1
|
Singh G, Singh A, Bae J, Manjila S, Spektor V, Prasanna P, Lignelli A. -New frontiers in domain-inspired radiomics and radiogenomics: increasing role of molecular diagnostics in CNS tumor classification and grading following WHO CNS-5 updates. Cancer Imaging 2024; 24:133. [PMID: 39375809 PMCID: PMC11460168 DOI: 10.1186/s40644-024-00769-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 08/31/2024] [Indexed: 10/09/2024] Open
Abstract
Gliomas and Glioblastomas represent a significant portion of central nervous system (CNS) tumors associated with high mortality rates and variable prognosis. In 2021, the World Health Organization (WHO) updated its Glioma classification criteria, most notably incorporating molecular markers including CDKN2A/B homozygous deletion, TERT promoter mutation, EGFR amplification, + 7/-10 chromosome copy number changes, and others into the grading and classification of adult and pediatric Gliomas. The inclusion of these markers and the corresponding introduction of new Glioma subtypes has allowed for more specific tailoring of clinical interventions and has inspired a new wave of Radiogenomic studies seeking to leverage medical imaging information to explore the diagnostic and prognostic implications of these new biomarkers. Radiomics, deep learning, and combined approaches have enabled the development of powerful computational tools for MRI analysis correlating imaging characteristics with various molecular biomarkers integrated into the updated WHO CNS-5 guidelines. Recent studies have leveraged these methods to accurately classify Gliomas in accordance with these updated molecular-based criteria based solely on non-invasive MRI, demonstrating the great promise of Radiogenomic tools. In this review, we explore the relative benefits and drawbacks of these computational frameworks and highlight the technical and clinical innovations presented by recent studies in the landscape of fast evolving molecular-based Glioma subtyping. Furthermore, the potential benefits and challenges of incorporating these tools into routine radiological workflows, aiming to enhance patient care and optimize clinical outcomes in the evolving field of CNS tumor management, have been highlighted.
Collapse
Affiliation(s)
- Gagandeep Singh
- Neuroradiology Division, Columbia University Irving Medical Center, New York, NY, USA.
| | - Annie Singh
- Atal Bihari Vajpayee Institute of Medical Sciences, New Delhi, India
| | - Joseph Bae
- Department of Biomedical Informatics, Stony Brook University, Stony Brook, USA
| | - Sunil Manjila
- Department of Neurological Surgery, Garden City Hospital, Garden City, MI, USA
| | - Vadim Spektor
- Neuroradiology Division, Columbia University Irving Medical Center, New York, NY, USA
| | - Prateek Prasanna
- Department of Biomedical Informatics, Stony Brook University, Stony Brook, USA
| | - Angela Lignelli
- Neuroradiology Division, Columbia University Irving Medical Center, New York, NY, USA
| |
Collapse
|
2
|
Demircioğlu A. radMLBench: A dataset collection for benchmarking in radiomics. Comput Biol Med 2024; 182:109140. [PMID: 39270457 DOI: 10.1016/j.compbiomed.2024.109140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/20/2024] [Accepted: 09/08/2024] [Indexed: 09/15/2024]
Abstract
BACKGROUND New machine learning methods and techniques are frequently introduced in radiomics, but they are often tested on a single dataset, which makes it challenging to assess their true benefit. Currently, there is a lack of a larger, publicly accessible dataset collection on which such assessments could be performed. In this study, a collection of radiomics datasets with binary outcomes in tabular form was curated to allow benchmarking of machine learning methods and techniques. METHODS A variety of journals and online sources were searched to identify tabular radiomics data with binary outcomes, which were then compiled into a homogeneous data collection that is easily accessible via Python. To illustrate the utility of the dataset collection, it was applied to investigate whether feature decorrelation prior to feature selection could improve predictive performance in a radiomics pipeline. RESULTS A total of 50 radiomic datasets were collected, with sample sizes ranging from 51 to 969 and 101 to 11165 features. Using this data, it was observed that decorrelating features did not yield any significant improvement on average. CONCLUSIONS A large collection of datasets, easily accessible via Python, suitable for benchmarking and evaluating new machine learning techniques and methods was curated. Its utility was exemplified by demonstrating that feature decorrelation prior to feature selection does not, on average, lead to significant performance gains and could be omitted, thereby increasing the robustness and reliability of the radiomics pipeline.
Collapse
Affiliation(s)
- Aydin Demircioğlu
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Hufelandstraße 55, D-45147, Essen, Germany.
| |
Collapse
|
3
|
Habibi MA, Dinpazhouh A, Aliasgary A, Mirjani MS, Mousavinasab M, Ahmadi MR, Minaee P, Eazi S, Shafizadeh M, Gurses ME, Lu VM, Berke CN, Ivan ME, Komotar RJ, Shah AH. Predicting telomerase reverse transcriptase promoter mutation in glioma: A systematic review and diagnostic meta-analysis on machine learning algorithms. Neuroradiol J 2024:19714009241269526. [PMID: 39103206 DOI: 10.1177/19714009241269526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024] Open
Abstract
BACKGROUND Glioma is one of the most common primary brain tumors. The presence of the telomerase reverse transcriptase promoter (pTERT) mutation is associated with a better prognosis. This study aims to investigate the TERT mutation in patients with glioma using machine learning (ML) algorithms on radiographic imaging. METHOD This study was prepared according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. The electronic databases of PubMed, Embase, Scopus, and Web of Science were searched from inception to August 1, 2023. The statistical analysis was performed using the MIDAS package of STATA v.17. RESULTS A total of 22 studies involving 5371 patients were included for data extraction, with data synthesis based on 11 reports. The analysis revealed a pooled sensitivity of 0.86 (95% CI: 0.78-0.92) and a specificity of 0.80 (95% CI 0.72-0.86). The positive and negative likelihood ratios were 4.23 (95% CI: 2.99-5.99) and 0.18 (95% CI: 0.11-0.29), respectively. The pooled diagnostic score was 3.18 (95% CI: 2.45-3.91), with a diagnostic odds ratio 24.08 (95% CI: 11.63-49.87). The Summary Receiver Operating Characteristic (SROC) curve had an area under the curve (AUC) of 0.89 (95% CI: 0.86-0.91). CONCLUSION The study suggests that ML can predict TERT mutation status in glioma patients. ML models showed high sensitivity (0.86) and moderate specificity (0.80), aiding disease prognosis and treatment planning. However, further development and improvement of ML models are necessary for better performance metrics and increased reliability in clinical practice.
Collapse
Affiliation(s)
- Mohammad Amin Habibi
- Department of Neurosurgery, Shariati Hospital, Tehran University of Medical Science, Tehran, Iran
| | - Ali Dinpazhouh
- Student Research Committee, Faculty of Medicine, Qom University of Medical Science, Qom, Iran
| | - Aliakbar Aliasgary
- Student Research Committee, Faculty of Medicine, Qom University of Medical Science, Qom, Iran
| | - Mohammad Sina Mirjani
- Student Research Committee, Faculty of Medicine, Qom University of Medical Science, Qom, Iran
| | - Mehdi Mousavinasab
- Student Research Committee, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Mohammad Reza Ahmadi
- Student Research Committee, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Poriya Minaee
- Student Research Committee, Faculty of Medicine, Qom University of Medical Science, Qom, Iran
| | - SeyedMohammad Eazi
- Student Research Committee, Faculty of Medicine, Qom University of Medical Science, Qom, Iran
| | - Milad Shafizadeh
- Department of Neurosurgery, Shariati Hospital, Tehran University of Medical Science, Tehran, Iran
| | - Muhammet Enes Gurses
- Department of Neurosurgery, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Victor M Lu
- Department of Neurosurgery, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Chandler N Berke
- Department of Neurosurgery, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Michael E Ivan
- Department of Neurosurgery, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Ricardo J Komotar
- Department of Neurosurgery, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Ashish H Shah
- Department of Neurosurgery, Miller School of Medicine, University of Miami, Miami, FL, USA
| |
Collapse
|
4
|
Yuan J, Siakallis L, Li HB, Brandner S, Zhang J, Li C, Mancini L, Bisdas S. Structural- and DTI- MRI enable automated prediction of IDH Mutation Status in CNS WHO Grade 2-4 glioma patients: a deep Radiomics Approach. BMC Med Imaging 2024; 24:104. [PMID: 38702613 PMCID: PMC11067215 DOI: 10.1186/s12880-024-01274-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 04/15/2024] [Indexed: 05/06/2024] Open
Abstract
BACKGROUND The role of isocitrate dehydrogenase (IDH) mutation status for glioma stratification and prognosis is established. While structural magnetic resonance image (MRI) is a promising biomarker, it may not be sufficient for non-invasive characterisation of IDH mutation status. We investigated the diagnostic value of combined diffusion tensor imaging (DTI) and structural MRI enhanced by a deep radiomics approach based on convolutional neural networks (CNNs) and support vector machine (SVM), to determine the IDH mutation status in Central Nervous System World Health Organization (CNS WHO) grade 2-4 gliomas. METHODS This retrospective study analyzed the DTI-derived fractional anisotropy (FA) and mean diffusivity (MD) images and structural images including fluid attenuated inversion recovery (FLAIR), non-enhanced T1-, and T2-weighted images of 206 treatment-naïve gliomas, including 146 IDH mutant and 60 IDH-wildtype ones. The lesions were manually segmented by experienced neuroradiologists and the masks were applied to the FA and MD maps. Deep radiomics features were extracted from each subject by applying a pre-trained CNN and statistical description. An SVM classifier was applied to predict IDH status using imaging features in combination with demographic data. RESULTS We comparatively assessed the CNN-SVM classifier performance in predicting IDH mutation status using standalone and combined structural and DTI-based imaging features. Combined imaging features surpassed stand-alone modalities for the prediction of IDH mutation status [area under the curve (AUC) = 0.846; sensitivity = 0.925; and specificity = 0.567]. Importantly, optimal model performance was noted following the addition of demographic data (patients' age) to structural and DTI imaging features [area under the curve (AUC) = 0.847; sensitivity = 0.911; and specificity = 0.617]. CONCLUSIONS Imaging features derived from DTI-based FA and MD maps combined with structural MRI, have superior diagnostic value to that provided by standalone structural or DTI sequences. In combination with demographic information, this CNN-SVM model offers a further enhanced non-invasive prediction of IDH mutation status in gliomas.
Collapse
Affiliation(s)
- Jialin Yuan
- Department of Radiology, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
- Queen Square Institute of Neurology, University College London, London, UK
| | - Loizos Siakallis
- Queen Square Institute of Neurology, University College London, London, UK
| | - Hongwei Bran Li
- Department of Informatics, Technical University of Munich, Munich, Germany
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, USA
| | - Sebastian Brandner
- Division of Neuropathology, Queen Square Institute of Neurology, University College London, London, UK
| | - Jianguo Zhang
- Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Chenming Li
- Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Laura Mancini
- Queen Square Institute of Neurology, University College London, London, UK
- Lysholm Department of Neuroradiology, University College London Hospitals NHS Foundation Trust, London, UK
| | - Sotirios Bisdas
- Queen Square Institute of Neurology, University College London, London, UK.
- Lysholm Department of Neuroradiology, University College London Hospitals NHS Foundation Trust, London, UK.
| |
Collapse
|
5
|
Demircioğlu A. The effect of data resampling methods in radiomics. Sci Rep 2024; 14:2858. [PMID: 38310165 PMCID: PMC10838284 DOI: 10.1038/s41598-024-53491-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/01/2024] [Indexed: 02/05/2024] Open
Abstract
Radiomic datasets can be class-imbalanced, for instance, when the prevalence of diseases varies notably, meaning that the number of positive samples is much smaller than that of negative samples. In these cases, the majority class may dominate the model's training and thus negatively affect the model's predictive performance, leading to bias. Therefore, resampling methods are often utilized to class-balance the data. However, several resampling methods exist, and neither their relative predictive performance nor their impact on feature selection has been systematically analyzed. In this study, we aimed to measure the impact of nine resampling methods on radiomic models utilizing a set of fifteen publicly available datasets regarding their predictive performance. Furthermore, we evaluated the agreement and similarity of the set of selected features. Our results show that applying resampling methods did not improve the predictive performance on average. On specific datasets, slight improvements in predictive performance (+ 0.015 in AUC) could be seen. A considerable disagreement on the set of selected features was seen (only 28.7% of features agreed), which strongly impedes feature interpretability. However, selected features are similar when considering their correlation (82.9% of features correlated on average).
