1
|
Atique M, Muniz I, Farshadi F, Hier M, Mlynarek A, Macarella M, Maschietto M, Nicolau B, Alaoui-Jamali MA, da Silva SD. Genetic Mutations Associated with Inflammatory Response Caused by HPV Integration in Oropharyngeal Squamous Cell Carcinoma. Biomedicines 2023; 12:24. [PMID: 38275384 PMCID: PMC10813733 DOI: 10.3390/biomedicines12010024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/08/2023] [Accepted: 12/11/2023] [Indexed: 01/27/2024] Open
Abstract
(1) Background: Head and neck cancer (HNC) ranks as the sixth most prevalent cancer in the world. In addition to the traditional risk factors such as alcohol and tobacco consumption, the implication of the human papillomavirus (HPV) is becoming increasingly significant, particularly in oropharyngeal cancer (OPC). (2) Methods: This study is based on a review analysis of different articles and repositories investigating the mutation profile of HPV-related OPC and its impact on patient outcomes. (3) Results: By compiling data from 38 datasets involving 8311 patients from 12 countries, we identified 330 genes that were further analyzed. These genes were enriched for regulation of the inflammatory response (RB1, JAK2, FANCA, CYLD, SYK, ABCC1, SYK, BCL6, CEBPA, SRC, BAP1, FOXP1, FGR, BCR, LRRK2, RICTOR, IGF1, and ATM), among other biological processes. Hierarchical cluster analysis showed the most relevant biological processes were linked with the regulation of mast cell cytokine production, neutrophil activation and degranulation, and leukocyte activation (FDR < 0.001; p-value < 0.05), suggesting that neutrophils may be involved in the development and progression of HPV-related OPC. (4) Conclusions: The neutrophil infiltration and HPV status emerge as a potential prognostic factor for OPC. HPV-infected HNC cells could potentially lead to a decrease in neutrophil infiltration. By gaining a better molecular understanding of HPV-mediated neutrophil immunosuppression activity, it is possible to identify a meaningful target to boost antitumor immune response in HNC and hence to improve the survival of patients with HNC.
Collapse
Affiliation(s)
- Mai Atique
- Department of Otolaryngology and Head and Neck Surgery, McGill University, Montreal, QC H3T 1E2, Canada; (M.A.); (I.M.); (F.F.); (M.H.); (A.M.); (M.M.)
- Segal Cancer Centre and Lady Davis Institute for Medical Research, Departments of Medicine and Oncology, Sir Mortimer B. Davis-Jewish General Hospital, Faculty of Medicine, McGill University, Montreal, QC H3T 1E2, Canada;
| | - Isis Muniz
- Department of Otolaryngology and Head and Neck Surgery, McGill University, Montreal, QC H3T 1E2, Canada; (M.A.); (I.M.); (F.F.); (M.H.); (A.M.); (M.M.)
- Segal Cancer Centre and Lady Davis Institute for Medical Research, Departments of Medicine and Oncology, Sir Mortimer B. Davis-Jewish General Hospital, Faculty of Medicine, McGill University, Montreal, QC H3T 1E2, Canada;
- Graduate Program in Dentistry, Health Sciences Center, Federal University of Paraiba, Campus I, João Pessoa 58051-900, PB, Brazil;
| | - Fatemeh Farshadi
- Department of Otolaryngology and Head and Neck Surgery, McGill University, Montreal, QC H3T 1E2, Canada; (M.A.); (I.M.); (F.F.); (M.H.); (A.M.); (M.M.)
- Segal Cancer Centre and Lady Davis Institute for Medical Research, Departments of Medicine and Oncology, Sir Mortimer B. Davis-Jewish General Hospital, Faculty of Medicine, McGill University, Montreal, QC H3T 1E2, Canada;
| | - Michael Hier
- Department of Otolaryngology and Head and Neck Surgery, McGill University, Montreal, QC H3T 1E2, Canada; (M.A.); (I.M.); (F.F.); (M.H.); (A.M.); (M.M.)
| | - Alex Mlynarek
- Department of Otolaryngology and Head and Neck Surgery, McGill University, Montreal, QC H3T 1E2, Canada; (M.A.); (I.M.); (F.F.); (M.H.); (A.M.); (M.M.)
| | - Marco Macarella
- Department of Otolaryngology and Head and Neck Surgery, McGill University, Montreal, QC H3T 1E2, Canada; (M.A.); (I.M.); (F.F.); (M.H.); (A.M.); (M.M.)
| | - Mariana Maschietto
- Department of Structural and Functional Biology, Institute of Biology, Universidade Estadual de Campinas (UNICAMP), Campinas 13084-225, SP, Brazil;
- Boldrini Children’s Center, Campinas 13084-225, SP, Brazil
| | - Belinda Nicolau
- Graduate Program in Dentistry, Health Sciences Center, Federal University of Paraiba, Campus I, João Pessoa 58051-900, PB, Brazil;
| | - Moulay A. Alaoui-Jamali
- Segal Cancer Centre and Lady Davis Institute for Medical Research, Departments of Medicine and Oncology, Sir Mortimer B. Davis-Jewish General Hospital, Faculty of Medicine, McGill University, Montreal, QC H3T 1E2, Canada;
| | - Sabrina Daniela da Silva
- Department of Otolaryngology and Head and Neck Surgery, McGill University, Montreal, QC H3T 1E2, Canada; (M.A.); (I.M.); (F.F.); (M.H.); (A.M.); (M.M.)
