evzen Boura
- Department of Molecular Biology and Biochemistry, Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo namesti 542/2, P.O. Box:16000, Prague. Czech Republic
| |
Collapse
|
4
|
Abstract
The OC43 coronavirus is a human pathogen that usually causes only the common cold. One of its key enzymes, similar to other coronaviruses, is the 2'-O-RNA methyltransferase (MTase), which is essential for viral RNA stability and expression. Here, we report the crystal structure of the 2'-O-RNA MTase in a complex with the pan-methyltransferase inhibitor sinefungin solved at 2.2-Å resolution. The structure reveals an overall fold consistent with the fold observed in other coronaviral MTases. The major differences are in the conformation of the C terminus of the nsp16 subunit and an additional helix in the N terminus of the nsp10 subunits. The structural analysis also revealed very high conservation of the S-adenosyl methionine (SAM) binding pocket, suggesting that the SAM pocket is a suitable spot for the design of antivirals effective against all human coronaviruses. IMPORTANCE Some coronaviruses are dangerous pathogens, while some cause only common colds. The reasons are not understood, although the spike proteins probably play an important role. However, to understand the coronaviral biology in sufficient detail, we need to compare the key enzymes from different coronaviruses. We solved the crystal structure of 2'-O-RNA methyltransferase of the OC43 coronavirus, a virus that usually causes mild colds. The structure revealed some differences in the overall fold but also revealed that the SAM binding site is conserved, suggesting that development of antivirals against multiple coronaviruses is feasible.
Collapse
|
5
|
Hassanzadeh P. The significance of bioengineered nanoplatforms against SARS-CoV-2: From detection to genome editing. Life Sci 2021; 274:119289. [PMID: 33676931 PMCID: PMC7930743 DOI: 10.1016/j.lfs.2021.119289] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 02/12/2021] [Accepted: 02/20/2021] [Indexed: 12/19/2022]
Abstract
COVID-19 outbreak can impose serious negative impacts on the infrastructures of societies including the healthcare systems. Despite the increasing research efforts, false positive or negative results that may be associated with serologic or even RT-PCR tests, inappropriate or variable immune response, and high rates of mutations in coronavirus may negatively affect virus detection process and effectiveness of the vaccines or drugs in development. Nanotechnology-based research attempts via developing state-of-the-art techniques such as nanomechatronics ones and advanced materials including the sensors for detecting the pathogen loads at very low concentrations or site-specific delivery of therapeutics, and real-time protections against the pandemic outbreaks by nanorobots can provide outstanding biomedical breakthroughs. Considering the unique characteristics of pathogens particularly the newly-emerged ones and avoiding the exaggerated optimism or simplistic views on the prophylactic and therapeutic approaches including the one-size-fits-all ones or presenting multiple medications that may be associated with synergistic toxicities rather than enhanced efficiencies might pave the way towards the development of more appropriate treatment strategies with reduced safety concerns. This paper highlights the significance of nanoplatforms against the viral disorders and their capabilities of genome editing that may facilitate taking more appropriate measures against SARS-CoV-2.
Collapse
Affiliation(s)
- Parichehr Hassanzadeh
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 13169-43551, Iran.
| |
Collapse
|
6
|
Anand AV, Balamuralikrishnan B, Kaviya M, Bharathi K, Parithathvi A, Arun M, Senthilkumar N, Velayuthaprabhu S, Saradhadevi M, Al-Dhabi NA, Arasu MV, Yatoo MI, Tiwari R, Dhama K. Medicinal Plants, Phytochemicals, and Herbs to Combat Viral Pathogens Including SARS-CoV-2. Molecules 2021; 26:1775. [PMID: 33809963 PMCID: PMC8004635 DOI: 10.3390/molecules26061775] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 02/07/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome corona virus-2 (SARS-CoV-2), is the most important health issue, internationally. With no specific and effective antiviral therapy for COVID-19, new or repurposed antiviral are urgently needed. Phytochemicals pose a ray of hope for human health during this pandemic, and a great deal of research is concentrated on it. Phytochemicals have been used as antiviral agents against several viruses since they could inhibit several viruses via different mechanisms of direct inhibition either at the viral entry point or the replication stages and via immunomodulation potentials. Recent evidence also suggests that some plants and its components have shown promising antiviral properties against SARS-CoV-2. This review summarizes certain phytochemical agents along with their mode of actions and potential antiviral activities against important viral pathogens. A special focus has been given on medicinal plants and their extracts as well as herbs which have shown promising results to combat SARS-CoV-2 infection and can be useful in treating patients with COVID-19 as alternatives for treatment under phytotherapy approaches during this devastating pandemic situation.
