1
|
Frouté L, Boigné E, Jolivet IC, Chaput E, Creux P, Ihme M, Kovscek AR. Evaluation of Electron Tomography Capabilities for Shale Imaging. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2023; 29:1856-1869. [PMID: 37942573 DOI: 10.1093/micmic/ozad106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/14/2023] [Accepted: 09/19/2023] [Indexed: 11/10/2023]
Abstract
Despite the advantageous resolution of electron tomography (ET), reconstruction of three-dimensional (3D) images from multiple two-dimensional (2D) projections presents several challenges, including small signal-to-noise ratios, and a limited projection range. This study evaluates the capabilities of ET for thin sections of shale, a complex nanoporous medium. A numerical phantom with 1.24 nm pixel size is constructed based on the tomographic reconstruction of a Barnett shale. A dataset of 2D projection images is numerically generated from the 3D phantom and studied over a range of conditions. First, common reconstruction techniques are used to reconstruct the shale structure. The reconstruction uncertainty is quantified by comparing overall values of storage and transport metrics, as well as the misclassification of pore voxels compared to the phantom. We then select the most robust reconstruction technique and we vary the acquisition conditions to quantify the effect of artifacts. We find a strong agreement for large pores over the different acquisition workflows, while a wider variability exists for nanometer-scale features. The limited projection range and reconstruction are identified as the main experimental bottlenecks, thereby suggesting that sample thinning, advanced holders, and advanced reconstruction algorithms offer opportunities for improvement.
Collapse
Affiliation(s)
- Laura Frouté
- Department of Energy Science & Engineering, Stanford University, Stanford, CA 94305, USA
| | - Emeric Boigné
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, USA
| | | | - Eric Chaput
- One Tech - Geosciences & Reservoir, TotalEnergies SE, 64000 Pau, France
| | - Patrice Creux
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, TotalEnergies, LFCR, 64012 Pau, France
| | - Matthias Ihme
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Anthony R Kovscek
- Department of Energy Science & Engineering, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
2
|
Improving the Efficiency of Oil Recovery in Research and Development. ENERGIES 2022. [DOI: 10.3390/en15124488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
By creating a special edition entitled Fundamentals of Enhanced Oil Recovery, the editors focus on the problem of the global increase in energy demand [...]
Collapse
|
3
|
Abstract
The permeability characteristics of natural fracture systems are crucial to the production potential of shale gas wells. To investigate the permeability behavior of a regional fault that is located within the Wufeng Formation, China, the gas permeability of shale samples with natural micro-fractures was measured at different confining pressures and complemented with helium pycnometry for porosity, computed micro-tomographic (µCT) imaging, and a comparison with well testing data. The cores originated from a shale gas well (HD-1) drilled at the Huayingshan anticline in the eastern Sichuan Basin. The measured Klinkenberg permeabilities are in the range between 0.059 and 5.9 mD, which roughly agrees with the permeability of the regional fault (0.96 mD) as estimated from well HD-1 productivity data. An extrapolation of the measured permeability to reservoir pressures in combination with the µCT images shows that the stress sensitivity of the permeability is closely correlated to the micro-fracture distribution and orientation. Here, the permeability of the samples in which the micro-fractures are predominantly oriented along the flow direction is the least stress sensitive. This implies that tectonic zones with a large fluid potential gradient can define favorable areas for shale gas exploitation, potentially even without requirements for hydraulic fracture treatments.
Collapse
|
4
|
Use of Cluster Analysis to Group Organic Shale Gas Rocks by Hydrocarbon Generation Zones. ENERGIES 2022. [DOI: 10.3390/en15041464] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In the last decade, exploration for unconventional hydrocarbon (shale gas) reservoirs has been carried out in Poland. The drilling of wells in prospective shale gas areas supplies numerous physicochemical measurements from rock and reservoir fluid samples. The objective of this paper is to present the method that has been developed for finding similarities between individual geological structures in terms of their hydrocarbon generation properties and hydrocarbon resources. The measurements and geochemical investigations of six wells located in the Ordovician, Silurian, and Cambrian formations of the Polish part of the East European Platform are used. Cluster analysis is used to compare and classify objects described by multiple attributes. The focus is on the issue of generating clusters that group samples within the gas, condensate, and oil windows. The vitrinite reflectance value (Ro) is adopted as the criterion for classifying individual samples into the respective windows. An additional issue was determining other characteristic geochemical properties of the samples classified into the selected clusters. Two variants of cluster analysis are applied—the furthest neighbor method and Ward’s method—which resulted in 10 and 11 clusters, respectively. Particular attention was paid to the mean Ro values (within each cluster), allowing the classification of samples from a given cluster into one of the windows (gas, condensate, or oil). Using these methods, the samples were effectively classified into individual windows, and their percentage share within the Silurian, Ordovician, and Cambrian units is determined.