- Segal Cancer Centre and Lady Davis Institute for Medical Research, Departments of Medicine and Oncology, Sir Mortimer B. Davis-Jewish General Hospital, Faculty of Medicine, McGill University, Montreal, QC H3T 1E2, Canada;
| |
Collapse
|
2
|
Valero C, Golkaram M, Vos JL, Xu B, Fitzgerald C, Lee M, Kaplan S, Han CY, Pei X, Sarkar R, Boe LA, Pandey A, Koh ES, Zuur CL, Solit DB, Pawlowski T, Liu L, Ho AL, Chowell D, Riaz N, Chan TA, Morris LG. Clinical-genomic determinants of immune checkpoint blockade response in head and neck squamous cell carcinoma. J Clin Invest 2023; 133:e169823. [PMID: 37561583 PMCID: PMC10541199 DOI: 10.1172/jci169823] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 08/03/2023] [Indexed: 08/12/2023] Open
Abstract
BACKGROUNDRecurrent and/or metastatic (R/M) head and neck squamous cell carcinoma (HNSCC) is generally an incurable disease, with patients experiencing median survival of under 10 months and significant morbidity. While immune checkpoint blockade (ICB) drugs are effective in approximately 20% of patients, the remaining experience limited clinical benefit and are exposed to potential adverse effects and financial costs. Clinically approved biomarkers, such as tumor mutational burden (TMB), have a modest predictive value in HNSCC.METHODSWe analyzed clinical and genomic features, generated using whole-exome sequencing, in 133 ICB-treated patients with R/M HNSCC, of whom 69 had virus-associated and 64 had non-virus-associated tumors.RESULTSHierarchical clustering of genomic data revealed 6 molecular subtypes characterized by a wide range of objective response rates and survival after ICB therapy. The prognostic importance of these 6 subtypes was validated in an external cohort. A random forest-based predictive model, using several clinical and genomic features, predicted progression-free survival (PFS), overall survival (OS), and response with greater accuracy than did a model based on TMB alone. Recursive partitioning analysis identified 3 features (systemic inflammatory response index, TMB, and smoking signature) that classified patients into risk groups with accurate discrimination of PFS and OS.CONCLUSIONThese findings shed light on the immunogenomic characteristics of HNSCC tumors that drive differential responses to ICB and identify a clinical-genomic classifier that outperformed the current clinically approved biomarker of TMB. This validated predictive tool may help with clinical risk stratification in patients with R/M HNSCC for whom ICB is being considered.FUNDINGFundación Alfonso Martín Escudero, NIH R01 DE027738, US Department of Defense CA210784, The Geoffrey Beene Cancer Research Center, The MSKCC Population Science Research Program, the Jayme Flowers Fund, the Sebastian Nativo Fund, and the NIH/NCI Cancer Center Support Grant P30 CA008748.
Collapse
Affiliation(s)
- Cristina Valero
- Head and Neck Service, Immunogenomic Oncology Platform, Department of Surgery, Memorial Sloan Kettering Cancer Center (MSKCC), New York, New York, USA
| | | | - Joris L. Vos
- Head and Neck Service, Immunogenomic Oncology Platform, Department of Surgery, Memorial Sloan Kettering Cancer Center (MSKCC), New York, New York, USA
| | - Bin Xu
- Department of Pathology and Laboratory Medicine
| | - Conall Fitzgerald
- Head and Neck Service, Immunogenomic Oncology Platform, Department of Surgery, Memorial Sloan Kettering Cancer Center (MSKCC), New York, New York, USA
| | - Mark Lee
- Head and Neck Service, Immunogenomic Oncology Platform, Department of Surgery, Memorial Sloan Kettering Cancer Center (MSKCC), New York, New York, USA
| | | | - Catherine Y. Han
- Head and Neck Service, Immunogenomic Oncology Platform, Department of Surgery, Memorial Sloan Kettering Cancer Center (MSKCC), New York, New York, USA
| | - Xin Pei
- Department of Radiation Oncology, and
| | | | - Lillian A. Boe
- Department of Biostatistics and Epidemiology, MSKCC, New York, New York, USA
| | - Abhinav Pandey
- Head and Neck Service, Immunogenomic Oncology Platform, Department of Surgery, Memorial Sloan Kettering Cancer Center (MSKCC), New York, New York, USA
| | - Elizabeth S. Koh
- Head and Neck Service, Immunogenomic Oncology Platform, Department of Surgery, Memorial Sloan Kettering Cancer Center (MSKCC), New York, New York, USA
| | - Charlotte L. Zuur
- Department of Head and Neck Oncology and Surgery, Antoni van Leeuwenhoek Hospital–Netherlands Cancer Institute, Amsterdam, Netherlands
- Department of Otorhinolaryngology and Head and Neck Surgery, Leiden University Medical Center, Leiden, Netherlands
| | | | | | - Li Liu
- Illumina Inc., San Diego, California, USA
| | - Alan L. Ho
- Department of Medicine, MSKCC, New York, New York, USA
| | - Diego Chowell
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | | | - Timothy A. Chan
- Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Luc G.T. Morris
- Head and Neck Service, Immunogenomic Oncology Platform, Department of Surgery, Memorial Sloan Kettering Cancer Center (MSKCC), New York, New York, USA
| |
Collapse
|
3
|
Çakan E, Gunaydin G. Activation induced cytidine deaminase: An old friend with new faces. Front Immunol 2022; 13:965312. [PMID: 36405752 PMCID: PMC9670734 DOI: 10.3389/fimmu.2022.965312] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 10/10/2022] [Indexed: 11/25/2022] Open
Abstract
Activation induced cytidine deaminase (AID) protein is a member of APOBEC family. AID converts cytidine to uracil, which is a key step for somatic hypermutation (SHM) and class switch recombination (CSR). AID also plays critical roles in B cell precursor stages, removing polyreactive B cells from immune repertoire. Since the main function of AID is inducing point mutations, dysregulation can lead to increased mutation load, translocations, disturbed genomic integrity, and lymphomagenesis. As such, expression of AID as well as its function is controlled strictly at various molecular steps. Other members of the APOBEC family also play crucial roles during carcinogenesis. Considering all these functions, AID represents a bridge, linking chronic inflammation to carcinogenesis and immune deficiencies to autoimmune manifestations.