Collapse
Affiliation(s)
- Aydin Demircioğlu
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Hufelandstraße 55, 45147, Essen, Germany.
| |
Collapse
|
6
|
Lan L, Feng K, Wu Y, Zhang W, Wei L, Che H, Xue L, Gao Y, Tao J, Qian S, Cao W, Zhang J, Wang C, Tian M. Phenomic Imaging. PHENOMICS (CHAM, SWITZERLAND) 2023; 3:597-612. [PMID: 38223684 PMCID: PMC10781914 DOI: 10.1007/s43657-023-00128-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 08/13/2023] [Accepted: 08/17/2023] [Indexed: 01/16/2024]
Abstract
Human phenomics is defined as the comprehensive collection of observable phenotypes and characteristics influenced by a complex interplay among factors at multiple scales. These factors include genes, epigenetics at the microscopic level, organs, microbiome at the mesoscopic level, and diet and environmental exposures at the macroscopic level. "Phenomic imaging" utilizes various imaging techniques to visualize and measure anatomical structures, biological functions, metabolic processes, and biochemical activities across different scales, both in vivo and ex vivo. Unlike conventional medical imaging focused on disease diagnosis, phenomic imaging captures both normal and abnormal traits, facilitating detailed correlations between macro- and micro-phenotypes. This approach plays a crucial role in deciphering phenomes. This review provides an overview of different phenomic imaging modalities and their applications in human phenomics. Additionally, it explores the associations between phenomic imaging and other omics disciplines, including genomics, transcriptomics, proteomics, immunomics, and metabolomics. By integrating phenomic imaging with other omics data, such as genomics and metabolomics, a comprehensive understanding of biological systems can be achieved. This integration paves the way for the development of new therapeutic approaches and diagnostic tools.
Collapse
Affiliation(s)
- Lizhen Lan
- Human Phenome Institute, Fudan University, 825 Zhangheng Road, Pudong New District, Shanghai, 201203 China
| | - Kai Feng
- Human Phenome Institute, Fudan University, 825 Zhangheng Road, Pudong New District, Shanghai, 201203 China
| | - Yudan Wu
- Human Phenome Institute, Fudan University, 825 Zhangheng Road, Pudong New District, Shanghai, 201203 China
| | - Wenbo Zhang
- Human Phenome Institute, Fudan University, 825 Zhangheng Road, Pudong New District, Shanghai, 201203 China
| | - Ling Wei
- Human Phenome Institute, Fudan University, 825 Zhangheng Road, Pudong New District, Shanghai, 201203 China
| | - Huiting Che
- Human Phenome Institute, Fudan University, 825 Zhangheng Road, Pudong New District, Shanghai, 201203 China
| | - Le Xue
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009 Zhejiang China
| | - Yidan Gao
- Human Phenome Institute, Fudan University, 825 Zhangheng Road, Pudong New District, Shanghai, 201203 China
| | - Ji Tao
- Human Phenome Institute, Fudan University, 825 Zhangheng Road, Pudong New District, Shanghai, 201203 China
| | - Shufang Qian
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009 Zhejiang China
| | - Wenzhao Cao
- Human Phenome Institute, Fudan University, 825 Zhangheng Road, Pudong New District, Shanghai, 201203 China
| | - Jun Zhang
- Department of Radiology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, National Center for Neurological Disorders, Fudan University, Shanghai, 200040 China
| | - Chengyan Wang
- Human Phenome Institute, Fudan University, 825 Zhangheng Road, Pudong New District, Shanghai, 201203 China
| | - Mei Tian
- Human Phenome Institute, Fudan University, 825 Zhangheng Road, Pudong New District, Shanghai, 201203 China
| |
Collapse
|
7
|
Ioannidis GS, Pigott LE, Iv M, Surlan-Popovic K, Wintermark M, Bisdas S, Marias K. Investigating the value of radiomics stemming from DSC quantitative biomarkers in IDH mutation prediction in gliomas. Front Neurol 2023; 14:1249452. [PMID: 38046592 PMCID: PMC10690367 DOI: 10.3389/fneur.2023.1249452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 10/31/2023] [Indexed: 12/05/2023] Open
Abstract
Objective This study aims to assess the value of biomarker based radiomics to predict IDH mutation in gliomas. The patient cohort consists of 160 patients histopathologicaly proven of primary glioma (WHO grades 2-4) from 3 different centers. Methods To quantify the DSC perfusion signal two different mathematical modeling methods were used (Gamma fitting, leakage correction algorithms) considering the assumptions about the compartments contributing in the blood flow between the extra- and intra vascular space. Results The Mean slope of increase (MSI) and the K1 parameter of the bidirectional exchange model exhibited the highest performance with (ACC 74.3% AUROC 74.2%) and (ACC 75% AUROC 70.5%) respectively. Conclusion The proposed framework on DSC-MRI radiogenomics in gliomas has the potential of becoming a reliable diagnostic support tool exploiting the mathematical modeling of the DSC signal to characterize IDH mutation status through a more reproducible and standardized signal analysis scheme for facilitating clinical translation.
Collapse
Affiliation(s)
- Georgios S. Ioannidis
- Computational BioMedicine Laboratory (CBML), Institute of Computer Science, Foundation for Research and Technology—Hellas (FORTH), Heraklion, Greece
| | - Laura Elin Pigott
- Institute of Health and Social Care, London South Bank University, London, United Kingdom
- Faculty of Brain Science, Queen Square Institute of Neurology, University College London, London, United Kingdom
- Lysholm Department of Neuroradiology, The National Hospital for Neurology and Neurosurgery University College London, London, United Kingdom
| | - Michael Iv
- Department of Radiology, Division of Neuroimaging and Neurointervention, Stanford University, Stanford, CA, United States
| | - Katarina Surlan-Popovic
- Department of Radiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Department of Neuroradiology, University Medical Centre, Ljubljana, Slovenia
| | - Max Wintermark
- Department of Radiology, Division of Neuroimaging and Neurointervention, Stanford University, Stanford, CA, United States
| | - Sotirios Bisdas
- Department of Brain Repair and Rehabilitation, Queen Square Institute of Neurology, UCL, London, United Kingdom
- Department of Neuroradiology, The National Hospital for Neurology and Neurosurgery, University College London NHS Foundation Trust, London, United Kingdom
| | - Kostas Marias
- Computational BioMedicine Laboratory (CBML), Institute of Computer Science, Foundation for Research and Technology—Hellas (FORTH), Heraklion, Greece
- Department of Electrical and Computer Engineering, Hellenic Mediterranean University, Heraklion, Greece
| |
Collapse
|
8
|
Luckett PH, Olufawo M, Lamichhane B, Park KY, Dierker D, Verastegui GT, Yang P, Kim AH, Chheda MG, Snyder AZ, Shimony JS, Leuthardt EC. Predicting survival in glioblastoma with multimodal neuroimaging and machine learning. J Neurooncol 2023; 164:309-320. [PMID: 37668941 PMCID: PMC10522528 DOI: 10.1007/s11060-023-04439-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 08/26/2023] [Indexed: 09/06/2023]
Abstract
PURPOSE Glioblastoma (GBM) is the most common and aggressive malignant glioma, with an overall median survival of less than two years. The ability to predict survival before treatment in GBM patients would lead to improved disease management, clinical trial enrollment, and patient care. METHODS GBM patients (N = 133, mean age 60.8 years, median survival 14.1 months, 57.9% male) were retrospectively recruited from the neurosurgery brain tumor service at Washington University Medical Center. All patients completed structural neuroimaging and resting state functional MRI (RS-fMRI) before surgery. Demographics, measures of cortical thickness (CT), and resting state functional network connectivity (FC) were used to train a deep neural network to classify patients based on survival (< 1y, 1-2y, >2y). Permutation feature importance identified the strongest predictors of survival based on the trained models. RESULTS The models achieved a combined cross-validation and hold out accuracy of 90.6% in classifying survival (< 1y, 1-2y, >2y). The strongest demographic predictors were age at diagnosis and sex. The strongest CT predictors of survival included the superior temporal sulcus, parahippocampal gyrus, pericalcarine, pars triangularis, and middle temporal regions. The strongest FC features primarily involved dorsal and inferior somatomotor, visual, and cingulo-opercular networks. CONCLUSION We demonstrate that machine learning can accurately classify survival in GBM patients based on multimodal neuroimaging before any surgical or medical intervention. These results were achieved without information regarding presentation symptoms, treatments, postsurgical outcomes, or tumor genomic information. Our results suggest GBMs have a global effect on the brain's structural and functional organization, which is predictive of survival.
Collapse
Affiliation(s)
- Patrick H Luckett
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| | - Michael Olufawo
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Bidhan Lamichhane
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Center for Health Sciences, Oklahoma State University, Tulsa, OK, 74136, USA
| | - Ki Yun Park
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Donna Dierker
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | | | - Peter Yang
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Albert H Kim
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Brain Tumor Center at Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Milan G Chheda
- Brain Tumor Center at Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Abraham Z Snyder
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Joshua S Shimony
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
- Brain Tumor Center at Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Eric C Leuthardt
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Brain Tumor Center at Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
- Department of Biomedical Engineering, Washington University in Saint Louis, St. Louis, MO, 63130, USA
- Department of Mechanical Engineering and Materials Science, Washington University in Saint Louis, St. Louis, MO, 63130, USA
- Center for Innovation in Neuroscience and Technology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Brain Laser Center, Washington University School of Medicine, St. Louis, MO, 63110, USA
- National Center for Adaptive Neurotechnologies, Albany, USA
| |
Collapse
|
9
|
Zhang Y, Xu Z, Wu S, Zhu T, Hong X, Chi Z, Malla R, Jiang J, Huang Y, Xu Q, Wang Z, Zhang Y. Construction of 3D and 2D contrast-enhanced CT radiomics for prediction of CGB3 expression level and clinical prognosis in bladder cancer. Heliyon 2023; 9:e20335. [PMID: 37809854 PMCID: PMC10560067 DOI: 10.1016/j.heliyon.2023.e20335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/12/2023] [Accepted: 09/19/2023] [Indexed: 10/10/2023] Open
Abstract
Objective The purpose of this study was to construct a 3D and 2D contrast-enhanced computed tomography (CECT) radiomics model to predict CGB3 levels and assess its prognostic abilities in bladder cancer (Bca) patients. Methods Transcriptome data and CECT images of Bca patients were downloaded from The Cancer Imaging Archive (TCIA) and The Cancer Genome Atlas (TCGA) database. Clinical data of 43 cases from TCGA and TCIA were used for radiomics model evaluation. The Volume of interest (VOI) (3D) and region of interest (ROI) (2D) radiomics features were extracted. For the construction of predicting radiomics models, least absolute shrinkage and selection operator regression were used, and the filtered radiomics features were fitted using the logistic regression algorithm (LR). The model's effectiveness was measured using 10-fold cross-validation and the area under the receiver operating characteristic curve (AUC of ROC). Result CGB3 was a differential expressed prognosis-related gene and involved in the immune response process of plasma cells and T cell gamma delta. The high levels of CGB3 are a risk element for overall survival (OS). The AUCs of VOI and ROI radiomics models in the training set were 0.841 and 0.776, while in the validation set were 0.815 and 0.754, respectively. The Delong test revealed that the AUCs of the two models were not statistically different, and both models had good predictive performance. Conclusion The CGB3 expression level is an important prognosis factor for Bca patients. Both 3D and 2D CECT radiomics are effective in predicting CGB3 expression levels.