Collapse
Affiliation(s)
- Arumugam Vijaya Anand
- Medical Genetics and Epigenetics Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore 641046, India; (M.K.); (K.B.); (A.P.)
| | | | - Mohandass Kaviya
- Medical Genetics and Epigenetics Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore 641046, India; (M.K.); (K.B.); (A.P.)
| | - Kathirvel Bharathi
- Medical Genetics and Epigenetics Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore 641046, India; (M.K.); (K.B.); (A.P.)
| | - Aluru Parithathvi
- Medical Genetics and Epigenetics Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore 641046, India; (M.K.); (K.B.); (A.P.)
| | - Meyyazhagan Arun
- Department of Life Sciences, CHRIST (Deemed to be University), Bengaluru 560029, India;
| | - Nachiappan Senthilkumar
- Institute of Forest Genetics and Tree Breeding (IFGTB), Forest Campus, Cowley Brown Road, RS Puram, Coimbatore 641002, India;
| | | | | | - Naif Abdullah Al-Dhabi
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (N.A.A.-D.); (M.V.A.)
| | - Mariadhas Valan Arasu
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (N.A.A.-D.); (M.V.A.)
- Xavier Research Foundation, St. Xavier’s College, Palayamkottai, Thirunelveli 627002, India
| | - Mohammad Iqbal Yatoo
- Faculty of Veterinary Sciences and Animal Husbandry, Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Srinagar 190006, India;
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences, UP Deen Dayal Upadhayay Pashu Chikitsa Vigyan Vishwavidyalay Evum Go-Anusandhan Sansthan (DUVASU), Mathura 281001, India;
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, India
| |
Collapse
|
7
|
Sofosbuvir Selects for Drug-Resistant Amino Acid Variants in the Zika Virus RNA-Dependent RNA-Polymerase Complex In Vitro. Int J Mol Sci 2021; 22:ijms22052670. [PMID: 33800884 PMCID: PMC7962015 DOI: 10.3390/ijms22052670] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/23/2021] [Accepted: 03/03/2021] [Indexed: 01/02/2023] Open
Abstract
The nucleotide analog sofosbuvir, licensed for the treatment of hepatitis C, recently revealed activity against the Zika virus (ZIKV) in vitro and in animal models. However, the ZIKV genetic barrier to sofosbuvir has not yet been characterized. In this study, in vitro selection experiments were performed in infected human hepatoma cell lines. Increasing drug pressure significantly delayed viral breakthrough (p = 0.029). A double mutant in the NS5 gene (V360L/V607I) emerged in 3 independent experiments at 40–80 µM sofosbuvir resulting in a 3.9 ± 0.9-fold half- maximal inhibitory concentration (IC50) shift with respect to the wild type (WT) virus. A triple mutant (C269Y/V360L/V607I), detected in one experiment at 80 µM, conferred a 6.8-fold IC50 shift with respect to the WT. Molecular dynamics simulations confirmed that the double mutant V360L/V607I impacts the binding mode of sofosbuvir, supporting its role in sofosbuvir resistance. Due to the distance from the catalytic site and to the lack of reliable structural data, the contribution of C269Y was not investigated in silico. By a combination of sequence analysis, phenotypic susceptibility testing, and molecular modeling, we characterized a double ZIKV NS5 mutant with decreased sofosbuvir susceptibility. These data add important information to the profile of sofosbuvir as a possible lead for anti-ZIKV drug development.