Collapse
Affiliation(s)
- Elif Çakan
- Hacettepe University School of Medicine, Sihhiye, Ankara, Turkey
| | - Gurcan Gunaydin
- Department of Basic Oncology, Hacettepe University Cancer Institute, Sihhiye, Ankara, Turkey
| |
Collapse
|
4
|
Kumar N, Mishra B, Mukhtar MS. A pipeline of integrating transcriptome and interactome to elucidate central nodes in host-pathogens interactions. STAR Protoc 2022; 3:101608. [PMID: 35990739 PMCID: PMC9386103 DOI: 10.1016/j.xpro.2022.101608] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Investigating the complexity of host-pathogen interactions is challenging. Here, we outline a pipeline to identify important proteins and signaling molecules in human-viral interactomes. Firstly, we curate a comprehensive human interactome. Subsequently, we infer viral targets and transcriptome-specific human interactomes (VTTSHI) for papillomavirus and herpes viruses by integrating viral targets and transcriptome data. Finally, we reveal the common and shared nodes and pathways in viral pathogenesis following network topology and pathway enrichment analyses. For complete details on the use and execution of this protocol, please refer to Kumar et al. (2020). Protocol for integrative analysis of transcriptome and proteome network data Network subgroup enrichment of two host-pathogen interaction networks Preprocessing of data and heterogeneous network integration
Publisher’s note: Undertaking any experimental protocol requires adherence to local institutional guidelines for laboratory safety and ethics.
Collapse
Affiliation(s)
- Nilesh Kumar
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Bharat Mishra
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - M Shahid Mukhtar
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
5
|
Jha A, Quesnel-Vallières M, Wang D, Thomas-Tikhonenko A, Lynch KW, Barash Y. Identifying common transcriptome signatures of cancer by interpreting deep learning models. Genome Biol 2022; 23:117. [PMID: 35581644 PMCID: PMC9112525 DOI: 10.1186/s13059-022-02681-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 04/27/2022] [Indexed: 01/01/2023] Open
Abstract
Background Cancer is a set of diseases characterized by unchecked cell proliferation and invasion of surrounding tissues. The many genes that have been genetically associated with cancer or shown to directly contribute to oncogenesis vary widely between tumor types, but common gene signatures that relate to core cancer pathways have also been identified. It is not clear, however, whether there exist additional sets of genes or transcriptomic features that are less well known in cancer biology but that are also commonly deregulated across several cancer types. Results Here, we agnostically identify transcriptomic features that are commonly shared between cancer types using 13,461 RNA-seq samples from 19 normal tissue types and 18 solid tumor types to train three feed-forward neural networks, based either on protein-coding gene expression, lncRNA expression, or splice junction use, to distinguish between normal and tumor samples. All three models recognize transcriptome signatures that are consistent across tumors. Analysis of attribution values extracted from our models reveals that genes that are commonly altered in cancer by expression or splicing variations are under strong evolutionary and selective constraints. Importantly, we find that genes composing our cancer transcriptome signatures are not frequently affected by mutations or genomic alterations and that their functions differ widely from the genes genetically associated with cancer. Conclusions Our results highlighted that deregulation of RNA-processing genes and aberrant splicing are pervasive features on which core cancer pathways might converge across a large array of solid tumor types. Supplementary Information The online version contains supplementary material available at (10.1186/s13059-022-02681-3).
Collapse
Affiliation(s)
- Anupama Jha
- Department of Computer and Information Science, School of Engineering and Applied Science, Philadelphia, USA.
| | - Mathieu Quesnel-Vallières
- Department of Genetics, Philadelphia, USA. .,Department of Biochemistry and Biophysics, Philadelphia, USA.
| | - David Wang
- Department of Genetics, Philadelphia, USA
| | - Andrei Thomas-Tikhonenko
- Department of Pathology and Laboratory Medicine, Philadelphia, USA.,Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA.,Division of Cancer Pathobiology, Children's Hospital of Philadelphia, Philadelphia, USA
| | - Kristen W Lynch
- Department of Biochemistry and Biophysics, Philadelphia, USA
| | - Yoseph Barash
- Department of Computer and Information Science, School of Engineering and Applied Science, Philadelphia, USA. .,Department of Genetics, Philadelphia, USA.
| |
Collapse
|
6
|
Burcher KM, Faucheux AT, Lantz JW, Wilson HL, Abreu A, Salafian K, Patel MJ, Song AH, Petro RM, Lycan T, Furdui CM, Topaloglu U, D’Agostino RB, Zhang W, Porosnicu M. Prevalence of DNA Repair Gene Mutations in Blood and Tumor Tissue and Impact on Prognosis and Treatment in HNSCC. Cancers (Basel) 2021; 13:3118. [PMID: 34206538 PMCID: PMC8267691 DOI: 10.3390/cancers13133118] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/13/2021] [Accepted: 06/16/2021] [Indexed: 02/07/2023] Open
Abstract
PARP inhibitors are currently approved for a limited number of cancers and targetable mutations in DNA damage repair (DDR) genes. In this single-institution retrospective study, the profiles of 170 patients with head and neck squamous cell cancer (HNSCC) and available tumor tissue DNA (tDNA) and circulating tumor DNA (ctDNA) results were analyzed for mutations in a set of 18 DDR genes as well as in gene subsets defined by technical and clinical significance. Mutations were correlated with demographic and outcome data. The addition of ctDNA to the standard tDNA analysis contributed to identification of a significantly increased incidence of patients with mutations in one or more genes in each of the study subsets of DDR genes in groups of patients older than 60 years, patients with laryngeal primaries, patients with advanced stage at diagnosis and patients previously treated with chemotherapy and/or radiotherapy. Patients with DDR gene mutations were found to be significantly less likely to have primary tumors within the in oropharynx or HPV-positive disease. Patients with ctDNA mutations in all subsets of DDR genes analyzed had significantly worse overall survival in univariate and adjusted multivariate analysis. This study underscores the utility of ctDNA analysis, alone, and in combination with tDNA, for defining the prevalence and the role of DDR gene mutations in HNSCC. Furthermore, this study fosters research promoting the utilization of PARP inhibitors in HNSCC precision oncology treatments.