Collapse
Affiliation(s)
- Yuanfeng Zhang
- Department of Urology, Shantou Central Hospital, Shantou, PR China
- Department of Urology, Lanzhou University Second Hospital, Key Laboratory of Urological Disease of Gansu Province, Clinical Center of Gansu Province for Nephron-Urology, Lanzhou, PR China
| | - Zhuangyong Xu
- Department of Radiology,Shantou Central Hospital, Shantou, PR China
| | - Shaoxu Wu
- Department of Urology, Sun Yat-sen Memorial Hospital, Guangzhou, PR China
| | - Tianxiang Zhu
- Department of Cardiothoracic Surgery, Shantou Central Hospital, Shantou, PR China
| | - Xuwei Hong
- Department of Urology, Shantou Central Hospital, Shantou, PR China
| | - Zepai Chi
- Department of Urology, Shantou Central Hospital, Shantou, PR China
| | - Rujan Malla
- Department of Radiology, Nepal Medical Collage Teaching Hospital, Kathmandu, Nepal
| | - Jingqi Jiang
- Department of Urology, Lanzhou University Second Hospital, Key Laboratory of Urological Disease of Gansu Province, Clinical Center of Gansu Province for Nephron-Urology, Lanzhou, PR China
| | - Yi Huang
- Department of Urology, Sun Yat-sen Memorial Hospital, Guangzhou, PR China
| | - Qingchun Xu
- Department of Urology, Shantou Central Hospital, Shantou, PR China
| | - Zhiping Wang
- Department of Urology, Lanzhou University Second Hospital, Key Laboratory of Urological Disease of Gansu Province, Clinical Center of Gansu Province for Nephron-Urology, Lanzhou, PR China
| | - Yonghai Zhang
- Department of Urology, Shantou Central Hospital, Shantou, PR China
| |
Collapse
|
10
|
Li L, Wang M, Jiang X, Lin Y. Universal multi-factor feature selection method for radiomics-based brain tumor classification. Comput Biol Med 2023; 164:107122. [PMID: 37517322 DOI: 10.1016/j.compbiomed.2023.107122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 05/19/2023] [Accepted: 05/30/2023] [Indexed: 08/01/2023]
Abstract
Brain tumor mortality is high, and accurate classification before treatment can improve patient prognosis. Radiomics, which extracts numerous features from medical images, has been widely applied in brain tumor classification studies. Feature selection (FS) is a critical step in radiomics because it reduces redundant information and enhances classification performance. However, the lack of universal FS methods limits the development of radiomics-based brain tumor classification studies. To address this issue, we summarize the characteristics of the FS methods used in related studies and propose a universal method based on three selection factors called triple-factor cascaded selection (TFCS). Particularly, these factors correspond to the correlation between features and task labels, interdependence among features, and role of features in the model. The TFCS method divides FS into two steps. First, it utilizes mutual information to select features that are strongly correlated with the task and contain less redundant information. Recursive feature elimination is then employed to obtain the subset with the best classification performance. To validate the universality of the TFCS, we conducted experiments on seven datasets containing 13 brain tumor classification tasks and evaluated the overall performance using five types of indicators. Results: TFCS exhibited excellent overall performance for all tasks. Compared to the 13 related methods, it takes less time, has moderate parsimony, the best classification performance, adaptability, and stability, and shows better universality. Our study demonstrates that the reasonable utilization of multiple factors can enhance FS performance and provide new insights for future method design.
Collapse
Affiliation(s)
- Longfei Li
- School of Computer and Artificial Intelligence, Zhengzhou University, Zhengzhou, China; Collaborative Innovation Center for Internet Healthcare, Zhengzhou University, Zhengzhou, China
| | - Meiyun Wang
- Collaborative Innovation Center for Internet Healthcare, Zhengzhou University, Zhengzhou, China; Department of Radiology, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaoming Jiang
- Chongqing Engineering Research Center of Medical Electronics and Information Technology, Chongqing University of Post and Telecommunications, Chongqing, China.
| | - Yusong Lin
- Collaborative Innovation Center for Internet Healthcare, Zhengzhou University, Zhengzhou, China; School of Cyber Science and Engineering, Zhengzhou University, Zhengzhou, China; Hanwei IoT Institute, Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
11
|
Capobianco E, Dominietto M. Assessment of brain cancer atlas maps with multimodal imaging features. J Transl Med 2023; 21:385. [PMID: 37308956 PMCID: PMC10262565 DOI: 10.1186/s12967-023-04222-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 05/22/2023] [Indexed: 06/14/2023] Open
Abstract
BACKGROUND Glioblastoma Multiforme (GBM) is a fast-growing and highly aggressive brain tumor that invades the nearby brain tissue and presents secondary nodular lesions across the whole brain but generally does not spread to distant organs. Without treatment, GBM can result in death in about 6 months. The challenges are known to depend on multiple factors: brain localization, resistance to conventional therapy, disrupted tumor blood supply inhibiting effective drug delivery, complications from peritumoral edema, intracranial hypertension, seizures, and neurotoxicity. MAIN TEXT Imaging techniques are routinely used to obtain accurate detections of lesions that localize brain tumors. Especially magnetic resonance imaging (MRI) delivers multimodal images both before and after the administration of contrast, which results in displaying enhancement and describing physiological features as hemodynamic processes. This review considers one possible extension of the use of radiomics in GBM studies, one that recalibrates the analysis of targeted segmentations to the whole organ scale. After identifying critical areas of research, the focus is on illustrating the potential utility of an integrated approach with multimodal imaging, radiomic data processing and brain atlases as the main components. The templates associated with the outcome of straightforward analyses represent promising inference tools able to spatio-temporally inform on the GBM evolution while being generalizable also to other cancers. CONCLUSIONS The focus on novel inference strategies applicable to complex cancer systems and based on building radiomic models from multimodal imaging data can be well supported by machine learning and other computational tools potentially able to translate suitably processed information into more accurate patient stratifications and evaluations of treatment efficacy.
Collapse
Affiliation(s)
- Enrico Capobianco
- The Jackson Laboratory, 10 Discovery Drive, Farmington, CT, 06032, USA.
| | - Marco Dominietto
- Paul Scherrer Institute (PSI), Forschungsstrasse 111, 5232, Villigen, Switzerland
- Gate To Brain SA, Via Livio 7, 6830, Chiasso, Switzerland
| |
Collapse
|
12
|
Cui J, Miao X, Yanghao X, Qin X. Bibliometric research on the developments of artificial intelligence in radiomics toward nervous system diseases. Front Neurol 2023; 14:1171167. [PMID: 37360350 PMCID: PMC10288367 DOI: 10.3389/fneur.2023.1171167] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/16/2023] [Indexed: 06/28/2023] Open
Abstract
Background The growing interest suggests that the widespread application of radiomics has facilitated the development of neurological disease diagnosis, prognosis, and classification. The application of artificial intelligence methods in radiomics has increasingly achieved outstanding prediction results in recent years. However, there are few studies that have systematically analyzed this field through bibliometrics. Our destination is to study the visual relationships of publications to identify the trends and hotspots in radiomics research and encourage more researchers to participate in radiomics studies. Methods Publications in radiomics in the field of neurological disease research can be retrieved from the Web of Science Core Collection. Analysis of relevant countries, institutions, journals, authors, keywords, and references is conducted using Microsoft Excel 2019, VOSviewer, and CiteSpace V. We analyze the research status and hot trends through burst detection. Results On October 23, 2022, 746 records of studies on the application of radiomics in the diagnosis of neurological disorders were retrieved and published from 2011 to 2023. Approximately half of them were written by scholars in the United States, and most were published in Frontiers in Oncology, European Radiology, Cancer, and SCIENTIFIC REPORTS. Although China ranks first in the number of publications, the United States is the driving force in the field and enjoys a good academic reputation. NORBERT GALLDIKS and JIE TIAN published the most relevant articles, while GILLIES RJ was cited the most. RADIOLOGY is a representative and influential journal in the field. "Glioma" is a current attractive research hotspot. Keywords such as "machine learning," "brain metastasis," and "gene mutations" have recently appeared at the research frontier. Conclusion Most of the studies focus on clinical trial outcomes, such as the diagnosis, prediction, and prognosis of neurological disorders. The radiomics biomarkers and multi-omics studies of neurological disorders may soon become a hot topic and should be closely monitored, particularly the relationship between tumor-related non-invasive imaging biomarkers and the intrinsic micro-environment of tumors.
Collapse
|
13
|
Carney SV, Banerjee K, Mujeeb A, Zhu B, Haase S, Varela ML, Kadiyala P, Tronrud CE, Zhu Z, Mukherji D, Gorla P, Sun Y, Tagett R, Núñez FJ, Luo M, Luo W, Ljungman M, Liu Y, Xia Z, Schwendeman A, Qin T, Sartor MA, Costello JF, Cahill DP, Lowenstein PR, Castro MG. Zinc Finger MYND-Type Containing 8 (ZMYND8) Is Epigenetically Regulated in Mutant Isocitrate Dehydrogenase 1 (IDH1) Glioma to Promote Radioresistance. Clin Cancer Res 2023; 29:1763-1782. [PMID: 36692427 PMCID: PMC10159884 DOI: 10.1158/1078-0432.ccr-22-1896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 10/27/2022] [Accepted: 12/22/2022] [Indexed: 01/25/2023]
Abstract
PURPOSE Mutant isocitrate dehydrogenase 1 (mIDH1) alters the epigenetic regulation of chromatin, leading to a hypermethylation phenotype in adult glioma. This work focuses on identifying gene targets epigenetically dysregulated by mIDH1 to confer therapeutic resistance to ionizing radiation (IR). EXPERIMENTAL DESIGN We evaluated changes in the transcriptome and epigenome in a radioresistant mIDH1 patient-derived glioma cell culture (GCC) following treatment with an mIDH1-specific inhibitor, AGI-5198. We identified Zinc Finger MYND-Type Containing 8 (ZMYND8) as a potential target of mIDH1 reprogramming. We suppressed ZMYND8 expression by shRNA knockdown and genetic knockout (KO) in mIDH1 glioma cells and then assessed cellular viability to IR. We assessed the sensitivity of mIDH1 GCCS to pharmacologic inhibition of ZMYND8-interacting partners: HDAC, BRD4, and PARP. RESULTS Inhibition of mIDH1 leads to an upregulation of gene networks involved in replication stress. We found that the expression of ZMYND8, a regulator of DNA damage response, was decreased in three patient-derived mIDH1 GCCs after treatment with AGI-5198. Knockdown of ZMYND8 expression sensitized mIDH1 GCCs to radiotherapy marked by decreased cellular viability. Following IR, mIDH1 glioma cells with ZMYND8 KO exhibit significant phosphorylation of ATM and sustained γH2AX activation. ZMYND8 KO mIDH1 GCCs were further responsive to IR when treated with either BRD4 or HDAC inhibitors. PARP inhibition further enhanced the efficacy of radiotherapy in ZMYND8 KO mIDH1 glioma cells. CONCLUSIONS These findings indicate the impact of ZMYND8 in the maintenance of genomic integrity and repair of IR-induced DNA damage in mIDH1 glioma. See related commentary by Sachdev et al., p. 1648.