Collapse
|
8
|
Dinesh DC, Tamilarasan S, Rajaram K, Bouřa E. Antiviral Drug Targets of Single-Stranded RNA Viruses Causing Chronic Human Diseases. Curr Drug Targets 2021; 21:105-124. [PMID: 31538891 DOI: 10.2174/1389450119666190920153247] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 08/08/2019] [Accepted: 08/08/2019] [Indexed: 02/08/2023]
Abstract
Ribonucleic acid (RNA) viruses associated with chronic diseases in humans are major threats to public health causing high mortality globally. The high mutation rate of RNA viruses helps them to escape the immune response and also is responsible for the development of drug resistance. Chronic infections caused by human immunodeficiency virus (HIV) and hepatitis viruses (HBV and HCV) lead to acquired immunodeficiency syndrome (AIDS) and hepatocellular carcinoma respectively, which are one of the major causes of human deaths. Effective preventative measures to limit chronic and re-emerging viral infections are absolutely necessary. Each class of antiviral agents targets a specific stage in the viral life cycle and inhibits them from its development and proliferation. Most often, antiviral drugs target a specific viral protein, therefore only a few broad-spectrum drugs are available. This review will be focused on the selected viral target proteins of pathogenic viruses containing single-stranded (ss) RNA genome that causes chronic infections in humans (e.g. HIV, HCV, Flaviviruses). In the recent past, an exponential increase in the number of available three-dimensional protein structures (>150000 in Protein Data Bank), allowed us to better understand the molecular mechanism of action of protein targets and antivirals. Advancements in the in silico approaches paved the way to design and develop several novels, highly specific small-molecule inhibitors targeting the viral proteins.
Collapse
Affiliation(s)
| | - Selvaraj Tamilarasan
- Section of Microbial Biotechnology, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Kaushik Rajaram
- Department of Microbiology, Central University of Tamil Nadu, Thiruvarur, India
| | - Evžen Bouřa
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
9
|
Hassanzadeh P. Nanotheranostics against COVID-19: From multivalent to immune-targeted materials. J Control Release 2020; 328:112-126. [PMID: 32882269 PMCID: PMC7457914 DOI: 10.1016/j.jconrel.2020.08.060] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/27/2020] [Accepted: 08/28/2020] [Indexed: 12/16/2022]
Abstract
Destructive impacts of COVID-19 pandemic worldwide necessitates taking more appropriate measures for mitigating virus spread and development of the effective theranostic agents. In general, high heterogeneity of viruses is a major challenging issue towards the development of effective antiviral agents. Regarding the coronavirus, its high mutation rates can negatively affect virus detection process or the efficiency of drugs and vaccines in development or induce drug resistance. Bioengineered nanomaterials with suitable physicochemical characteristics for site-specific therapeutic delivery, highly-sensitive nanobiosensors for detection of very low virus concentration, and real-time protections using the nanorobots can provide roadmaps towards the imminent breakthroughs in theranostics of a variety of diseases including the COVID-19. Besides revolutionizing the classical disinfection procedures, state-of-the-art nanotechnology-based approaches enable providing the analytical tools for accelerated monitoring of coronavirus and associated biomarkers or drug delivery towards the pulmonary system or other affected organs. Multivalent nanomaterials capable of interaction with multivalent pathogens including the viruses could be suitable candidates for viral detection and prevention of further infections. Besides the inactivation or destruction of the virus, functionalized nanoparticles capable of modulating patient's immune response might be of great significance for attenuating the exaggerated inflammatory reactions or development of the effective nanovaccines and medications against the virus pandemics including the COVID-19.
Collapse
Affiliation(s)
- Parichehr Hassanzadeh
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 13169-43551, Iran.
| |
Collapse
|
10
|
Picarazzi F, Vicenti I, Saladini F, Zazzi M, Mori M. Targeting the RdRp of Emerging RNA Viruses: The Structure-Based Drug Design Challenge. Molecules 2020; 25:E5695. [PMID: 33287144 PMCID: PMC7730706 DOI: 10.3390/molecules25235695] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 02/06/2023] Open
Abstract
The RNA-dependent RNA polymerase (RdRp) is an essential enzyme for the viral replication process, catalyzing the viral RNA synthesis using a metal ion-dependent mechanism. In recent years, RdRp has emerged as an optimal target for the development of antiviral drugs, as demonstrated by recent approvals of sofosbuvir and remdesivir against Hepatitis C virus (HCV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), respectively. In this work, we overview the main sequence and structural features of the RdRp of emerging RNA viruses such as Coronaviruses, Flaviviruses, and HCV, as well as inhibition strategies implemented so far. While analyzing the structural information available on the RdRp of emerging RNA viruses, we provide examples of success stories such as for HCV and SARS-CoV-2. In contrast, Flaviviruses' story has raised attention about how the lack of structural details on catalytically-competent or ligand-bound RdRp strongly hampers the application of structure-based drug design, either in repurposing and conventional approaches.