Collapse
Affiliation(s)
- Kimberly M. Burcher
- Wake Forest Baptist Medical Center, Winston-Salem, NC 27157, USA; (K.M.B.); (A.T.F.); (J.W.L.); (K.S.); (M.J.P.); (A.H.S.); (R.M.P.); (T.L.J.); (C.M.F.); (U.T.); (R.B.D.J.); (W.Z.)
| | - Andrew T. Faucheux
- Wake Forest Baptist Medical Center, Winston-Salem, NC 27157, USA; (K.M.B.); (A.T.F.); (J.W.L.); (K.S.); (M.J.P.); (A.H.S.); (R.M.P.); (T.L.J.); (C.M.F.); (U.T.); (R.B.D.J.); (W.Z.)
| | - Jeffrey W. Lantz
- Wake Forest Baptist Medical Center, Winston-Salem, NC 27157, USA; (K.M.B.); (A.T.F.); (J.W.L.); (K.S.); (M.J.P.); (A.H.S.); (R.M.P.); (T.L.J.); (C.M.F.); (U.T.); (R.B.D.J.); (W.Z.)
| | - Harper L. Wilson
- University of Kentucky Medical Center, Lexington, KY 40536, USA;
| | - Arianne Abreu
- Campbell University School of Osteopathic Medicine (CUSOM), Lillington, NC 27546, USA;
| | - Kiarash Salafian
- Wake Forest Baptist Medical Center, Winston-Salem, NC 27157, USA; (K.M.B.); (A.T.F.); (J.W.L.); (K.S.); (M.J.P.); (A.H.S.); (R.M.P.); (T.L.J.); (C.M.F.); (U.T.); (R.B.D.J.); (W.Z.)
| | - Manisha J. Patel
- Wake Forest Baptist Medical Center, Winston-Salem, NC 27157, USA; (K.M.B.); (A.T.F.); (J.W.L.); (K.S.); (M.J.P.); (A.H.S.); (R.M.P.); (T.L.J.); (C.M.F.); (U.T.); (R.B.D.J.); (W.Z.)
| | - Alexander H. Song
- Wake Forest Baptist Medical Center, Winston-Salem, NC 27157, USA; (K.M.B.); (A.T.F.); (J.W.L.); (K.S.); (M.J.P.); (A.H.S.); (R.M.P.); (T.L.J.); (C.M.F.); (U.T.); (R.B.D.J.); (W.Z.)
| | - Robin M. Petro
- Wake Forest Baptist Medical Center, Winston-Salem, NC 27157, USA; (K.M.B.); (A.T.F.); (J.W.L.); (K.S.); (M.J.P.); (A.H.S.); (R.M.P.); (T.L.J.); (C.M.F.); (U.T.); (R.B.D.J.); (W.Z.)
| | - Thomas Lycan
- Wake Forest Baptist Medical Center, Winston-Salem, NC 27157, USA; (K.M.B.); (A.T.F.); (J.W.L.); (K.S.); (M.J.P.); (A.H.S.); (R.M.P.); (T.L.J.); (C.M.F.); (U.T.); (R.B.D.J.); (W.Z.)
| | - Cristina M. Furdui
- Wake Forest Baptist Medical Center, Winston-Salem, NC 27157, USA; (K.M.B.); (A.T.F.); (J.W.L.); (K.S.); (M.J.P.); (A.H.S.); (R.M.P.); (T.L.J.); (C.M.F.); (U.T.); (R.B.D.J.); (W.Z.)
| | - Umit Topaloglu
- Wake Forest Baptist Medical Center, Winston-Salem, NC 27157, USA; (K.M.B.); (A.T.F.); (J.W.L.); (K.S.); (M.J.P.); (A.H.S.); (R.M.P.); (T.L.J.); (C.M.F.); (U.T.); (R.B.D.J.); (W.Z.)
| | - Ralph B. D’Agostino
- Wake Forest Baptist Medical Center, Winston-Salem, NC 27157, USA; (K.M.B.); (A.T.F.); (J.W.L.); (K.S.); (M.J.P.); (A.H.S.); (R.M.P.); (T.L.J.); (C.M.F.); (U.T.); (R.B.D.J.); (W.Z.)
| | - Wei Zhang
- Wake Forest Baptist Medical Center, Winston-Salem, NC 27157, USA; (K.M.B.); (A.T.F.); (J.W.L.); (K.S.); (M.J.P.); (A.H.S.); (R.M.P.); (T.L.J.); (C.M.F.); (U.T.); (R.B.D.J.); (W.Z.)
| | - Mercedes Porosnicu
- Wake Forest Baptist Medical Center, Winston-Salem, NC 27157, USA; (K.M.B.); (A.T.F.); (J.W.L.); (K.S.); (M.J.P.); (A.H.S.); (R.M.P.); (T.L.J.); (C.M.F.); (U.T.); (R.B.D.J.); (W.Z.)
| |
Collapse
|
7
|
Molecular Tumor Subtypes of HPV-Positive Head and Neck Cancers: Biological Characteristics and Implications for Clinical Outcomes. Cancers (Basel) 2021; 13:cancers13112721. [PMID: 34072836 PMCID: PMC8198180 DOI: 10.3390/cancers13112721] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/24/2021] [Accepted: 05/27/2021] [Indexed: 01/18/2023] Open
Abstract
Until recently, research on the molecular signatures of Human papillomavirus (HPV)-associated head and neck cancers mainly focused on their differences with respect to HPV-negative head and neck squamous cell carcinomas (HNSCCs). However, given the continuing high incidence level of HPV-related HNSCC, the time is ripe to characterize the heterogeneity that exists within these cancers. Here, we review research thus far on HPV-positive HNSCC molecular subtypes, and their relationship with clinical characteristics and HPV integration into the host genome. Different omics data including host transcriptomics and epigenomics, as well as HPV characteristics, can provide complementary viewpoints. Keratinization, mesenchymal differentiation, immune signatures, stromal cells and oxidoreductive processes all play important roles.