Collapse
Affiliation(s)
- Stephen V Carney
- Cancer Biology Training Program, University of Michigan Medical School, Ann Arbor, Michigan
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, Michigan
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan
| | - Kaushik Banerjee
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, Michigan
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan
| | - Anzar Mujeeb
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, Michigan
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan
| | - Brandon Zhu
- Graduate Program in Biomedical Engineering, University of Michigan College of Engineering, Ann Arbor, Michigan
| | - Santiago Haase
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, Michigan
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan
| | - Maria L Varela
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, Michigan
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan
| | - Padma Kadiyala
- Graduate Program in Immunology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Claire E Tronrud
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, Michigan
| | - Ziwen Zhu
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, Michigan
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan
| | - Devarshi Mukherji
- Neuroscience, University of Michigan College of Literature, Science, and the Arts (LSA), Ann Arbor, Michigan
| | - Preethi Gorla
- Neuroscience, University of Michigan College of Literature, Science, and the Arts (LSA), Ann Arbor, Michigan
| | - Yilun Sun
- Department of Radiation Oncology, University Hospitals/Case Western Reserve University, Cleveland, Ohio
| | - Rebecca Tagett
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan
| | - Felipe J Núñez
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, Michigan
| | - Maowu Luo
- Department of Pathology, UT Southwestern Medical Center, Dallas, Texas
| | - Weibo Luo
- Department of Pathology, UT Southwestern Medical Center, Dallas, Texas
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, Texas
| | - Mats Ljungman
- Department of Radiation Oncology, University of Michigan Medical School, Ann Arbor, Michigan
- Department of Environmental Health Science, School of Public Health, University of Michigan, Ann Arbor, Michigan
| | - Yayuan Liu
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, Michigan
| | - Ziyun Xia
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, Michigan
| | - Anna Schwendeman
- Department of Radiation Oncology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Tingting Qin
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan
| | - Maureen A Sartor
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan
| | - Joseph F Costello
- Department of Neurological Surgery, University of California, San Francisco, California
| | - Daniel P Cahill
- Department of Neurosurgery, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts
| | - Pedro R Lowenstein
- Cancer Biology Training Program, University of Michigan Medical School, Ann Arbor, Michigan
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, Michigan
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan
- Graduate Program in Immunology, University of Michigan Medical School, Ann Arbor, Michigan
- Biosciences Initiative in Brain Cancer, University of Michigan Medical School, Ann Arbor, Michigan
| | - Maria G Castro
- Cancer Biology Training Program, University of Michigan Medical School, Ann Arbor, Michigan
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, Michigan
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan
- Graduate Program in Immunology, University of Michigan Medical School, Ann Arbor, Michigan
- Biosciences Initiative in Brain Cancer, University of Michigan Medical School, Ann Arbor, Michigan
| |
Collapse
|
14
|
Minami N, Hong D, Taglang C, Batsios G, Gillespie AM, Viswanath P, Stevers N, Barger CJ, Costello JF, Ronen SM. Hyperpolarized δ-[1- 13C]gluconolactone imaging visualizes response to TERT or GABPB1 targeting therapy for glioblastoma. Sci Rep 2023; 13:5190. [PMID: 36997627 PMCID: PMC10063634 DOI: 10.1038/s41598-023-32463-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 03/28/2023] [Indexed: 04/01/2023] Open
Abstract
TERT promoter mutations are a hallmark of glioblastoma (GBM). Accordingly, TERT and GABPB1, a subunit of the upstream mutant TERT promoter transcription factor GABP, are being considered as promising therapeutic targets in GBM. We recently reported that the expression of TERT or GABP1 modulates flux via the pentose phosphate pathway (PPP). Here, we investigated whether 13C magnetic resonance spectroscopy (MRS) of hyperpolarized (HP) δ- [1-13C]gluconolactone can serve to image the reduction in PPP flux following TERT or GABPB1 silencing. We investigated two different human GBM cell lines stably expressing shRNAs targeting TERT or GABPB1, as well as doxycycline-inducible shTERT or shGABPB1cells. MRS studies were performed on live cells and in vivo tumors, and dynamic sets of 13C MR spectra were acquired following injection of HP δ-[1-13C]gluconolactone. HP 6-phosphogluconolactone (6PG), the product of δ-[1-13C]gluconolactone via the PPP, was significantly reduced in TERT or GABPB1-silenced cells or tumors compared to controls in all our models. Furthermore, a positive correlation between TERT expression and 6PG levels was observed. Our data indicate that HP δ-[1-13C]gluconolactone, an imaging tool with translational potential, could serve to monitor TERT expression and its silencing with therapies that target either TERT or GABPB1 in mutant TERT promoter GBM patients.
Collapse
Affiliation(s)
- Noriaki Minami
- Department of Radiology and Biomedical Imaging, University of California San Francisco, 1700 4th Street, San Francisco, CA, 94158, USA
| | - Donghyun Hong
- Department of Radiology and Biomedical Imaging, University of California San Francisco, 1700 4th Street, San Francisco, CA, 94158, USA
| | - Celine Taglang
- Department of Radiology and Biomedical Imaging, University of California San Francisco, 1700 4th Street, San Francisco, CA, 94158, USA
| | - Georgios Batsios
- Department of Radiology and Biomedical Imaging, University of California San Francisco, 1700 4th Street, San Francisco, CA, 94158, USA
| | - Anne Marie Gillespie
- Department of Radiology and Biomedical Imaging, University of California San Francisco, 1700 4th Street, San Francisco, CA, 94158, USA
| | - Pavithra Viswanath
- Department of Radiology and Biomedical Imaging, University of California San Francisco, 1700 4th Street, San Francisco, CA, 94158, USA
| | - Nicholas Stevers
- Department of Neurological Surgery, University of California, San Francisco, USA
| | - Carter J Barger
- Department of Neurological Surgery, University of California, San Francisco, USA
| | - Joseph F Costello
- Department of Neurological Surgery, University of California, San Francisco, USA
| | - Sabrina M Ronen
- Department of Radiology and Biomedical Imaging, University of California San Francisco, 1700 4th Street, San Francisco, CA, 94158, USA.
| |
Collapse
|
15
|
Forecasting Molecular Features in IDH-Wildtype Gliomas: The State of the Art of Radiomics Applied to Neurosurgery. Cancers (Basel) 2023; 15:cancers15030940. [PMID: 36765898 PMCID: PMC9913449 DOI: 10.3390/cancers15030940] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/24/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND The fifth edition of the WHO Classification of Tumors of the Central Nervous System (CNS), published in 2021, marks a step forward the future diagnostic approach to these neoplasms. Alongside this, radiomics has experienced rapid evolution over the last several years, allowing us to correlate tumor imaging heterogeneity with a wide range of tumor molecular and subcellular features. Radiomics is a translational field focused on decoding conventional imaging data to extrapolate the molecular and prognostic features of tumors such as gliomas. We herein analyze the state-of-the-art of radiomics applied to glioblastoma, with the goal to estimate its current clinical impact and potential perspectives in relation to well-rounded patient management, including the end-of-life stage. METHODS A literature review was performed on the PubMed, MEDLINE and Scopus databases using the following search items: "radiomics and glioma", "radiomics and glioblastoma", "radiomics and glioma and IDH", "radiomics and glioma and TERT promoter", "radiomics and glioma and EGFR", "radiomics and glioma and chromosome". RESULTS A total of 719 articles were screened. Further quantitative and qualitative analysis allowed us to finally include 11 papers. This analysis shows that radiomics is rapidly evolving towards a reliable tool. CONCLUSIONS Further studies are necessary to adjust radiomics' potential to the newest molecular requirements pointed out by the 2021 WHO classification of CNS tumors. At a glance, its application in the clinical routine could be beneficial to achieve a timely diagnosis, especially for those patients not eligible for surgery and/or adjuvant therapies but still deserving palliative and supportive care.
Collapse
|
16
|
Glioma radiogenomics and artificial intelligence: road to precision cancer medicine. Clin Radiol 2023; 78:137-149. [PMID: 36241568 DOI: 10.1016/j.crad.2022.08.138] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/19/2022] [Indexed: 01/18/2023]
Abstract
Radiogenomics refers to the study of the relationship between imaging phenotypes and gene expression patterns/molecular characteristics, which might allow improved diagnosis, decision-making, and predicting patient outcomes in the context of multiple diseases. Central nervous system (CNS) tumours contribute to significant cancer-related mortality in the present age. Although historically CNS neoplasms were classified and graded based on microscopic appearance, there was discordance between two histologically similar tumours that showed varying prognosis and behaviour, attributable to their molecular signatures. These led to the incorporation of molecular markers in the classification of CNS neoplasms. Meanwhile, advancements in imaging technology such as diffusion-based imaging (including tractography), perfusion, and spectroscopy in addition to the conventional imaging of glial neoplasms, have opened an avenue for radiogenomics. This review touches upon the schema of the current classification of gliomas, concepts behind molecular markers, and parameters that are used in radiogenomics to characterise gliomas and the role of artificial intelligence for the same. Further, the role of radiomics in the grading of brain tumours, prediction of treatment response and prognosis has been discussed. Use of automated and semi-automated tumour segmentation for radiotherapy planning and follow-up has also been discussed briefly.
Collapse
|
17
|
Zhang L, Pan H, Liu Z, Gao J, Xu X, Wang L, Wang J, Tang Y, Cao X, Kan Y, Wen Z, Chen J, Huang D, Chen S, Li Y. Multicenter clinical radiomics-integrated model based on [ 18F]FDG PET and multi-modal MRI predict ATRX mutation status in IDH-mutant lower-grade gliomas. Eur Radiol 2023; 33:872-883. [PMID: 35984514 DOI: 10.1007/s00330-022-09043-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/23/2022] [Accepted: 07/01/2022] [Indexed: 02/03/2023]
Abstract
OBJECTIVES To develop a clinical radiomics-integrated model based on 18 F-fluorodeoxyglucose positron emission tomography ([18F]FDG PET) and multi-modal MRI for predicting alpha thalassemia/mental retardation X-linked (ATRX) mutation status of IDH-mutant lower-grade gliomas (LGGs). METHODS One hundred and two patients (47 ATRX mutant-type, 55 ATRX wild-type) diagnosed with IDH-mutant LGGs (CNS WHO grades 1 and 2) were retrospectively enrolled. A total of 5540 radiomics features were extracted from structural MR (sMR) images (contrast-enhanced T1-weighted imaging, CE-T1WI; T2-weighted imaging, and T2WI), functional MR (fMR) images (apparent diffusion coefficient, ADC; cerebral blood volume, CBV), and metabolic PET images ([18F]FDG PET). The random forest algorithm was used to establish a clinical radiomics-integrated model, integrating the optimal multi-modal radiomics model with three clinical parameters. The predictive effectiveness of the models was evaluated by receiver operating characteristic (ROC) and decision curve analysis (DCA). RESULTS The optimal multi-modal model incorporated sMR (CE-T1WI), fMR (ADC), and metabolic ([18F]FDG) images ([18F]FDG PET+ADC+ CE-T1WI) with the area under curves (AUCs) in the training and test groups of 0.971 and 0.962, respectively. The clinical radiomics-integrated model, incorporating [18F]FDG PET+ADC+CE-T1WI, three clinical parameters (KPS, SFSD, and ATGR), showed the best predictive effectiveness in the training and test groups (0.987 and 0.975, respectively). CONCLUSIONS The clinical radiomics-integrated model with metabolic, structural, and functional information based on [18F]FDG PET and multi-modal MRI achieved promising performance for predicting the ATRX mutation status of IDH-mutant LGGs. KEY POINTS • The clinical radiomics-integrated model based on [18F]FDG PET and multi-modal MRI achieved promising performance for predicting ATRX mutation status in LGGs. • The study investigated the value of multicenter clinical radiomics-integrated model based on [18F]FDG PET and multi-modal MRI in LGGs regarding ATRX mutation status prediction. • The integrated model provided structural, functional, and metabolic information simultaneously and demonstrated with satisfactory calibration and discrimination in the training and test groups (0.987 and 0.975, respectively).