Collapse
|
5
|
Wang M, Zhang D. Triaxial testing on water permeability evolution of fractured shale. ROYAL SOCIETY OPEN SCIENCE 2021; 8:211270. [PMID: 34950491 PMCID: PMC8692965 DOI: 10.1098/rsos.211270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 11/18/2021] [Indexed: 06/14/2023]
Abstract
A sound understanding of the water permeability evolution in fractured shale is essential to the optimal hydraulic fracturing (reservoir stimulation) strategies. We have measured the water permeability of six fractured shale samples from Qiongzhusi Formation in southwest China at various pressure and stress conditions. Results showed that the average uniaxial compressive strength (UCS) and average tensile strength of the Qiongzhusi shale samples were 106.3 and 10.131 MPa, respectively. The nanometre-sized (tiny) pore structure is the dominant characteristic of the Qiongzhusi shale. Following this, we proposed a pre-stressing strategy for creating fractures in shale for permeability measurement and its validity was evaluated by CT scanning. Shale water permeability increased with pressure differential. While shale water permeability declined with increasing effective stress, such effect dropped significantly as the effective stress continues to increase. Interestingly, shale permeability increased with pressure when the pressure is relatively low (less than 4 MPa), which is inconsistent with the classic Darcy's theory. This is caused by the Bingham flow that often occurs in tiny pores. Most importantly, the proposed permeability model would fully capture the experimental data with reasonable accuracy in a wide range of stresses.
Collapse
Affiliation(s)
- Menglai Wang
- National Engineering and Technology Center for Development and Utilization of Phosphate Resources, Yunnan phosphate group Co., Ltd, Kunming, Yunnan, People's Republic of China
| | - Dongming Zhang
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, School of Resources and Safety Engineering, Chongqing University, Chongqing, People's Republic of China
| |
Collapse
|
6
|
Lu T, Long S, Li Z, Liu S, Liu Y, Adenutsi CD, Peng Z. Novel Model for Rate Transient Analysis in Stress-Sensitive Shale Gas Reservoirs. ACS OMEGA 2021; 6:14015-14029. [PMID: 34124426 PMCID: PMC8190796 DOI: 10.1021/acsomega.1c00259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 05/14/2021] [Indexed: 06/12/2023]
Abstract
Technical advances in hydraulic fracturing and horizontal drilling technologies enable shale to be commercially exploited. Due to the technical and economic limitations of well testing in shale gas plays, rate transient analysis has become a more attractive option. After hydraulic fracturing, flow mechanisms in multiple scaled pores of shale become extraordinarily complicated: adsorption in nanopores, diffusion in micropores, and non-Darcy flow in macropores. Moreover, shale gas reservoirs are stress-sensitive because of ultralow permeability and diffusivity in a matrix. Furthermore, the porosity and permeability of natural fractures are stress-dependent as well. Accounting for all of these complex flow mechanisms, especially the aforementioned stress-sensitive parameters, a semianalytical production solution of a multiple fractured horizontal well (MFHW) can rapidly predict the entire production behavior. Scholars have done much work on the complex flow mechanisms of shale. Most models regarded permeability as a stress-sensitive parameter while diffusivity and porosity were considered to be a constant. However, diffusivity and porosity were proved to be stress-sensitive as experimental science developed. In this study, we present a novel semianalytical model for rate transient analysis of MFHW, which simultaneously incorporates multiple stress-sensitive parameters into flow mechanisms. Substituting stress-dependent parameters (diffusivity, porosity, and permeability) into governing equations resulted in strong nonlinearities, which was solved by employing the perturbation method. Production behaviors with only stress-sensitive permeability were compared with multiple stress-dependent parameters. The new model with multiple stress-sensitive parameters declined slower than the permeability-sensitive model, and the new model matched better with the field data. In addition, the effects of major stress-sensitive parameters on production decline curves were analyzed by the proposed model. The sensitivity analysis indicated that different parameters had their own degree of sensitivity intensity and influence on the production period. Finally, 1001 wells from the Marcellus shale play were divided into three well groups. Estimated inversion values of reservoir parameters from the three well groups and relevant single wells were consistent with the field data. The inverted values of single wells fluctuate within the inversion values of well groups, which indicates that the production behavior of well groups could be a guide for rate transient analysis of a single well in shale gas reservoirs.