Collapse
|
8
|
Endogenous APOBEC3B overexpression characterizes HPV-positive and HPV-negative oral epithelial dysplasias and head and neck cancers. Mod Pathol 2021; 34:280-290. [PMID: 32632179 PMCID: PMC8261524 DOI: 10.1038/s41379-020-0617-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/10/2020] [Accepted: 06/23/2020] [Indexed: 12/17/2022]
Abstract
The DNA cytosine deaminase APOBEC3B (A3B) is a newly recognized endogenous source of mutations in a range of human tumors, including head/neck cancer. A3B inflicts C-to-T and C-to-G base substitutions in 5'-TCA/T trinucleotide motifs, contributes to accelerated rates of tumor development, and affects clinical outcomes in a variety of cancer types. High-risk human papillomavirus (HPV) infection causes A3B overexpression, and HPV-positive cervical and head/neck cancers are among tumor types with the highest degree of APOBEC signature mutations. A3B overexpression in HPV-positive tumor types is caused by the viral E6/E7 oncoproteins and may be an early off-to-on switch in tumorigenesis. In comparison, less is known about the molecular mechanisms responsible for A3B overexpression in HPV-negative head/neck cancers. Here, we utilize an immunohistochemical approach to determine whether A3B is turned from off-to-on or if it undergoes a more gradual transition to overexpression in HPV-negative head/neck cancers. As positive controls, almost all HPV-positive oral epithelial dysplasias and oropharyngeal cancers showed high levels of nuclear A3B staining regardless of diagnosis. As negative controls, A3B levels were low in phenotypically normal epithelium adjacent to cancer and oral epithelial hyperplasias. Interestingly, HPV-negative and low-grade oral epithelial dysplasias showed intermediate A3B levels, while high-grade oral dysplasias showed high A3B levels similar to oral squamous cell carcinomas. A3B levels were highest in grade 2 and grade 3 oral squamous cell carcinomas. In addition, a strong positive association was found between nuclear A3B and Ki67 scores suggesting a linkage to the cell cycle. Overall, these results support a model in which gradual activation of A3B expression occurs during HPV-negative tumor development and suggest that A3B overexpression may provide a marker for advanced grade oral dysplasia and cancer.
Collapse
|
9
|
Riva G, Albano C, Gugliesi F, Pasquero S, Pacheco SFC, Pecorari G, Landolfo S, Biolatti M, Dell’Oste V. HPV Meets APOBEC: New Players in Head and Neck Cancer. Int J Mol Sci 2021; 22:1402. [PMID: 33573337 PMCID: PMC7866819 DOI: 10.3390/ijms22031402] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/28/2021] [Accepted: 01/28/2021] [Indexed: 12/13/2022] Open
Abstract
Besides smoking and alcohol, human papillomavirus (HPV) is a factor promoting head and neck squamous cell carcinoma (HNSCC). In some human tumors, including HNSCC, a number of mutations are caused by aberrantly activated DNA-modifying enzymes, such as the apolipoprotein B mRNA editing enzyme catalytic polypeptide-like (APOBEC) family of cytidine deaminases. As the enzymatic activity of APOBEC proteins contributes to the innate immune response to viruses, including HPV, the role of APOBEC proteins in HPV-driven head and neck carcinogenesis has recently gained increasing attention. Ongoing research efforts take the cue from two key observations: (1) APOBEC expression depends on HPV infection status in HNSCC; and (2) APOBEC activity plays a major role in HPV-positive HNSCC mutagenesis. This review focuses on recent advances on the role of APOBEC proteins in HPV-positive vs. HPV-negative HNSCC.
Collapse
Affiliation(s)
- Giuseppe Riva
- Otorhinolaryngology Division, Department of Surgical Sciences, University of Turin, 10126 Turin, Italy; (G.R.); (G.P.)
| | - Camilla Albano
- Department of Public Health and Pediatric Sciences, University of Turin, 10126 Turin, Italy; (C.A.); (F.G.); (S.P.); (S.F.C.P.); (S.L.)
| | - Francesca Gugliesi
- Department of Public Health and Pediatric Sciences, University of Turin, 10126 Turin, Italy; (C.A.); (F.G.); (S.P.); (S.F.C.P.); (S.L.)
| | - Selina Pasquero
- Department of Public Health and Pediatric Sciences, University of Turin, 10126 Turin, Italy; (C.A.); (F.G.); (S.P.); (S.F.C.P.); (S.L.)
| | - Sergio Fernando Castillo Pacheco
- Department of Public Health and Pediatric Sciences, University of Turin, 10126 Turin, Italy; (C.A.); (F.G.); (S.P.); (S.F.C.P.); (S.L.)
| | - Giancarlo Pecorari
- Otorhinolaryngology Division, Department of Surgical Sciences, University of Turin, 10126 Turin, Italy; (G.R.); (G.P.)
| | - Santo Landolfo
- Department of Public Health and Pediatric Sciences, University of Turin, 10126 Turin, Italy; (C.A.); (F.G.); (S.P.); (S.F.C.P.); (S.L.)
| | - Matteo Biolatti
- Department of Public Health and Pediatric Sciences, University of Turin, 10126 Turin, Italy; (C.A.); (F.G.); (S.P.); (S.F.C.P.); (S.L.)
| | - Valentina Dell’Oste
- Department of Public Health and Pediatric Sciences, University of Turin, 10126 Turin, Italy; (C.A.); (F.G.); (S.P.); (S.F.C.P.); (S.L.)