Collapse
Affiliation(s)
- Liqiang Zhang
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Hongyu Pan
- College of Computer & Information Science, Southwest University, Chongqing, 400715, China
| | - Zhi Liu
- Department of Radiology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, 400021, China
| | - Jueni Gao
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Xinyi Xu
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Linlin Wang
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Jie Wang
- Department of Nuclear Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yi Tang
- Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing, China
| | - Xu Cao
- School of Medical and Life Sciences Chengdu University of Traditional Chinese Medicine, Chengdu, 610032, China
| | - Yubo Kan
- Department of Nuclear Medicine, United Medical Imaging Center, Chongqing, 400038, China
| | - Zhipeng Wen
- Department of Radiology, Sichuan Cancer Hospital, Chengdu, 610042, China
| | - Jianjun Chen
- Department of Nuclear Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Dingde Huang
- Department of Nuclear Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| | - Shanxiong Chen
- College of Computer & Information Science, Southwest University, Chongqing, 400715, China.
| | - Yongmei Li
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
18
|
Beyond Imaging and Genetic Signature in Glioblastoma: Radiogenomic Holistic Approach in Neuro-Oncology. Biomedicines 2022; 10:biomedicines10123205. [PMID: 36551961 PMCID: PMC9775324 DOI: 10.3390/biomedicines10123205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Abstract
Glioblastoma (GBM) is a malignant brain tumor exhibiting rapid and infiltrative growth, with less than 10% of patients surviving over 5 years, despite aggressive and multimodal treatments. The poor prognosis and the lack of effective pharmacological treatments are imputable to a remarkable histological and molecular heterogeneity of GBM, which has led, to date, to the failure of precision oncology and targeted therapies. Identification of molecular biomarkers is a paradigm for comprehensive and tailored treatments; nevertheless, biopsy sampling has proved to be invasive and limited. Radiogenomics is an emerging translational field of research aiming to study the correlation between radiographic signature and underlying gene expression. Although a research field still under development, not yet incorporated into routine clinical practice, it promises to be a useful non-invasive tool for future personalized/adaptive neuro-oncology. This review provides an up-to-date summary of the recent advancements in the use of magnetic resonance imaging (MRI) radiogenomics for the assessment of molecular markers of interest in GBM regarding prognosis and response to treatments, for monitoring recurrence, also providing insights into the potential efficacy of such an approach for survival prognostication. Despite a high sensitivity and specificity in almost all studies, accuracy, reproducibility and clinical value of radiomic features are the Achilles heel of this newborn tool. Looking into the future, investigators' efforts should be directed towards standardization and a disciplined approach to data collection, algorithms, and statistical analysis.
Collapse
|
19
|
Correlation of T1- to T2-weighted signal intensity ratio with T1- and T2-relaxation time and IDH mutation status in glioma. Sci Rep 2022; 12:18801. [PMID: 36335158 PMCID: PMC9637175 DOI: 10.1038/s41598-022-23527-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 11/01/2022] [Indexed: 11/07/2022] Open
Abstract
The current study aimed to test whether the ratio of T1-weighted to T2-weighted signal intensity (T1W/T2W ratio: rT1/T2) derived from conventional MRI could act as a surrogate relaxation time predictive of IDH mutation status in histologically lower-grade gliomas. Strong exponential correlations were found between rT1/T2 and each of T1- and T2-relaxation times in eight subjects (rT1/T2 = 1.63exp-0.0005T1-relax + 0.30 and rT1/T2 = 1.27exp-0.0081T2-relax + 0.48; R2 = 0.64 and 0.59, respectively). In a test cohort of 25 patients, mean rT1/T2 (mrT1/T2) was significantly higher in IDHwt tumors than in IDHmt tumors (p < 0.05) and the optimal cut-off of mrT1/T2 for discriminating IDHmt was 0.666-0.677, (AUC = 0.75, p < 0.05), which was validated in an external domestic cohort of 29 patients (AUC = 0.75, p = 0.02). However, this result was not validated in an external international cohort derived from TCIA/TCGA (AUC = 0.63, p = 0.08). The t-Distributed Stochastic Neighbor Embedding analysis revealed a greater diversity in image characteristics within the TCIA/TCGA cohort than in the two domestic cohorts. The failure of external validation in the TCIA/TCGA cohort could be attributed to its wider variety of original imaging characteristics.
Collapse
|
20
|
Minami N, Hong D, Stevers N, Barger CJ, Radoul M, Hong C, Chen L, Kim Y, Batsios G, Gillespie AM, Pieper RO, Costello JF, Viswanath P, Ronen SM. Imaging biomarkers of TERT or GABPB1 silencing in TERT-positive glioblastoma. Neuro Oncol 2022; 24:1898-1910. [PMID: 35460557 PMCID: PMC9629440 DOI: 10.1093/neuonc/noac112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND TERT promoter mutations are observed in 80% of wild-type IDH glioblastoma (GBM). Moreover, the upstream TERT transcription factor GABPB1 was recently identified as a cancer-specific therapeutic target for tumors harboring a TERT promoter mutation. In that context, noninvasive imaging biomarkers are needed for the detection of TERT modulation. METHODS Multiple GBM models were investigated as cells and in vivo tumors and the impact of TERT silencing, either directly or by targeting GABPB1, was determined using 1H and hyperpolarized 13C magnetic resonance spectroscopy (MRS). Changes in associated metabolic enzymes were also investigated. RESULTS 1H-MRS revealed that lactate and glutathione (GSH) were the most significantly altered metabolites when either TERT or GABPB1 was silenced, and lactate and GSH levels were correlated with cellular TERT expression. Consistent with the drop in lactate, 13C-MRS showed that hyperpolarized [1-13C]lactate production from [1-13C]pyruvate was also reduced when TERT was silenced. Mechanistically, the reduction in GSH was associated with a reduction in pentose phosphate pathway flux, reduced activity of glucose-6-phosphate dehydrogenase, and reduced NADPH. The drop in lactate and hyperpolarized lactate were associated with reductions in glycolytic flux, NADH, and expression/activity of GLUT1, monocarboxylate transporters, and lactate dehydrogenase A. CONCLUSIONS Our study indicates that MRS-detectable GSH, lactate, and lactate production could serve as metabolic biomarkers of response to emerging TERT-targeted therapies for GBM with activating TERT promoter mutations. Importantly these biomarkers are readily translatable to the clinic, and thus could ultimately improve GBM patient management.
Collapse
Affiliation(s)
- Noriaki Minami
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA
| | - Donghyun Hong
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA
| | - Nicholas Stevers
- Department of Neurological Surgery, University of California, San Francisco, California, USA
| | - Carter J Barger
- Department of Neurological Surgery, University of California, San Francisco, California, USA
| | - Marina Radoul
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA
| | - Chibo Hong
- Department of Neurological Surgery, University of California, San Francisco, California, USA
| | - Lee Chen
- Department of Neurological Surgery, University of California, San Francisco, California, USA
| | - Yaewon Kim
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA
| | - Georgios Batsios
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA
| | - Anne Marie Gillespie
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA
| | - Russel O Pieper
- Department of Neurological Surgery, University of California, San Francisco, California, USA
| | - Joseph F Costello
- Department of Neurological Surgery, University of California, San Francisco, California, USA
| | - Pavithra Viswanath
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA
| | - Sabrina M Ronen
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA
| |
Collapse
|
21
|
Wang H, Zhang S, Xing X, Yue Q, Feng W, Chen S, Zhang J, Xie D, Chen N, Liu Y. Radiomic study on preoperative multi-modal magnetic resonance images identifies IDH-mutant TERT promoter-mutant gliomas. Cancer Med 2022; 12:2524-2537. [PMID: 36176070 PMCID: PMC9939206 DOI: 10.1002/cam4.5097] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 06/20/2022] [Accepted: 07/13/2022] [Indexed: 11/09/2022] Open
Abstract
OBJECTIVES Gliomas with comutations of isocitrate dehydrogenase (IDH) genes and telomerase reverse transcriptase (TERT) gene promoter (IDHmut pTERTmut) show distinct biological features and respond to first-line treatment differently in comparison with other gliomas. This study aimed to characterize the IDHmut pTERTmut gliomas in multimodal MRI using the radiomic method and establish a precise diagnostic model identifying this group of gliomas. METHODS A total of 140 patients with untreated primary gliomas were admitted between 2016 and 2020 to West China Hospital as a discovery cohort, including 22 IDHmut pTERTmut patients. Thirty-four additional cases from a different hospital were included in the study as an independent validation cohort. A total of 3654 radiomic features were extracted from the preoperative multimodal MRI images (T1c, FLAIR, and ADC maps) and filtered in a data-driven approach. The discovery cohort was split into training and test sets by a 4:1 ratio. A diagnostic model (multilayer perceptron classifier) for detecting the IDHmut pTERTmut gliomas was trained using an automatic machine-learning algorithm named tree-based pipeline optimization tool (TPOT). The most critical radiomic features in the model were identified and visualized. RESULTS The model achieved an area under the receiver-operating curve (AUROC) of 0.971 (95% CI, 0.902-1.000), the sensitivity of 0.833 (95% CI, 0.333-1.000), and the specificity of 0.966 (95% CI, 0.931-1.000) in the test set. The area under the precision-recall curve (AUCPR) was 0.754 (95% CI, 0.572-0.833) and the F1 score was 0.833 (95% CI, 0.500-1.000). In the independent validation set, the model reached 0.952 AUROC, 0.714 sensitivity, 0.963 specificity, 0.841 AUCPR, and 0.769 F1 score. MR radiomic features of the IDHmut pTERTmut gliomas represented homogenous low-complexity texture in three modalities. CONCLUSIONS An accurate diagnostic model was constructed for detecting IDHmut pTERTmut gliomas using multimodal radiomic features. The most important features were associated with the homogenous simple texture of IDHmut pTERTmut gliomas in MRI images transformed using Laplacian of Gaussian and wavelet filters.
Collapse
Affiliation(s)
- Haoyu Wang
- Department of NeurosurgeryWest China Hospital of Sichuan UniversityChengduChina,Department of NeurosurgeryXinhua Hospital, Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Shuxin Zhang
- Department of NeurosurgeryWest China Hospital of Sichuan UniversityChengduChina,Department of Head and Neck Surgery, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of MedicineUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Xiang Xing
- Department of NeurosurgeryWest China Hospital of Sichuan UniversityChengduChina
| | - Qiang Yue
- Department of RadiologyWest China Hospital of Sichuan UniversityChengduChina
| | - Wentao Feng
- Department of NeurosurgeryWest China Hospital of Sichuan UniversityChengduChina
| | - Siliang Chen
- Department of NeurosurgeryWest China Hospital of Sichuan UniversityChengduChina
| | - Jun Zhang
- Frontier Science Center for Disease Molecular Network, State Key Laboratory of BiotherapyWest China Hospital of Sichuan UniversityChengduChina
| | - Dan Xie
- Frontier Science Center for Disease Molecular Network, State Key Laboratory of BiotherapyWest China Hospital of Sichuan UniversityChengduChina
| | - Ni Chen
- Department of Pathology, West China HospitalSichuan UniversityChengduSichuanChina
| | - Yanhui Liu
- Department of NeurosurgeryWest China Hospital of Sichuan UniversityChengduChina
| |
Collapse
|
22
|
A Survey of Radiomics in Precision Diagnosis and Treatment of Adult Gliomas. J Clin Med 2022; 11:jcm11133802. [PMID: 35807084 PMCID: PMC9267404 DOI: 10.3390/jcm11133802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/18/2022] [Accepted: 06/29/2022] [Indexed: 02/04/2023] Open
Abstract
Glioma is the most common primary malignant tumor of the adult central nervous system (CNS), which mostly shows invasive growth. In most cases, surgery is often difficult to completely remove, and the recurrence rate and mortality of patients are high. With the continuous development of molecular genetics and the great progress of molecular biology technology, more and more molecular biomarkers have been proved to have important guiding significance in the individualized diagnosis, treatment, and prognosis evaluation of glioma. With the updates of the World Health Organization (WHO) classification of tumors of the CNS in 2021, the diagnosis and treatment of glioma has entered the era of precision medicine in the true sense. Due to its ability to non-invasively achieve accurate identification of glioma from other intracranial tumors, and to predict the grade, genotyping, treatment response, and prognosis of glioma, which provides a scientific basis for the clinical application of individualized diagnosis and treatment model of glioma, radiomics has become a research hotspot in the field of precision medicine. This paper reviewed the research related to radiomics of adult gliomas published in recent years and summarized the research proceedings of radiomics in differential diagnosis, preoperative grading and genotyping, treatment and efficacy evaluation, and survival prediction of adult gliomas.