Collapse
Affiliation(s)
- Francesca Picarazzi
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018–2022, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy;
| | - Ilaria Vicenti
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (I.V.); (F.S.); (M.Z.)
| | - Francesco Saladini
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (I.V.); (F.S.); (M.Z.)
| | - Maurizio Zazzi
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (I.V.); (F.S.); (M.Z.)
| | - Mattia Mori
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018–2022, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy;
| |
Collapse
|
11
|
Konkolova E, Dejmek M, Hřebabecký H, Šála M, Böserle J, Nencka R, Boura E. Remdesivir triphosphate can efficiently inhibit the RNA-dependent RNA polymerase from various flaviviruses. Antiviral Res 2020; 182:104899. [PMID: 32763313 PMCID: PMC7403104 DOI: 10.1016/j.antiviral.2020.104899] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/17/2020] [Accepted: 07/22/2020] [Indexed: 12/21/2022]
Abstract
Remdesivir was shown to inhibit RNA-dependent RNA-polymerases (RdRp) from distinct viral families such as from Filoviridae (Ebola) and Coronaviridae (SARS-CoV, SARS-CoV-2, MERS). In this study, we tested the ability of remdesivir to inhibit RdRps from the Flaviviridae family. Instead of remdesivir, we used the active species that is produced in cells from remdesivir, the appropriate triphosphate, which could be directly tested in vitro using recombinant flaviviral polymerases. Our results show that remdesivir can efficiently inhibit RdRps from viruses causing severe illnesses such as Yellow fever, West Nile fever, Japanese and Tick-borne encephalitis, Zika and Dengue. Taken together, this study demonstrates that remdesivir or its derivatives have the potential to become a broad-spectrum antiviral agent effective against many RNA viruses.
Collapse
Affiliation(s)
- Eva Konkolova
- Institute of Organic Chemistry and Biochemistry AS CR, V.v.i., Flemingovo Nam. 2, 166 10, Prague 6, Czech Republic
| | - Milan Dejmek
- Institute of Organic Chemistry and Biochemistry AS CR, V.v.i., Flemingovo Nam. 2, 166 10, Prague 6, Czech Republic
| | - Hubert Hřebabecký
- Institute of Organic Chemistry and Biochemistry AS CR, V.v.i., Flemingovo Nam. 2, 166 10, Prague 6, Czech Republic
| | - Michal Šála
- Institute of Organic Chemistry and Biochemistry AS CR, V.v.i., Flemingovo Nam. 2, 166 10, Prague 6, Czech Republic
| | - Jiří Böserle
- Institute of Organic Chemistry and Biochemistry AS CR, V.v.i., Flemingovo Nam. 2, 166 10, Prague 6, Czech Republic
| | - Radim Nencka
- Institute of Organic Chemistry and Biochemistry AS CR, V.v.i., Flemingovo Nam. 2, 166 10, Prague 6, Czech Republic.
| | - Evzen Boura
- Institute of Organic Chemistry and Biochemistry AS CR, V.v.i., Flemingovo Nam. 2, 166 10, Prague 6, Czech Republic.
| |
Collapse
|
12
|
Structural analysis of the putative SARS-CoV-2 primase complex. J Struct Biol 2020; 211:107548. [PMID: 32535228 PMCID: PMC7289108 DOI: 10.1016/j.jsb.2020.107548] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/05/2020] [Accepted: 06/08/2020] [Indexed: 12/22/2022]
Abstract
We report the crystal structure of the SARS-CoV-2 putative primase composed of the nsp7 and nsp8 proteins. We observed a dimer of dimers (2:2 nsp7-nsp8) in the crystallographic asymmetric unit. The structure revealed a fold with a helical core of the heterotetramer formed by both nsp7 and nsp8 that is flanked with two symmetry-related nsp8 β-sheet subdomains. It was also revealed that two hydrophobic interfaces one of approx. 1340 Å2 connects the nsp7 to nsp8 and a second one of approx. 950 Å2 connects the dimers and form the observed heterotetramer. Interestingly, analysis of the surface electrostatic potential revealed a putative RNA binding site that is formed only within the heterotetramer.