Collapse
Affiliation(s)
- Ting Lu
- SINOPEC
Key Laboratory of Shale Oil/Gas Exploration & Production, Beijing 100083, China
| | - Shengxiang Long
- SINOPEC
Key Laboratory of Shale Oil/Gas Exploration & Production, Beijing 100083, China
| | - Zhiping Li
- School
of Energy Resource, China University of
Geosciences (Beijing), Beijing 100083, China
| | - Shimin Liu
- Department
of Energy and Mineral Engineering, G Center and Energy
Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Yu Liu
- China
University of Mining and Technology, Beijing 100083, China
| | - Caspar Daniel Adenutsi
- Department
of Petroleum Engineering, Faculty of Civil and Geo-Engineering, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Zeyang Peng
- SINOPEC
Key Laboratory of Shale Oil/Gas Exploration & Production, Beijing 100083, China
| |
Collapse
|
7
|
Coupling between Source Rock and Reservoir of Shale Gas in Wufeng-Longmaxi Formation in Sichuan Basin, South China. ENERGIES 2021. [DOI: 10.3390/en14092679] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In order to analyze the main factors controlling shale gas accumulation and to predict the potential zone for shale gas exploration, the heterogeneous characteristics of the source rock and reservoir of the Wufeng-Longmaxi Formation in Sichuan Basin were discussed in detail, based on the data of petrology, sedimentology, reservoir physical properties and gas content. On this basis, the effect of coupling between source rock and reservoir on shale gas generation and reservation has been analyzed. The Wufeng-Longmaxi Formation black shale in the Sichuan Basin has been divided into 5 types of lithofacies, i.e., carbonaceous siliceous shale, carbonaceous argillaceous shale, composite shale, silty shale, and argillaceous shale, and 4 types of sedimentary microfacies, i.e., carbonaceous siliceous deep shelf, carbonaceous argillaceous deep shelf, silty argillaceous shallow shelf, and argillaceous shallow shelf. The total organic carbon (TOC) content ranged from 0.5% to 6.0% (mean 2.54%), which gradually decreased vertically from the bottom to the top and was controlled by the oxygen content of the bottom water. Most of the organic matter was sapropel in a high-over thermal maturity. The shale reservoir of Wufeng-Longmaxi Formation was characterized by low porosity and low permeability. Pore types were mainly <10 nm organic pores, especially in the lower member of the Longmaxi Formation. The size of organic pores increased sharply in the upper member of the Longmaxi Formation. The volumes of methane adsorption were between 1.431 m3/t and 3.719 m3/t, and the total gas contents were between 0.44 m3/t and 5.19 m3/t, both of which gradually decreased from the bottom upwards. Shale with a high TOC content in the carbonaceous siliceous/argillaceous deep shelf is considered to have significant potential for hydrocarbon generation and storage capacity for gas preservation, providing favorable conditions of the source rock and reservoir for shale gas.
Collapse
|
8
|
Transport Simulations on Scanning Transmission Electron Microscope Images of Nanoporous Shale. ENERGIES 2020. [DOI: 10.3390/en13246665] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Digital rock physics is an often-mentioned approach to better understand and model transport processes occurring in tight nanoporous media including the organic and inorganic matrix of shale. Workflows integrating nanometer-scale image data and pore-scale simulations are relatively undeveloped, however. In this paper, a workflow is demonstrated progressing from sample acquisition and preparation, to image acquisition by Scanning Transmission Electron Microscopy (STEM) tomography, to volumetric reconstruction to pore-space discretization to numerical simulation of pore-scale transport. Key aspects of the workflow include (i) STEM tomography in high angle annular dark field (HAADF) mode to image three-dimensional pore networks in µm-sized samples with nanometer resolution and (ii) lattice Boltzmann method (LBM) simulations to describe gas flow in slip, transitional, and Knudsen diffusion regimes. It is shown that STEM tomography with nanoscale resolution yields excellent representation of the size and connectivity of organic nanopore networks. In turn, pore-scale simulation on such networks contributes to understanding of transport and storage properties of nanoporous shale. Interestingly, flow occurs primarily along pore networks with pore dimensions on the order of tens of nanometers. Smaller pores do not form percolating pathways in the sample volume imaged. Apparent gas permeability in the range of 10−19 to 10−16 m2 is computed.