Collapse
|
23
|
Visualization of Resected Area in Endonasal Endoscopic Approach versus Transcranial Approach for Skull Base Meningiomas by Voxel-Based-Lesion Mapping. Brain Sci 2022; 12:brainsci12070875. [PMID: 35884682 PMCID: PMC9313245 DOI: 10.3390/brainsci12070875] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/22/2022] [Accepted: 06/28/2022] [Indexed: 11/17/2022] Open
Abstract
Background: We aimed to evaluate the resected area of endonasal endoscopic approach (EEA) and transcranial approach (TCA) for skull base meningiomas (SBMs) using voxel-based-lesion mapping and visualized the appropriate tumor location in each approach. Methods: We retrospectively examined 182 patients with SBMs who underwent tumor resection in our hospital between 2014 and 2019. Pre- and post-operative SBMs were manually delineated on MRI to create the voxels-of-interest (VOIpre and VOIpost) and were registered onto the normalized brain (normalized VOIpre and normalized VOIpost). The resected map was created by subtracting normalized VOIpost from the normalized VOIpre divided by the number of cases. The resected maps of TCA and EEA were compared by subtracting them. Results: Twenty patients underwent EEA and 135 patients underwent TCA. The tumor resected map demonstrated that the resected area of EEA frequently accumulated on the central skull base, while that of TCA accumulated near the central skull base. The border of both approaches matched the circle that connects neural foramens at the skull base. Conclusions: The resected area of SBMs by EEA and TCA was well visualized by voxel-based-lesion mapping. The circle connecting the neural foramens was the border of EEA and TCA.
Collapse
|
24
|
Liu X, Li J, Xu Q, Zhang Q, Zhou X, Pan H, Wu N, Lu G, Zhang Z. RP-Rs-fMRIomics as a Novel Imaging Analysis Strategy to Empower Diagnosis of Brain Gliomas. Cancers (Basel) 2022; 14:2818. [PMID: 35740484 PMCID: PMC9220978 DOI: 10.3390/cancers14122818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/29/2022] [Accepted: 06/01/2022] [Indexed: 12/07/2022] Open
Abstract
Rs-fMRI can provide rich information about functional processes in the brain with a large array of imaging parameters and is also suitable for investigating the biological processes in cerebral gliomas. We aimed to propose an imaging analysis method of RP-Rs-fMRIomics by adopting omics analysis on rs-fMRI with exhaustive regional parameters and subsequently estimating its feasibility on the prediction diagnosis of gliomas. In this retrospective study, preoperative rs-fMRI data were acquired from patients confirmed with diffuse gliomas (n = 176). A total of 420 features were extracted through measuring 14 regional parameters of rs-fMRI as much as available currently in 10 specific narrow frequency bins and three parts of gliomas. With a randomly split training and testing dataset (ratio 7:3), four classifiers were implemented to construct and optimize RP-Rs-fMRIomics models for predicting glioma grade, IDH status and Karnofsky Performance Status scores. The RP-Rs-fMRIomics models (AUROC 0.988, 0.905, 0.801) were superior to the corresponding traditional single rs-fMRI index (AUROC 0.803, 0.731, 0.632) in predicting glioma grade, IDH and survival. The RP-Rs-fMRIomics analysis, featuring high interpretability, was competitive for prediction of glioma grading, IDH genotype and prognosis. The method expanded the clinical application of rs-fMRI and also contributed a new imaging analysis for brain tumor research.
Collapse
Affiliation(s)
- Xiaoxue Liu
- Department of Diagnostic Radiology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China; (X.L.); (J.L.); (Q.X.); (Q.Z.); (X.Z.); (G.L.)
| | - Jianrui Li
- Department of Diagnostic Radiology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China; (X.L.); (J.L.); (Q.X.); (Q.Z.); (X.Z.); (G.L.)
| | - Qiang Xu
- Department of Diagnostic Radiology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China; (X.L.); (J.L.); (Q.X.); (Q.Z.); (X.Z.); (G.L.)
| | - Qirui Zhang
- Department of Diagnostic Radiology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China; (X.L.); (J.L.); (Q.X.); (Q.Z.); (X.Z.); (G.L.)
| | - Xian Zhou
- Department of Diagnostic Radiology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China; (X.L.); (J.L.); (Q.X.); (Q.Z.); (X.Z.); (G.L.)
| | - Hao Pan
- Department of Neurosurgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China;
| | - Nan Wu
- Department of Pathology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China;
| | - Guangming Lu
- Department of Diagnostic Radiology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China; (X.L.); (J.L.); (Q.X.); (Q.Z.); (X.Z.); (G.L.)
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210093, China
| | - Zhiqiang Zhang
- Department of Diagnostic Radiology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China; (X.L.); (J.L.); (Q.X.); (Q.Z.); (X.Z.); (G.L.)
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210093, China
| |
Collapse
|
25
|
Balana C, Castañer S, Carrato C, Moran T, Lopez-Paradís A, Domenech M, Hernandez A, Puig J. Preoperative Diagnosis and Molecular Characterization of Gliomas With Liquid Biopsy and Radiogenomics. Front Neurol 2022; 13:865171. [PMID: 35693015 PMCID: PMC9177999 DOI: 10.3389/fneur.2022.865171] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 05/05/2022] [Indexed: 12/13/2022] Open
Abstract
Gliomas are a heterogenous group of central nervous system tumors with different outcomes and different therapeutic needs. Glioblastoma, the most common subtype in adults, has a very poor prognosis and disabling consequences. The World Health Organization (WHO) classification specifies that the typing and grading of gliomas should include molecular markers. The molecular characterization of gliomas has implications for prognosis, treatment planning, and prediction of treatment response. At present, gliomas are diagnosed via tumor resection or biopsy, which are always invasive and frequently risky methods. In recent years, however, substantial advances have been made in developing different methods for the molecular characterization of tumors through the analysis of products shed in body fluids. Known as liquid biopsies, these analyses can potentially provide diagnostic and prognostic information, guidance on choice of treatment, and real-time information on tumor status. In addition, magnetic resonance imaging (MRI) is another good source of tumor data; radiomics and radiogenomics can link the imaging phenotypes to gene expression patterns and provide insights to tumor biology and underlying molecular signatures. Machine and deep learning and computational techniques can also use quantitative imaging features to non-invasively detect genetic mutations. The key molecular information obtained with liquid biopsies and radiogenomics can be useful not only in the diagnosis of gliomas but can also help predict response to specific treatments and provide guidelines for personalized medicine. In this article, we review the available data on the molecular characterization of gliomas using the non-invasive methods of liquid biopsy and MRI and suggest that these tools could be used in the future for the preoperative diagnosis of gliomas.
Collapse
Affiliation(s)
- Carmen Balana
- Medical Oncology Service, Institut Català d'Oncologia Badalona (ICO), Badalona Applied Research Group in Oncology (B-ARGO Group), Institut Investigació Germans Trias i Pujol (IGTP), Barcelona, Spain
- *Correspondence: Carmen Balana
| | - Sara Castañer
- Diagnostic Imaging Institute (IDI), Hospital Universitari Germans Trias I Pujol, Institut Investigació Germans Trias i Pujol (IGTP), Barcelona, Spain
| | - Cristina Carrato
- Department of Pathology, Hospital Universitari Germans Trias I Pujol, Institut Investigació Germans Trias i Pujol (IGTP), Barcelona, Spain
| | - Teresa Moran
- Medical Oncology Service, Institut Català d'Oncologia Badalona (ICO), Badalona Applied Research Group in Oncology (B-ARGO Group), Institut Investigació Germans Trias i Pujol (IGTP), Barcelona, Spain
| | - Assumpció Lopez-Paradís
- Medical Oncology Service, Institut Català d'Oncologia Badalona (ICO), Badalona Applied Research Group in Oncology (B-ARGO Group), Institut Investigació Germans Trias i Pujol (IGTP), Barcelona, Spain
| | - Marta Domenech
- Medical Oncology Service, Institut Català d'Oncologia Badalona (ICO), Badalona Applied Research Group in Oncology (B-ARGO Group), Institut Investigació Germans Trias i Pujol (IGTP), Barcelona, Spain
| | - Ainhoa Hernandez
- Medical Oncology Service, Institut Català d'Oncologia Badalona (ICO), Badalona Applied Research Group in Oncology (B-ARGO Group), Institut Investigació Germans Trias i Pujol (IGTP), Barcelona, Spain
| | - Josep Puig
- Department of Radiology IDI [Girona Biomedical Research Institute] IDIBGI, Hospital Universitari Dr Josep Trueta, Girona, Spain
- Department of Medical Sciences, School of Medicine, University of Girona, Girona, Spain
- Comparative Medicine and Bioimage of Catalonia, Institut Investigació Germans Trias i Pujol (IGTP), Barcelona, Spain
| |
Collapse
|
26
|
A radiomics feature-based nomogram to predict telomerase reverse transcriptase promoter mutation status and the prognosis of lower-grade gliomas. Clin Radiol 2022; 77:e560-e567. [PMID: 35595562 DOI: 10.1016/j.crad.2022.04.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 04/07/2022] [Indexed: 11/21/2022]
Abstract
AIM To explore the predictive value of the radiomics feature-based nomogram for predicting telomerase reverse transcriptase (TERT) promoter mutation status and prognosis of lower-grade gliomas (LGGs) non-invasively. MATERIALS AND METHODS One hundred and seventy-six LGG patients (123 in the training cohort and 53 in the validation cohort) were enrolled retrospectively. A total of 851 radiomics features were extracted from contrast-enhanced magnetic resonance imaging (MRI) images. The radiomics features were selected using the least absolute shrinkage and selection operator (LASSO) method and a rad-score was calculated. Multivariate logistic regression analysis was used to build a radiomics signature based on rad-score, participant's age, and gender, and a radiomics nomogram was used to represent this signature. The performance of the signature was evaluated by receiver operating characteristic (ROC) curve analysis, and the patient prognosis was stratified based on the TERT promoter mutation status and the radiomics signature. RESULTS Seven robust radiomics features were selected by LASSO and the radiomics signature showed good performance for predicting the TERT promoter mutation status, with an area under the curve (AUC) of 0.900 (0.832-0.946) and 0.873 (0.753-0.948) in the training and validation datasets. With a median overall survival time of 28.5 months, the radiomics signature stratified the LGG patients into two risk groups with significantly different prognosis (log-rank = 47.531, p<0.001). CONCLUSION The radiomics feature-based nomogram is a promising approach for predicting the TERT promoter mutation status preoperatively and evaluating the prognosis of lower-grade glioma patients non-invasively.