Collapse
|
13
|
Dragoni F, Boccuto A, Picarazzi F, Giannini A, Giammarino F, Saladini F, Mori M, Mastrangelo E, Zazzi M, Vicenti I. Evaluation of sofosbuvir activity and resistance profile against West Nile virus in vitro. Antiviral Res 2020; 175:104708. [PMID: 31931104 DOI: 10.1016/j.antiviral.2020.104708] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 12/31/2019] [Accepted: 01/08/2020] [Indexed: 12/22/2022]
Abstract
Sofosbuvir, a licensed nucleotide analog targeting hepatitis C virus (HCV) RNA-dependent RNA polymerase (RdRp), has been recently evaluated as a broad anti-Flavivirus lead candidate revealing activity against Zika and Dengue viruses both in vitro and in animal models. In this study, the in vitro antiviral activity of sofosbuvir against West Nile virus (WNV) was determined by plaque assay (PA) and Immunodetection Assay (IA) in human cell lines and by enzymatic RdRp assay. By PA, the sofosbuvir half-maximal inhibitory concentration (IC50) was 1.2 ± 0.3 μM in Huh-7, 5.3 ± 0.9 μM in U87, 7.8 ± 2.5 μM in LN-18 and 63.4 ± 14.1 μM in A549 cells. By IA, anti-WNV activity was confirmed in both hepatic (Huh-7, 1.7 ± 0.5 μM) and neuronal (U87, 7.3 ± 2.0 μM) cell types. Sofosbuvir was confirmed to inhibit the purified WNV RdRp (IC50 11.1 ± 4.6 μM). In vitro resistance selection experiments were performed by propagating WNV in the Huh-7 cell line with two-fold increasing concentrations of sofosbuvir. At 80 μM, a significantly longer time for viral breakthrough was observed compared with lower concentrations (18 vs. 7-9 days post infection; p = 0.029), along with the detection of the S604T mutation, corresponding to the well-known S282T substitution in the motif B of HCV NS5B, which confers resistance to sofosbuvir. Molecular docking experiments confirmed that the S604T mutation within the catalytic site of RdRp affected the binding mode of sofosbuvir. To our knowledge, this is the first report of the antiviral activity of sofosbuvir against WNV as well as of selection of mutants in vitro.
Collapse
Affiliation(s)
- Filippo Dragoni
- Department of Medical Biotechnologies, University of Siena, Italy
| | - Adele Boccuto
- Department of Medical Biotechnologies, University of Siena, Italy
| | - Francesca Picarazzi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Italy
| | - Alessia Giannini
- Department of Medical Biotechnologies, University of Siena, Italy
| | | | | | - Mattia Mori
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Italy
| | | | - Maurizio Zazzi
- Department of Medical Biotechnologies, University of Siena, Italy
| | - Ilaria Vicenti
- Department of Medical Biotechnologies, University of Siena, Italy.
| |
Collapse
|
14
|
Probing the effect of N-alkylation on the molecular recognition abilities of the major groove N7-binding site of purine ligands. J Inorg Biochem 2019; 200:110801. [DOI: 10.1016/j.jinorgbio.2019.110801] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 08/08/2019] [Accepted: 08/17/2019] [Indexed: 12/12/2022]
|
15
|
Dubankova A, Horova V, Klima M, Boura E. Structures of kobuviral and siciniviral polymerases reveal conserved mechanism of picornaviral polymerase activation. J Struct Biol 2019; 208:92-98. [PMID: 31415898 DOI: 10.1016/j.jsb.2019.08.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/08/2019] [Accepted: 08/09/2019] [Indexed: 01/03/2023]
Abstract
RNA-dependent RNA polymerase 3Dpol is a key enzyme for the replication of picornaviruses. The viral genome is translated into a single polyprotein that is subsequently proteolytically processed into matured products. The 3Dpol enzyme arises from a stable 3CD precursor that has high proteolytic activity but no polymerase activity. Upon cleavage of the precursor the newly established N-terminus of 3Dpol is liberated and inserts itself into a pocket on the surface of the 3Dpol enzyme. The essential residue for this mechanism is the very first glycine that is conserved among almost all picornaviruses. However, kobuviruses and siciniviruses have a serine residue instead. Intrigued by this anomaly we sought to solve the crystal structure of these 3Dpol enzymes. The structures revealed a unique fold of the 3Dpol N-termini but the very first serine residues were inserted into a charged pocket in a similar manner as the glycine residue in other picornaviruses. These structures revealed a common underlying mechanism of 3Dpol activation that lies in activation of the α10 helix containing a key catalytical residue Asp238 that forms a hydrogen bond with the 2' hydroxyl group of the incoming NTP nucleotide.