Collapse
|
9
|
Chattopadhyay B, Madathiparambil AS, Mürer FK, Cerasi P, Chushkin Y, Zontone F, Gibaud A, Breiby DW. Nanoscale imaging of shale fragments with coherent X-ray diffraction. J Appl Crystallogr 2020; 53:1562-1569. [PMID: 33304225 PMCID: PMC7710485 DOI: 10.1107/s1600576720013850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 10/17/2020] [Indexed: 11/10/2022] Open
Abstract
Despite the abundance of shales in the Earth's crust and their industrial and environmental importance, their microscale physical properties are poorly understood, owing to the presence of many structurally related mineral phases and a porous network structure spanning several length scales. Here, the use of coherent X-ray diffraction imaging (CXDI) to study the internal structure of microscopic shale fragments is demonstrated. Simultaneous wide-angle X-ray diffraction (WAXD) measurement facilitated the study of the mineralogy of the shale microparticles. It was possible to identify pyrite nanocrystals as inclusions in the quartz-clay matrix and the volume of closed unconnected pores was estimated. The combined CXDI-WAXD analysis enabled the establishment of a correlation between sample morphology and crystallite shape and size. The results highlight the potential of the combined CXDI-WAXD approach as an upcoming imaging modality for 3D nanoscale studies of shales and other geological formations via serial measurements of microscopic fragments.
Collapse
Affiliation(s)
- Basab Chattopadhyay
- PoreLab, Department of Physics, Norwegian University of Science and Technology (NTNU), Høgskoleringen 5, Trondheim, 7491, Norway
| | - Aldritt S Madathiparambil
- PoreLab, Department of Physics, Norwegian University of Science and Technology (NTNU), Høgskoleringen 5, Trondheim, 7491, Norway
| | - Fredrik K Mürer
- PoreLab, Department of Physics, Norwegian University of Science and Technology (NTNU), Høgskoleringen 5, Trondheim, 7491, Norway
| | - Pierre Cerasi
- Petroleum Department, SINTEF Industry, Trondheim, 7465, Norway
| | - Yuriy Chushkin
- ESRF - The European Synchrotron, 71 Avenue des Martyrs, Grenoble, 38000, France
| | - Federico Zontone
- ESRF - The European Synchrotron, 71 Avenue des Martyrs, Grenoble, 38000, France
| | - Alain Gibaud
- LUNAM, IMMM, UMR 6283 CNRS, Faculté des Sciences, Le Mans, 72085, France
| | - Dag W Breiby
- PoreLab, Department of Physics, Norwegian University of Science and Technology (NTNU), Høgskoleringen 5, Trondheim, 7491, Norway.,Department of Microsystems, University of South-Eastern Norway, Campus Vestfold, Borre, 3182, Norway
| |
Collapse
|
10
|
Gholinia A, Curd ME, Bousser E, Taylor K, Hosman T, Coyle S, Shearer MH, Hunt J, Withers PJ. Coupled Broad Ion Beam–Scanning Electron Microscopy (BIB–SEM) for polishing and three dimensional (3D) serial section tomography (SST). Ultramicroscopy 2020; 214:112989. [DOI: 10.1016/j.ultramic.2020.112989] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 03/13/2020] [Accepted: 03/28/2020] [Indexed: 02/06/2023]
|
11
|
Pore Characteristics of Lacustrine Shale Oil Reservoir in the Cretaceous Qingshankou Formation of the Songliao Basin, NE China. ENERGIES 2020. [DOI: 10.3390/en13082027] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Shale oil is hosted in nanopores of organic-rich shales, so pore characteristics are significant for shale oil accumulation. Here we analyzed pore characteristics of 39 lacustrine shale samples of the Late Cretaceous Qingshankou Formation (K2qn) in the Songliao Basin, which is one of the main shale oil resource basins in China, using field emission-scanning electron microscopy (FE-SEM), and low-pressure nitrogen adsorption. We accomplished fractal analysis, correlation analysis using correlation matrix and multidimensional scaling (MDS), and prediction of fractal dimensions, which is the first time to predict pore fractal dimensions of shales. Interparticle pores are highly developed in K2qn. These shales have mesoporous nature and slit-shaped pores. Compared with the second and third members (K2qn2,3), the first member of the Qingshankou Formation (K2qn1) has a larger average pore diameter, much smaller surface area, fewer micropores, simpler pore structure and surface indicated by smaller fractal dimensions. In terms of pore characteristics, K2qn1 is better than K2qn2,3 as a shale oil reservoir. When compared with marine Bakken Formation shales, lacustrine shales of the Qingshankou Formation have similar complexity of pore structure, but much rougher pore surface. This research can lead to an improved understanding of the pore system of lacustrine shales.