Collapse
|
27
|
Radiomics-Based Method for Predicting the Glioma Subtype as Defined by Tumor Grade, IDH Mutation, and 1p/19q Codeletion. Cancers (Basel) 2022; 14:cancers14071778. [PMID: 35406550 PMCID: PMC8997070 DOI: 10.3390/cancers14071778] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 02/01/2023] Open
Abstract
Gliomas are among the most common types of central nervous system (CNS) tumors. A prompt diagnosis of the glioma subtype is crucial to estimate the prognosis and personalize the treatment strategy. The objective of this study was to develop a radiomics pipeline based on the clinical Magnetic Resonance Imaging (MRI) scans to noninvasively predict the glioma subtype, as defined based on the tumor grade, isocitrate dehydrogenase (IDH) mutation status, and 1p/19q codeletion status. A total of 212 patients from the public retrospective The Cancer Genome Atlas Low Grade Glioma (TCGA-LGG) and The Cancer Genome Atlas Glioblastoma Multiforme (TCGA-GBM) datasets were used for the experiments and analyses. Different settings in the radiomics pipeline were investigated to improve the classification, including the Z-score normalization, the feature extraction strategy, the image filter applied to the MRI images, the introduction of clinical information, ComBat harmonization, the classifier chain strategy, etc. Based on numerous experiments, we finally reached an optimal pipeline for classifying the glioma tumors. We then tested this final radiomics pipeline on the hold-out test data with 51 randomly sampled random seeds for reliable and robust conclusions. The results showed that, after tuning the radiomics pipeline, the mean AUC improved from 0.8935 (±0.0351) to 0.9319 (±0.0386), from 0.8676 (±0.0421) to 0.9283 (±0.0333), and from 0.6473 (±0.1074) to 0.8196 (±0.0702) in the test data for predicting the tumor grade, IDH mutation, and 1p/19q codeletion status, respectively. The mean accuracy for predicting the five glioma subtypes also improved from 0.5772 (±0.0816) to 0.6716 (±0.0655). Finally, we analyzed the characteristics of the radiomic features that best distinguished the glioma grade, the IDH mutation, and the 1p/19q codeletion status, respectively. Apart from the promising prediction of the glioma subtype, this study also provides a better understanding of the radiomics model development and interpretability. The results in this paper are replicable with our python codes publicly available in github.
Collapse
|
28
|
Demircioğlu A. Evaluation of the dependence of radiomic features on the machine learning model. Insights Imaging 2022; 13:28. [PMID: 35201534 PMCID: PMC8873309 DOI: 10.1186/s13244-022-01170-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 02/03/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND In radiomic studies, several models are often trained with different combinations of feature selection methods and classifiers. The features of the best model are usually considered relevant to the problem, and they represent potential biomarkers. Features selected from statistically similarly performing models are generally not studied. To understand the degree to which the selected features of these statistically similar models differ, 14 publicly available datasets, 8 feature selection methods, and 8 classifiers were used in this retrospective study. For each combination of feature selection and classifier, a model was trained, and its performance was measured with AUC-ROC. The best-performing model was compared to other models using a DeLong test. Models that were statistically similar were compared in terms of their selected features. RESULTS Approximately 57% of all models analyzed were statistically similar to the best-performing model. Feature selection methods were, in general, relatively unstable (0.58; range 0.35-0.84). The features selected by different models varied largely (0.19; range 0.02-0.42), although the selected features themselves were highly correlated (0.71; range 0.4-0.92). CONCLUSIONS Feature relevance in radiomics strongly depends on the model used, and statistically similar models will generally identify different features as relevant. Considering features selected by a single model is misleading, and it is often not possible to directly determine whether such features are candidate biomarkers.
Collapse
Affiliation(s)
- Aydin Demircioğlu
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Hufelandstraße 55, 45157, Essen, Germany.
| |
Collapse
|
29
|
Haubold J, Hosch R, Parmar V, Glas M, Guberina N, Catalano OA, Pierscianek D, Wrede K, Deuschl C, Forsting M, Nensa F, Flaschel N, Umutlu L. Fully Automated MR Based Virtual Biopsy of Cerebral Gliomas. Cancers (Basel) 2021; 13:cancers13246186. [PMID: 34944806 PMCID: PMC8699054 DOI: 10.3390/cancers13246186] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 11/23/2021] [Accepted: 11/28/2021] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVE The aim of this study was to investigate the diagnostic accuracy of a radiomics analysis based on a fully automated segmentation and a simplified and robust MR imaging protocol to provide a comprehensive analysis of the genetic profile and grading of cerebral gliomas for everyday clinical use. METHODS MRI examinations of 217 therapy-naïve patients with cerebral gliomas, each comprising a non-contrast T1-weighted, FLAIR and contrast-enhanced T1-weighted sequence, were included in the study. In addition, clinical and laboratory parameters were incorporated into the analysis. The BraTS 2019 pretrained DeepMedic network was used for automated segmentation. The segmentations generated by DeepMedic were evaluated with 200 manual segmentations with a DICE score of 0.8082 ± 0.1321. Subsequently, the radiomics signatures were utilized to predict the genetic profile of ATRX, IDH1/2, MGMT and 1p19q co-deletion, as well as differentiating low-grade glioma from high-grade glioma. RESULTS The network provided an AUC (validation/test) for the differentiation between low-grade gliomas vs. high-grade gliomas of 0.981 ± 0.015/0.885 ± 0.02. The best results were achieved for the prediction of the ATRX expression loss with AUCs of 0.979 ± 0.028/0.923 ± 0.045, followed by 0.929 ± 0.042/0.861 ± 0.023 for the prediction of IDH1/2. The prediction of 1p19q and MGMT achieved moderate results, with AUCs of 0.999 ± 0.005/0.711 ± 0.128 for 1p19q and 0.854 ± 0.046/0.742 ± 0.050 for MGMT. CONCLUSION This fully automated approach utilizing simplified MR protocols to predict the genetic profile and grading of cerebral gliomas provides an easy and efficient method for non-invasive tumor decoding.
Collapse
Affiliation(s)
- Johannes Haubold
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Hufelandstr. 55, D-45147 Essen, Germany; (R.H.); (V.P.); (C.D.); (M.F.); (F.N.); (N.F.); (L.U.)
- Correspondence: ; Tel.: +49-201-723-84528; Fax: +49-201-723-1548
| | - René Hosch
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Hufelandstr. 55, D-45147 Essen, Germany; (R.H.); (V.P.); (C.D.); (M.F.); (F.N.); (N.F.); (L.U.)
| | - Vicky Parmar
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Hufelandstr. 55, D-45147 Essen, Germany; (R.H.); (V.P.); (C.D.); (M.F.); (F.N.); (N.F.); (L.U.)
| | - Martin Glas
- Department of Neurology, Division of Clinical Neurooncology, University Hospital Essen, D-45147 Essen, Germany;
| | - Nika Guberina
- Department of Radiotherapy, University Hospital Essen, D-45147 Essen, Germany;
| | - Onofrio Antonio Catalano
- Department of Radiology, Division of Abdominal Imaging, A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard University Medical School, Boston 02114, MA, USA;
| | - Daniela Pierscianek
- Department of Neurosurgery, University Hospital Essen, D-45147 Essen, Germany; (D.P.); (K.W.)
| | - Karsten Wrede
- Department of Neurosurgery, University Hospital Essen, D-45147 Essen, Germany; (D.P.); (K.W.)
| | - Cornelius Deuschl
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Hufelandstr. 55, D-45147 Essen, Germany; (R.H.); (V.P.); (C.D.); (M.F.); (F.N.); (N.F.); (L.U.)
| | - Michael Forsting
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Hufelandstr. 55, D-45147 Essen, Germany; (R.H.); (V.P.); (C.D.); (M.F.); (F.N.); (N.F.); (L.U.)
| | - Felix Nensa
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Hufelandstr. 55, D-45147 Essen, Germany; (R.H.); (V.P.); (C.D.); (M.F.); (F.N.); (N.F.); (L.U.)
| | - Nils Flaschel
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Hufelandstr. 55, D-45147 Essen, Germany; (R.H.); (V.P.); (C.D.); (M.F.); (F.N.); (N.F.); (L.U.)
| | - Lale Umutlu
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Hufelandstr. 55, D-45147 Essen, Germany; (R.H.); (V.P.); (C.D.); (M.F.); (F.N.); (N.F.); (L.U.)
| |
Collapse
|
30
|
Nuechterlein N, Shapiro LG, Holland EC, Cimino PJ. Machine learning modeling of genome-wide copy number alteration signatures reliably predicts IDH mutational status in adult diffuse glioma. Acta Neuropathol Commun 2021; 9:191. [PMID: 34863298 PMCID: PMC8645099 DOI: 10.1186/s40478-021-01295-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 11/20/2021] [Indexed: 11/17/2022] Open
Abstract
Knowledge of 1p/19q-codeletion and IDH1/2 mutational status is necessary to interpret any investigational study of diffuse gliomas in the modern era. While DNA sequencing is the gold standard for determining IDH mutational status, genome-wide methylation arrays and gene expression profiling have been used for surrogate mutational determination. Previous studies by our group suggest that 1p/19q-codeletion and IDH mutational status can be predicted by genome-wide somatic copy number alteration (SCNA) data alone, however a rigorous model to accomplish this task has yet to be established. In this study, we used SCNA data from 786 adult diffuse gliomas in The Cancer Genome Atlas (TCGA) to develop a two-stage classification system that identifies 1p/19q-codeleted oligodendrogliomas and predicts the IDH mutational status of astrocytic tumors using a machine-learning model. Cross-validated results on TCGA SCNA data showed near perfect classification results. Furthermore, our astrocytic IDH mutation model validated well on four additional datasets (AUC = 0.97, AUC = 0.99, AUC = 0.95, AUC = 0.96) as did our 1p/19q-codeleted oligodendroglioma screen on the two datasets that contained oligodendrogliomas (MCC = 0.97, MCC = 0.97). We then retrained our system using data from these validation sets and applied our system to a cohort of REMBRANDT study subjects for whom SCNA data, but not IDH mutational status, is available. Overall, using genome-wide SCNAs, we successfully developed a system to robustly predict 1p/19q-codeletion and IDH mutational status in diffuse gliomas. This system can assign molecular subtype labels to tumor samples of retrospective diffuse glioma cohorts that lack 1p/19q-codeletion and IDH mutational status, such as the REMBRANDT study, recasting these datasets as validation cohorts for diffuse glioma research.
Collapse
Affiliation(s)
- Nicholas Nuechterlein
- Paul G. Allen School of Computer Science & Engineering, University of Washington, Seattle, WA, USA
| | - Linda G Shapiro
- Paul G. Allen School of Computer Science & Engineering, University of Washington, Seattle, WA, USA
| | - Eric C Holland
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Patrick J Cimino
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
- Department of Laboratory Medicine and Pathology, Division of Neuropathology, University of Washington, 325 9th Avenue, Box 359791, Seattle, WA, 98104, USA.
| |
Collapse
|
31
|
Gore S, Chougule T, Jagtap J, Saini J, Ingalhalikar M. A Review of Radiomics and Deep Predictive Modeling in Glioma Characterization. Acad Radiol 2021; 28:1599-1621. [PMID: 32660755 DOI: 10.1016/j.acra.2020.06.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/11/2020] [Accepted: 06/11/2020] [Indexed: 12/22/2022]
Abstract
Recent developments in glioma categorization based on biological genotypes and application of computational machine learning or deep learning based predictive models using multi-modal MRI biomarkers to assess these genotypes provides potential assurance for optimal and personalized treatment plans and efficacy. Artificial intelligence based quantified assessment of glioma using MRI derived hand-crafted or auto-extracted features have become crucial as genomic alterations can be associated with MRI based phenotypes. This survey integrates all the recent work carried out in state-of-the-art radiomics, and Artificial Intelligence based learning solutions related to molecular diagnosis, prognosis, and treatment monitoring with the aim to create a structured resource on radiogenomic analysis of glioma. Challenges such as inter-scanner variability, requirement of benchmark datasets, prospective validations for clinical applicability are discussed with further scope for designing optimal solutions for glioma stratification with immediate recommendations for further diagnostic decisions and personalized treatment plans for glioma patients.