Collapse
Affiliation(s)
- Anna Dubankova
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nam. 2., 166 10 Prague 6, Czech Republic
| | - Vladimira Horova
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nam. 2., 166 10 Prague 6, Czech Republic
| | - Martin Klima
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nam. 2., 166 10 Prague 6, Czech Republic
| | - Evzen Boura
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nam. 2., 166 10 Prague 6, Czech Republic.
| |
Collapse
|
16
|
Elshahawi H, Syed Hassan S, Balasubramaniam V. Importance of Zika Virus NS5 Protein for Viral Replication. Pathogens 2019; 8:pathogens8040169. [PMID: 31574966 PMCID: PMC6963216 DOI: 10.3390/pathogens8040169] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 09/27/2019] [Accepted: 09/27/2019] [Indexed: 01/19/2023] Open
Abstract
Zika virus is the latest addition to an ever-growing list of arboviruses that are causing outbreaks with serious consequences. A few mild cases were recorded between 1960 and 1980 until the first major outbreak in 2007 on Yap Island. This was followed by more severe outbreaks in French Polynesia (2013) and Brazil (2015), which significantly increased both Guillain-Barre syndrome and microcephaly cases. No current vaccines or treatments are available, however, recent studies have taken interest in the NS5 protein which encodes both the viral methyltransferase and RNA-dependent RNA polymerase. This makes it important for viral replication alongside other important functions such as inhibiting the innate immune system thus ensuring virus survival and replication. Structural studies can help design inhibitors, while biochemical studies can help understand the various mechanisms utilized by NS5 thus counteracting them might inhibit or abolish the viral infection. Drug repurposing targeting the NS5 protein has also proven to be an effective tool since hundreds of thousands of compounds can be screened therefore saving time and resources, moreover information on these compounds might already be available especially if they are used to treat other ailments.
Collapse
Affiliation(s)
- Hesham Elshahawi
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Subang Jaya 47500, Selangor, Malaysia.
| | - Sharifah Syed Hassan
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Subang Jaya 47500, Selangor, Malaysia.
- Tropical Medicine & Biology Multidisciplinary Platform, Monash University Malaysia, Jalan Lagoon Selatan, Subang Jaya 47500, Selangor, Malaysia.
| | - Vinod Balasubramaniam
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Subang Jaya 47500, Selangor, Malaysia.
| |
Collapse
|
17
|
Hu Y, Sun L. Systematic Analysis of Structure Similarity between Zika Virus and Other Flaviviruses. ACS Infect Dis 2019; 5:1070-1080. [PMID: 31038920 DOI: 10.1021/acsinfecdis.9b00047] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Zika virus (ZIKV) infection has caused global concern because of its association with fetal microcephaly and serious neurological complications in adults since 2016. Currently, no specific anti-ZIKV therapy is available to control ZIKV infection. During the last couple of years, the intensive investigation of ZIKV structure has provided significant information for structure-based vaccine and drug design. In this review, we summarized the research progress on the structures of ZIKV and its component proteins. We analyzed the structure identity and the differences between ZIKV and other flaviviruses. This information is crucial to guiding structure-based anti-ZIKV inhibitors and vaccine discovery.