| |
Collapse
|
10
|
Granadillo Rodríguez M, Flath B, Chelico L. The interesting relationship between APOBEC3 deoxycytidine deaminases and cancer: a long road ahead. Open Biol 2020; 10:200188. [PMID: 33292100 PMCID: PMC7776566 DOI: 10.1098/rsob.200188] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 10/26/2020] [Indexed: 12/24/2022] Open
Abstract
Cancer is considered a group of diseases characterized by uncontrolled growth and spread of abnormal cells and is propelled by somatic mutations. Apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3 (APOBEC3) family of enzymes are endogenous sources of somatic mutations found in multiple human cancers. While these enzymes normally act as an intrinsic immune defence against viruses, they can also catalyse 'off-target' cytidine deamination in genomic single-stranded DNA intermediates. The deamination of cytosine forms uracil, which is promutagenic in DNA. Key factors to trigger the APOBEC 'off-target' activity are overexpression in a non-normal cell type, nuclear localization and replication stress. The resulting uracil-induced mutations contribute to genomic variation, which may result in neutral, beneficial or harmful consequences for the cancer. This review summarizes the functional and biochemical basis of the APOBEC3 enzyme activity and highlights their relationship with the most well-studied cancers in this particular context such as breast, lung, bladder, and human papillomavirus-associated cancers. We focus on APOBEC3A, APOBEC3B and APOBEC3H haplotype I because they are the leading candidates as sources of somatic mutations in these and other cancers. Also, we discuss the prognostic value of the APOBEC3 expression in drug resistance and response to therapies.
Collapse
Affiliation(s)
| | | | - Linda Chelico
- Department of Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
11
|
[Mutation signatures in head and neck squamous cell carcinoma : Pathogenesis and therapeutic potential]. HNO 2020; 68:922-926. [PMID: 33044581 DOI: 10.1007/s00106-020-00954-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND The pathogenesis of head and neck squamous cell carcinoma (HNSCC) is a complex and multistage process which results from the interaction of exogenous and endogenous cellular processes. Each of these processes leaves a characteristic pattern of mutations on the tumor genome, a so-called mutational signature. STATE OF THE ART The subject of current studies is to decipher specific signatures of mutational processes operating during HNSCC pathogenesis and to address their prognostic value. Computational analysis of genomic sequencing data by The Cancer Genome Atlas (TCGA) revealed mutational signatures 1, 2, 4, 5, 7, and 13 as the main players in HNSCC pathogenesis. Signature 16 was first discovered in human papillomavirus (HPV)-negative oral and oropharyngeal tumors. In many studies, an association of signature 16 with alcohol and tobacco consumption as well as with an unfavorable prognosis was described.
Collapse
|
12
|
Plath M, Gass J, Hlevnjak M, Li Q, Feng B, Hostench XP, Bieg M, Schroeder L, Holzinger D, Zapatka M, Freier K, Weichert W, Hess J, Zaoui K. Unraveling most abundant mutational signatures in head and neck cancer. Int J Cancer 2020; 148:115-127. [PMID: 32930393 DOI: 10.1002/ijc.33297] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 08/04/2020] [Accepted: 08/04/2020] [Indexed: 12/11/2022]
Abstract
Genomic alterations are a driving force in the multistep process of head and neck cancer (HNC) and result from the interaction of exogenous environmental exposures and endogenous cellular processes. Each of these processes leaves a characteristic pattern of mutations on the tumor genome providing the unique opportunity to decipher specific signatures of mutational processes operative during HNC pathogenesis and to address their prognostic value. Computational analysis of whole exome sequencing data of the HIPO-HNC (Heidelberg Center for Personalized Oncology-head and neck cancer) (n = 83) and TCGA-HNSC (The Cancer Genome Atlas-Head and Neck Squamous Cell Carcinoma) (n = 506) cohorts revealed five common mutational signatures (Catalogue of Somatic Mutations in Cancer [COSMIC] Signatures 1, 2, 3, 13 and 16) and demonstrated their significant association with etiological risk factors (tobacco, alcohol and HPV16). Unsupervised hierarchical clustering identified four clusters (A, B, C1 and C2) of which Subcluster C2 was enriched for cases with a higher frequency of signature 16 mutations. Tumors of Subcluster C2 had significantly lower p16INK4A expression accompanied by homozygous CDKN2A deletion in almost one half of cases. Survival analysis revealed an unfavorable prognosis for patients with tumors characterized by a higher mutation burden attributed to signature 16 as well as cases in Subcluster C2. Finally, a LASSO-Cox regression model was applied to prioritize clinically relevant signatures and to establish a prognostic risk score for head and neck squamous cell carcinoma patients. In conclusion, our study provides a proof of concept that computational analysis of somatic mutational signatures is not only a powerful tool to decipher environmental and intrinsic processes in the pathogenesis of HNC, but could also pave the way to establish reliable prognostic patterns.