Collapse
|
12
|
A Triple Pore Network Model (T-PNM) for Gas Flow Simulation in Fractured, Micro-porous and Meso-porous Media. Transp Porous Media 2020. [DOI: 10.1007/s11242-020-01409-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
AbstractIn this study, a novel triple pore network model (T-PNM) is introduced which is composed of a single pore network model (PNM) coupled to fractures and micro-porosities. We use two stages of the watershed segmentation algorithm to extract the required data from semi-real micro-tomography images of porous material and build a structural network composed of three conductive elements: meso-pores, micro-pores, and fractures. Gas and liquid flow are simulated on the extracted networks and the calculated permeabilities are compared with dual pore network models (D-PNM) as well as the analytical solutions. It is found that the processes which are more sensitive to the surface features of material, should be simulated using a T-PNM that considers the effect of micro-porosities on overall process of flow in tight pores. We found that, for gas flow in tight pores where the close contact of gas with the surface of solid walls makes Knudsen diffusion and gas slippage significant, T-PNM provides more accurate solution compared to D-PNM. Within the tested range of operational conditions, we recorded between 10 and 50% relative error in gas permeabilities of carbonate porous rocks if micro-porosities are dismissed in the presence of fractures.
Collapse
|
13
|
Best Practices for Shale Core Handling: Transportation, Sampling and Storage for Conduction of Analyses. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2020. [DOI: 10.3390/jmse8020136] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Drill core shale samples are critical for palaeoenvironmental studies and potential hydrocarbon reservoirs. They need to be preserved carefully to maximise their retention of reservoir condition properties. However, they are susceptible to alteration due to cooling and depressurisation during retrieval to the surface, resulting in volume expansion and formation of desiccation and micro fractures. This leads to inconsistent measurements of different critical attributes, such as porosity and permeability. Best practices for core handling start during retrieval while extracting from the barrel, followed by correct procedures for transportation and storage. Appropriate preservation measures should be adopted depending on the objectives of the scientific investigation and core coherency, with respect to consolidation and weathering. It is particularly desirable to maintain a constant temperature of 1 to 4 °C and a consistent relative humidity of >75% to minimise any micro fracturing and internal moisture movement in the core. While core re-sampling, it should be ensured that there is no further core compaction, especially while using a hand corer.
Collapse
|
14
|
Mineral Precipitation in Fractures and Nanopores within Shale Imaged Using Time-Lapse X-ray Tomography. MINERALS 2019. [DOI: 10.3390/min9080480] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Barite precipitation in fractures and nanopores within a shale sample is analysed in situ, in 3D, and over time. Diffusion of barium and sulphate from opposite sides of the sample creates a supersaturated zone where barium sulphate crystals precipitate. Time-lapse synchrotron-based computed tomography was used to track the growth of precipitates over time, even within the shale’s matrix where the nanopores are much smaller than the resolution of the technique. We observed that the kinetics of precipitation is limited by the type and size of the confinement where crystals are growing, i.e., nanopores and fractures. This has a major impact on the ion transport at the growth front, which determines the extent of precipitation within wider fractures (fast and localised precipitation), thinner fractures (non-localised and slowing precipitation) and nanopores (precipitation spread as a front moving at an approximately constant velocity of 10 ± 3 µm/h). A general sequence of events during precipitation in rocks containing pores and fractures of different sizes is proposed and its possible implications to earth sciences and subsurface engineering, e.g., fracking and mineral sequestration, are discussed.
Collapse
|