Collapse
Affiliation(s)
- Yuxia Hu
- The Fifth People’s Hospital of Shanghai and Institutes of Biomedical Sciences, Fudan University, 131 Dongan Road, Shanghai 20032, China
| | - Lei Sun
- The Fifth People’s Hospital of Shanghai and Institutes of Biomedical Sciences, Fudan University, 131 Dongan Road, Shanghai 20032, China
| |
Collapse
|
18
|
Dubankova A, Boura E. Structure of the yellow fever NS5 protein reveals conserved drug targets shared among flaviviruses. Antiviral Res 2019; 169:104536. [PMID: 31202975 DOI: 10.1016/j.antiviral.2019.104536] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 06/07/2019] [Accepted: 06/12/2019] [Indexed: 12/23/2022]
Abstract
Yellow fever virus (YFV) is responsible for devastating outbreaks of Yellow fever (YF) in humans and is associated with high mortality rates. Recent large epidemics and epizootics and exponential increases in the numbers of YF cases in humans and non-human primates highlight the increasing threat YFV poses, despite the availability of an effective YFV vaccine. YFV is the first human virus discovered, but the structures of several of the viral proteins remain poorly understood. Here we report the structure of the full-length NS5 protein, a key enzyme for the replication of flaviviruses that contains both a methyltransferase domain and an RNA dependent RNA polymerase domain, at 3.1 Å resolution. The viral polymerase adopts right-hand fold, demonstrating the similarities of the Yellow fever, Dengue and Zika polymerases. Together this data suggests NS5 as a prime and ideal target for the design of pan-flavivirus inhibitors.
Collapse
Affiliation(s)
- Anna Dubankova
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo Nam. 2, 166 10, Prague 6, Czech Republic
| | - Evzen Boura
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo Nam. 2, 166 10, Prague 6, Czech Republic.
| |
Collapse
|
19
|
Bernatchez JA, Coste M, Beck S, Wells GA, Luna LA, Clark AE, Zhu Z, Hecht D, Rich JN, Sohl CD, Purse BW, Siqueira-Neto JL. Activity of Selected Nucleoside Analogue ProTides against Zika Virus in Human Neural Stem Cells. Viruses 2019; 11:v11040365. [PMID: 31010044 PMCID: PMC6521205 DOI: 10.3390/v11040365] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 04/15/2019] [Accepted: 04/18/2019] [Indexed: 01/27/2023] Open
Abstract
Zika virus (ZIKV), an emerging flavivirus that causes neurodevelopmental impairment to fetuses and has been linked to Guillain-Barré syndrome continues to threaten global health due to the absence of targeted prophylaxis or treatment. Nucleoside analogues are good examples of efficient anti-viral inhibitors, and prodrug strategies using phosphate masking groups (ProTides) have been employed to improve the bioavailability of ribonucleoside analogues. Here, we synthesized and tested a small library of 13 ProTides against ZIKV in human neural stem cells. Strong activity was observed for 2′-C-methyluridine and 2′-C-ethynyluridine ProTides with an aryloxyl phosphoramidate masking group. Substitution of a 2-(methylthio) ethyl phosphoramidate for the aryloxyl phosphoramidate ProTide group of 2′-C-methyluridine completely abolished antiviral activity of the compound. The aryloxyl phosphoramidate ProTide of 2′-C-methyluridine outperformed the hepatitis C virus (HCV) drug sofosbuvir in suppression of viral titers and protection from cytopathic effect, while the former compound’s triphosphate active metabolite was better incorporated by purified ZIKV NS5 polymerase over time. These findings suggest both a nucleobase and ProTide group bias for the anti-ZIKV activity of nucleoside analogue ProTides in a disease-relevant cell model.
Collapse
Affiliation(s)
- Jean A Bernatchez
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, USA.
- Center for Discovery and Innovation in Parasitic Diseases, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Michael Coste
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, CA 92182, USA.
| | - Sungjun Beck
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Grace A Wells
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, CA 92182, USA.
| | - Lucas A Luna
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, CA 92182, USA.
| | - Alex E Clark
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, USA.
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Zhe Zhu
- Sanford Consortium for Regenerative Medicine, La Jolla, CA 92093, USA.
- Department of Medicine, Division of Regenerative Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
| | - David Hecht
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, CA 92182, USA.
- Department of Chemistry, Southwestern College, Chula Vista, CA 91910, USA.
| | - Jeremy N Rich
- Sanford Consortium for Regenerative Medicine, La Jolla, CA 92093, USA.
- Department of Medicine, Division of Regenerative Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Christal D Sohl
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, CA 92182, USA.
| | - Byron W Purse
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, CA 92182, USA.