Collapse
Affiliation(s)
- Michaela Plath
- Section Experimental and Translational Head and Neck Oncology, Department of Otolaryngology, Head and Neck Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Johanna Gass
- Section Experimental and Translational Head and Neck Oncology, Department of Otolaryngology, Head and Neck Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Mario Hlevnjak
- Division Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Qiaoli Li
- Section Experimental and Translational Head and Neck Oncology, Department of Otolaryngology, Head and Neck Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Bohai Feng
- Section Experimental and Translational Head and Neck Oncology, Department of Otolaryngology, Head and Neck Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Xavier Pastor Hostench
- Division of Theoretical Bioinformatics, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Heidelberg Center for Personalized Oncology, DKFZ-HIPO, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Matthias Bieg
- Division of Theoretical Bioinformatics, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Heidelberg Center for Personalized Oncology, DKFZ-HIPO, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Lea Schroeder
- Division of Molecular Diagnostics of Oncogenic Infections, Infection, Inflammation and Cancer Program, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Dana Holzinger
- Division of Molecular Diagnostics of Oncogenic Infections, Infection, Inflammation and Cancer Program, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Marc Zapatka
- Division Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Kolja Freier
- Department of Oral and Cranio-Maxillofacial Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Wilko Weichert
- Institute of Pathology, Technical University Munich, Munich, Germany
| | - Jochen Hess
- Section Experimental and Translational Head and Neck Oncology, Department of Otolaryngology, Head and Neck Surgery, University Hospital Heidelberg, Heidelberg, Germany.,Molecular Mechanisms of Head and Neck Tumors, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Karim Zaoui
- Section Experimental and Translational Head and Neck Oncology, Department of Otolaryngology, Head and Neck Surgery, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
13
|
Beddok A, Krieger S, Castera L, Stoppa-Lyonnet D, Thariat J. Management of Fanconi Anemia patients with head and neck carcinoma: Diagnosis and treatment adaptation. Oral Oncol 2020; 108:104816. [PMID: 32480311 DOI: 10.1016/j.oraloncology.2020.104816] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 05/20/2020] [Indexed: 12/18/2022]
Abstract
Fanconi anemia (FA) is a rare genetic disease that is mostly transmitted, according to a recessive model with biallelic germline alterations in one of the 22 genes of the FA pathway, or monoallelic alteration of the 23rd FA gene (RAD51). The FA pathway is implicated in interstrand DNA crosslink repair, induces genome stability, and is a potent driver of tumorigenesis. Patients with FA have a 500 to 1000-fold increased risk of developing head and neck squamous cell carcinoma (HNSCC). Patients with FA developing an HNSCC, usually have severe radiation toxicities. In this context, the modalities of radiation therapy should be adapted. Some patients with FA present a milder phenotype, especially in the case of medullary FA gene spontaneous reversion. Therefore, in an unusual context of HNSCC, such as no risk factors or a young age, it may be very useful to search anemia or development abnormalities, that may unravel a yet undiagnosed FA disease. Besides, in some young patients with HNSCC who did not suffer from FA, a monoallelic germline alteration in an FA gene could be combined with a second risk factor such as HPV infection or APOBEC alteration. Although several in vitro studies showed that normal cells with monoallelic FA gene alteration may have a particular radiosensitivity, these observations have not been confirmed in vivo in FA heterozygotes patients. Finally, some somatic activating alterations have also been found in HSNCC tumor samples and could be associated with radioresistance.
Collapse
Affiliation(s)
- Arnaud Beddok
- Department of Radiation Oncology, Curie Institute, Paris, France.
| | - Sophie Krieger
- Department of Cancer Biology and Genetics, Inserm U1245, Normandy Centre for Genomic and Personalized Medicine, François Baclesse Center, Caen, France
| | - Laurent Castera
- Department of Cancer Biology and Genetics, Inserm U1245, Normandy Centre for Genomic and Personalized Medicine, François Baclesse Center, Caen, France
| | | | - Juliette Thariat
- Department of Radiation Oncology, François Baclesse Center, Caen, France
| |
Collapse
|
14
|
Qin T, Koneva LA, Liu Y, Zhang Y, Arthur AE, Zarins KR, Carey TE, Chepeha D, Wolf GT, Rozek LS, Sartor MA. Significant association between host transcriptome-derived HPV oncogene E6* influence score and carcinogenic pathways, tumor size, and survival in head and neck cancer. Head Neck 2020; 42:2375-2389. [PMID: 32406560 DOI: 10.1002/hed.26244] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 03/18/2020] [Accepted: 04/22/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Human papillomavirus (HPV) oncogenes E6, E7, and shorter isoforms of E6 (E6*) are known carcinogenic factors in head and neck squamous cell carcinoma (HNSCC). Little is known regarding E6* functions. METHODS We analyzed RNA-seq data from 68 HNSCC HPV type 16-positive tumors to determine host genes and pathways associated with E6+E7 expression (E6E7) or the percent of full-length E6 (E6%FL). Influence scores of E6E7 and E6%FL were used to test for associations with clinical variables. RESULTS For E6E7, we recapitulated all major known affected pathways and revealed additional pathways. E6%FL was found to affect mitochondrial processes, and E6%FL influence score was significantly associated with overall survival and tumor size. CONCLUSIONS HPV E6E7 and E6* result in extensive, dose-dependent compensatory effects and dysregulation of key cancer pathways. The switch from E6 to E6* promotes oxidative phosphorylation, larger tumor size, and worse prognosis, potentially serving as a prognostic factor for HPV-positive HNSCC.
Collapse
Affiliation(s)
- Tingting Qin
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA
| | - Lada A Koneva
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA.,Kennedy Institute of Rheumatology, University of Oxford, United Kingdom
| | - Yidan Liu
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA.,Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yanxiao Zhang
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA.,Ludwig Institute for Cancer Research, La Jolla, CA, USA
| | - Anna E Arthur
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, Michigan, USA.,Department of Food Science and Human Nutrition, University of Illinois, Urbana-Champaign, IL, USA
| | - Katie R Zarins
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, Michigan, USA
| | - Thomas E Carey
- Department of Otolaryngology/Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Douglas Chepeha
- Department of Otolaryngology/Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan, USA.,Department of Otolaryngology/Head & Neck Surgery, University of Toronto, Toronto, ON, Canada
| | - Gregory T Wolf
- Department of Otolaryngology/Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Laura S Rozek
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, Michigan, USA
| | - Maureen A Sartor
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
15
|
Yang Z, Pandey P, Shibata D, Conti DV, Marjoram P, Siegmund KD. HiLDA: a statistical approach to investigate differences in mutational signatures. PeerJ 2019; 7:e7557. [PMID: 31523512 PMCID: PMC6717498 DOI: 10.7717/peerj.7557] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 07/25/2019] [Indexed: 12/30/2022] Open
Abstract
We propose a hierarchical latent Dirichlet allocation model (HiLDA) for characterizing somatic mutation data in cancer. The method allows us to infer mutational patterns and their relative frequencies in a set of tumor mutational catalogs and to compare the estimated frequencies between tumor sets. We apply our method to two datasets, one containing somatic mutations in colon cancer by the time of occurrence, before or after tumor initiation, and the second containing somatic mutations in esophageal cancer by sex, age, smoking status, and tumor site. In colon cancer, the relative frequencies of mutational patterns were found significantly associated with the time of occurrence of mutations. In esophageal cancer, the relative frequencies were significantly associated with the tumor site. Our novel method provides higher statistical power for detecting differences in mutational signatures.