- The Viral Information Institute, San Diego State University, San Diego, CA 92182, USA.
| | - Jair L Siqueira-Neto
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, USA.
- Center for Discovery and Innovation in Parasitic Diseases, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
20
|
Development of a fluorescence-based method for the rapid determination of Zika virus polymerase activity and the screening of antiviral drugs. Sci Rep 2019; 9:5397. [PMID: 30932009 PMCID: PMC6444013 DOI: 10.1038/s41598-019-41998-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 03/20/2019] [Indexed: 12/14/2022] Open
Abstract
Zika virus (ZIKV) is an emerging pathogen that has been associated with large numbers of cases of severe neurologic disease, including Guillain-Barré syndrome and microcephaly. Despite its recent establishment as a serious global public health concern there are no licensed therapeutics to control this virus. Accordingly, there is an urgent need to develop methods for the high-throughput screening of antiviral agents. We describe here a fluorescence-based method to monitor the real-time polymerization activity of Zika virus RNA-dependent RNA polymerase (RdRp). By using homopolymeric RNA template molecules, de novo RNA synthesis can be detected with a fluorescent dye, which permits the specific quantification and kinetics of double-strand RNA formation. ZIKV RdRp activity detected using this fluorescence-based assay positively correlated with traditional assays measuring the incorporation of radiolabeled nucleotides. We also validated this method as a suitable assay for the identification of ZIKV inhibitors targeting the viral polymerase using known broad-spectrum inhibitors. The assay was also successfully adapted to detect RNA polymerization activity by different RdRps, illustrated here using purified RdRps from hepatitis C virus and foot-and-mouth disease virus. The potential of fluorescence-based approaches for the enzymatic characterization of viral polymerases, as well as for high-throughput screening of antiviral drugs, are discussed.
Collapse
|
21
|
Rusanov T, Kent T, Saeed M, Hoang TM, Thomas C, Rice CM, Pomerantz RT. Identification of a Small Interface between the Methyltransferase and RNA Polymerase of NS5 that is Essential for Zika Virus Replication. Sci Rep 2018; 8:17384. [PMID: 30478404 PMCID: PMC6255901 DOI: 10.1038/s41598-018-35511-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 11/06/2018] [Indexed: 12/16/2022] Open
Abstract
The spread of Zika virus (ZIKV) has caused an international health emergency due to its ability to cause microcephaly in infants. Yet, our knowledge of how ZIKV replicates at the molecular level is limited. For example, how the non-structural protein 5 (NS5) performs replication, and in particular whether the N-terminal methytransferase (MTase) domain is essential for the function of the C-terminal RNA-dependent RNA polymerase (RdRp) remains unclear. In contrast to previous reports, we find that MTase is absolutely essential for all activities of RdRp in vitro. For instance, the MTase domain confers stability onto the RdRp elongation complex (EC) and and is required for de novo RNA synthesis and nucleotide incorporation by RdRp. Finally, structure function analyses identify key conserved residues at the MTase-RdRp interface that specifically activate RdRp elongation and are essential for ZIKV replication in Huh-7.5 cells. These data demonstrate the requirement for the MTase-RdRp interface in ZIKV replication and identify a specific site within this region as a potential site for therapeutic development.
Collapse
Affiliation(s)
- Timur Rusanov
- Fels Institute for Cancer Research, Department of Medical Genetics and Molecular Biochemistry, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania, USA
| | - Tatiana Kent
- Fels Institute for Cancer Research, Department of Medical Genetics and Molecular Biochemistry, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania, USA
| | - Mohsan Saeed
- Laboratory of Virology and Infectious Disease, Center for the Study of Hepatitis C, The Rockefeller University, New York, NY, USA
| | - Trung M Hoang
- Fels Institute for Cancer Research, Department of Medical Genetics and Molecular Biochemistry, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania, USA
| | - Crystal Thomas
- Fels Institute for Cancer Research, Department of Medical Genetics and Molecular Biochemistry, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania, USA
| | - Charles M Rice
- Laboratory of Virology and Infectious Disease, Center for the Study of Hepatitis C, The Rockefeller University, New York, NY, USA
| | - Richard T Pomerantz
- Fels Institute for Cancer Research, Department of Medical Genetics and Molecular Biochemistry, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania, USA.
| |
Collapse
|