Collapse
Affiliation(s)
- Zhi Yang
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States of America
| | - Priyatama Pandey
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States of America
| | - Darryl Shibata
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States of America
| | - David V. Conti
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States of America
| | - Paul Marjoram
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States of America
| | - Kimberly D. Siegmund
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States of America
| |
Collapse
|
16
|
Addeo R, Caraglia M, Vincenzi B, Luce A, Montella L, Mastella A, Mazzone S, Ricciardiello F, Carraturo M, Del Prete S, Sperlongano P. Efficacy and Safety of Cetuximab plus Radiotherapy in Cisplatin-Unfit Elderly Patients with Advanced Squamous Cell Head and Neck Carcinoma: A Retrospective Study. Chemotherapy 2019; 64:48-56. [PMID: 31242489 DOI: 10.1159/000500714] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Accepted: 05/01/2019] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Concurrent platinum-based chemoradiation currently represents the standard treatment for advanced head and neck cancer (HNC), but it induces a significant toxicity, in particular among elderly patients. Elderly and unfit patients have been underrepresented in clinical trials and there is a need for tailored guidelines. METHODS A retrospective review of clinical data of HNC patients treated at the Operative Oncology Unit of the San Giovanni di Dio Hospital in Frattamaggiore (Naples, Italy) was performed. At study entry, a comprehensive assessment including absolute contraindications for cisplatin use, as well as comorbidities, socioeconomic status, BMI, and weight loss, was performed. The treatment included high-dose radiotherapy plus weekly cetuximab (initially at a dose of 400 mg/m2of body surface area and thereafter at 250 mg weekly during the whole radiotherapy). The aim of this study was to evaluate the activity and toxicity of this schedule in a series of patients aged older than 69 years. RESULTS Between May 30, 2013, and March 30, 2015, sixty-four patients (age range, 69-87 years; median age, 73.7 years; male/female ratio, 46/18) were treated. The overall response rate was 67% in this series of patients. The disease control rate was 76%. Disease progression was recorded in 25% of the patients. The median duration of loco-regional control was 17 months (range, 15.8-17.7 months). PFS was 14.8 months (range, 13.9-15.5 months). The overall survival was 34 months, with a median follow-up of 41.0 months (range, 31.1-36.8 months). The main grade 3/4 adverse events were acne rash in 52% and radiation dermatitis in 32% of the cases. CONCLUSION Cetuximab plus radiotherapy appears to be feasible and active in elderly patients unsuitable for cisplatin treatment. The treatment was supported by a favorable toxicity profile.
Collapse
Affiliation(s)
- Raffaele Addeo
- U.O.C. Oncologia, S. Giovanni di Dio Hospital, ASLNA2NORD Frattamaggiore, Naples, Italy,
| | - Michele Caraglia
- Department of Precision Medicine, University of Campania "L. Vanvitelli", Naples, Italy
| | - Bruno Vincenzi
- Section of Oncology, Campus Biomedico University, Rome, Italy
| | - Amalia Luce
- Department of Precision Medicine, University of Campania "L. Vanvitelli", Naples, Italy
| | - Liliana Montella
- U.O.C. Oncologia, S. Giovanni di Dio Hospital, ASLNA2NORD Frattamaggiore, Naples, Italy
| | - Amerigo Mastella
- U.O.C. ORL, Santa Maria Delle Grazie Hospital, ASLNA2NORD, Pozzuoli, Italy
| | - Salvatore Mazzone
- Dipartimento di Salute Mentale Fisica e Medicina Preventiva, University of Campania "L. Vanvitelli", Naples, Italy
| | | | | | - Salvatore Del Prete
- U.O.C. Oncologia, S. Giovanni di Dio Hospital, ASLNA2NORD Frattamaggiore, Naples, Italy
| | - Pasquale Sperlongano
- Department of Translational Medical Sciences, School of Medicine, University of Campania "L. Vanvitelli", Naples, Italy
| |
Collapse
|
17
|
Smith NJ, Fenton TR. The APOBEC3 genes and their role in cancer: insights from human papillomavirus. J Mol Endocrinol 2019; 62:R269-R287. [PMID: 30870810 DOI: 10.1530/jme-19-0011] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 03/14/2019] [Indexed: 12/14/2022]
Abstract
The interaction between human papillomaviruses (HPV) and the apolipoprotein-B mRNA-editing catalytic polypeptide-like (APOBEC)3 (A3) genes has garnered increasing attention in recent years, with considerable efforts focused on understanding their apparent roles in both viral editing and in HPV-driven carcinogenesis. Here, we review these developments and highlight several outstanding questions in the field. We consider whether editing of the virus and mutagenesis of the host are linked or whether both are essentially separate events, coincidentally mediated by a common or distinct A3 enzymes. We discuss the viral mechanisms and cellular signalling pathways implicated in A3 induction in virally infected cells and examine which of the A3 enzymes might play the major role in HPV-associated carcinogenesis and in the development of therapeutic resistance. We consider the parallels between A3 induction in HPV-infected cells and what might be causing aberrant A3 activity in HPV-independent cancers such as those arising in the bladder, lung and breast. Finally, we discuss the implications of ongoing A3 activity in tumours under treatment and the therapeutic opportunities that this may present.
Collapse
Affiliation(s)
- Nicola J Smith
- School of Biosciences, University of Kent, Canterbury, Kent, UK
| | - Tim R Fenton
- School of Biosciences, University of Kent, Canterbury, Kent, UK
| |
Collapse
|