Collapse
|
32
|
Kinoshita M, Kanemura Y, Narita Y, Kishima H. Reverse Engineering Glioma Radiomics to Conventional Neuroimaging. Neurol Med Chir (Tokyo) 2021; 61:505-514. [PMID: 34373429 PMCID: PMC8443974 DOI: 10.2176/nmc.ra.2021-0133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A novel radiological research field pursuing comprehensive quantitative image, namely “Radiomics,” gained traction along with the advancement of computational technology and artificial intelligence. This novel concept for analyzing medical images brought extensive interest to the neuro-oncology and neuroradiology research community to build a diagnostic workflow to detect clinically relevant genetic alteration of gliomas noninvasively. Although quite a few promising results were published regarding MRI-based diagnosis of isocitrate dehydrogenase (IDH) mutation in gliomas, it has become clear that an ample amount of effort is still needed to render this technology clinically applicable. At the same time, many significant insights were discovered through this research project, some of which could be “reverse engineered” to improve conventional non-radiomic MR image acquisition. In this review article, the authors aim to discuss the recent advancements and encountering issues of radiomics, how we can apply the knowledge provided by radiomics to standard clinical images, and further expected technological advances in the realm of radiomics and glioma.
Collapse
Affiliation(s)
- Manabu Kinoshita
- Department of Neurosurgery, Asahikawa Medical University.,Department of Neurosurgery, Osaka University Graduate School of Medicine.,Department of Neurosurgery, Osaka International Cancer Institute
| | - Yonehiro Kanemura
- Department of Biomedical Research and Innovation, Institute for Clinical Research, National Hospital Organization Osaka National Hospital
| | - Yoshitaka Narita
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital
| | - Haruhiko Kishima
- Department of Neurosurgery, Osaka University Graduate School of Medicine
| |
Collapse
|
33
|
Manikis GC, Ioannidis GS, Siakallis L, Nikiforaki K, Iv M, Vozlic D, Surlan-Popovic K, Wintermark M, Bisdas S, Marias K. Multicenter DSC-MRI-Based Radiomics Predict IDH Mutation in Gliomas. Cancers (Basel) 2021; 13:cancers13163965. [PMID: 34439118 PMCID: PMC8391559 DOI: 10.3390/cancers13163965] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/25/2021] [Accepted: 07/31/2021] [Indexed: 11/24/2022] Open
Abstract
Simple Summary Significant efforts have been put toward developing MRI-based radiogenomics for IDH status subtyping predictions; however, in the vast majority of these approaches, the external validation sets are absent. Another limitation in current studies is the lack of explainability in radiomics models, which hampers clinical trust and translation. Motivated by these challenges, we proposed a multicenter DSC–MRI-based radiomics study based on an independent exploratory set, which was externally validated on two independent cohorts, for IDH mutation status prediction. Our results demonstrated that DSC–MRI radiogenomics in gliomas, coupled with dynamic-based image standardization techniques, hold the potential to provide (a) increased predictive performance by offering models that generalize well, (b) reasoning behind the IDH mutation status predictions, and (c) interpretability of the radiomics features’ impacts in model performance. Abstract To address the current lack of dynamic susceptibility contrast magnetic resonance imaging (DSC–MRI)-based radiomics to predict isocitrate dehydrogenase (IDH) mutations in gliomas, we present a multicenter study that featured an independent exploratory set for radiomics model development and external validation using two independent cohorts. The maximum performance of the IDH mutation status prediction on the validation set had an accuracy of 0.544 (Cohen’s kappa: 0.145, F1-score: 0.415, area under the curve-AUC: 0.639, sensitivity: 0.733, specificity: 0.491), which significantly improved to an accuracy of 0.706 (Cohen’s kappa: 0.282, F1-score: 0.474, AUC: 0.667, sensitivity: 0.6, specificity: 0.736) when dynamic-based standardization of the images was performed prior to the radiomics. Model explainability using local interpretable model-agnostic explanations (LIME) and Shapley additive explanations (SHAP) revealed potential intuitive correlations between the IDH–wildtype increased heterogeneity and the texture complexity. These results strengthened our hypothesis that DSC–MRI radiogenomics in gliomas hold the potential to provide increased predictive performance from models that generalize well and provide understandable patterns between IDH mutation status and the extracted features toward enabling the clinical translation of radiogenomics in neuro-oncology.
Collapse
Affiliation(s)
- Georgios C. Manikis
- Computational BioMedicine Laboratory (CBML), Foundation for Research and Technology—Hellas (FORTH), 70013 Heraklion, Greece; (G.S.I.); (K.N.); (K.M.)
- Correspondence: ; Tel.: +30-281-139-1593
| | - Georgios S. Ioannidis
- Computational BioMedicine Laboratory (CBML), Foundation for Research and Technology—Hellas (FORTH), 70013 Heraklion, Greece; (G.S.I.); (K.N.); (K.M.)
| | - Loizos Siakallis
- Department of Brain Repair and Rehabilitation, Queen Square Institute of Neurology, UCL, London WC1N 3BG, UK; (L.S.); (S.B.)
| | - Katerina Nikiforaki
- Computational BioMedicine Laboratory (CBML), Foundation for Research and Technology—Hellas (FORTH), 70013 Heraklion, Greece; (G.S.I.); (K.N.); (K.M.)
| | - Michael Iv
- Division of Neuroimaging and Neurointervention, Department of Radiology, Stanford University, Stanford, CA 94305, USA; (M.I.); (M.W.)
| | - Diana Vozlic
- Department of Radiology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia; (D.V.); (K.S.-P.)
- Department of Neuroradiology, University Medical Centre, 1000 Ljubljana, Slovenia
| | - Katarina Surlan-Popovic
- Department of Radiology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia; (D.V.); (K.S.-P.)
- Department of Neuroradiology, University Medical Centre, 1000 Ljubljana, Slovenia
| | - Max Wintermark
- Division of Neuroimaging and Neurointervention, Department of Radiology, Stanford University, Stanford, CA 94305, USA; (M.I.); (M.W.)
| | - Sotirios Bisdas
- Department of Brain Repair and Rehabilitation, Queen Square Institute of Neurology, UCL, London WC1N 3BG, UK; (L.S.); (S.B.)
- Department of Neuroradiology, The National Hospital for Neurology and Neurosurgery, University College London NHS Foundation Trust, London WC1N 3BG, UK
| | - Kostas Marias
- Computational BioMedicine Laboratory (CBML), Foundation for Research and Technology—Hellas (FORTH), 70013 Heraklion, Greece; (G.S.I.); (K.N.); (K.M.)
- Department of Electrical & Computer Engineering, Hellenic Mediterranean University, 71410 Heraklion, Greece
| |
Collapse
|
34
|
Kinoshita M. [1. Current and Future Prospective of Radiomics in Glioma Imaging]. Nihon Hoshasen Gijutsu Gakkai Zasshi 2021; 77:761-764. [PMID: 34305066 DOI: 10.6009/jjrt.2021_jsrt_77.7.761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
35
|
Yan J, Zhang B, Zhang S, Cheng J, Liu X, Wang W, Dong Y, Zhang L, Mo X, Chen Q, Fang J, Wang F, Tian J, Zhang S, Zhang Z. Quantitative MRI-based radiomics for noninvasively predicting molecular subtypes and survival in glioma patients. NPJ Precis Oncol 2021; 5:72. [PMID: 34312469 PMCID: PMC8313682 DOI: 10.1038/s41698-021-00205-z] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 05/13/2021] [Indexed: 12/24/2022] Open
Abstract
Gliomas can be classified into five molecular groups based on the status of IDH mutation, 1p/19q codeletion, and TERT promoter mutation, whereas they need to be obtained by biopsy or surgery. Thus, we aimed to use MRI-based radiomics to noninvasively predict the molecular groups and assess their prognostic value. We retrospectively identified 357 patients with gliomas and extracted radiomic features from their preoperative MRI images. Single-layered radiomic signatures were generated using a single MR sequence using Bayesian-regularization neural networks. Image fusion models were built by combing the significant radiomic signatures. By separately predicting the molecular markers, the predictive molecular groups were obtained. Prognostic nomograms were developed based on the predictive molecular groups and clinicopathologic data to predict progression-free survival (PFS) and overall survival (OS). The results showed that the image fusion model incorporating radiomic signatures from contrast-enhanced T1-weighted imaging (cT1WI) and apparent diffusion coefficient (ADC) achieved an AUC of 0.884 and 0.669 for predicting IDH and TERT status, respectively. cT1WI-based radiomic signature alone yielded favorable performance in predicting 1p/19q status (AUC = 0.815). The predictive molecular groups were comparable to actual ones in predicting PFS (C-index: 0.709 vs. 0.722, P = 0.241) and OS (C-index: 0.703 vs. 0.751, P = 0.359). Subgroup analyses by grades showed similar findings. The prognostic nomograms based on grades and the predictive molecular groups yielded a C-index of 0.736 and 0.735 in predicting PFS and OS, respectively. Accordingly, MRI-based radiomics may be useful for noninvasively detecting molecular groups and predicting survival in gliomas regardless of grades.
Collapse
Affiliation(s)
- Jing Yan
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Bin Zhang
- Department of Radiology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Shuaitong Zhang
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing, China.,CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China.,School of Engineering Medicine, Beihang University, Beijing, China
| | - Jingliang Cheng
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xianzhi Liu
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Weiwei Wang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuhao Dong
- Department of Catheterization Lab, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People's Hospital/Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Lu Zhang
- Department of Radiology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Xiaokai Mo
- Department of Radiology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Qiuying Chen
- Department of Radiology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Jin Fang
- Department of Radiology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Fei Wang
- Department of Radiology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Jie Tian
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing, China. .,CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China. .,School of Engineering Medicine, Beihang University, Beijing, China. .,Engineering Research Center of Molecular and Neuro Imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shanxi, China.
| | - Shuixing Zhang
- Department of Radiology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China.
| | - Zhenyu Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
36
|
Assessing Versatile Machine Learning Models for Glioma Radiogenomic Studies across Hospitals. Cancers (Basel) 2021; 13:cancers13143611. [PMID: 34298824 PMCID: PMC8306149 DOI: 10.3390/cancers13143611] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 07/12/2021] [Accepted: 07/15/2021] [Indexed: 11/24/2022] Open
Abstract
Simple Summary Radiogenomics enables prediction of the status and prognosis of patients using non-invasively obtained imaging data. Current machine learning (ML) methods used in radiogenomics require huge datasets, which involve the handling of large heterogeneous datasets from multiple cohorts/hospitals. In this study, two different glioma datasets were used to test various ML and image pre-processing methods to confirm whether the models trained on one dataset are universally applicable to other datasets. Our result suggested that the ML method that yielded the highest accuracy in a single dataset was likely to be overfitted. We demonstrated that implementation of standardization and dimension reduction procedures prior to classification, enabled the development of ML methods that are less affected by the multiple cohort difference. We advocate using caution in interpreting the results of radiogenomic studies of the training and testing datasets that are small or mixed, with a view to implementing practical ML methods in radiogenomics. Abstract Radiogenomics use non-invasively obtained imaging data, such as magnetic resonance imaging (MRI), to predict critical biomarkers of patients. Developing an accurate machine learning (ML) technique for MRI requires data from hundreds of patients, which cannot be gathered from any single local hospital. Hence, a model universally applicable to multiple cohorts/hospitals is required. We applied various ML and image pre-processing procedures on a glioma dataset from The Cancer Image Archive (TCIA, n = 159). The models that showed a high level of accuracy in predicting glioblastoma or WHO Grade II and III glioma using the TCIA dataset, were then tested for the data from the National Cancer Center Hospital, Japan (NCC, n = 166) whether they could maintain similar levels of high accuracy. Results: we confirmed that our ML procedure achieved a level of accuracy (AUROC = 0.904) comparable to that shown previously by the deep-learning methods using TCIA. However, when we directly applied the model to the NCC dataset, its AUROC dropped to 0.383. Introduction of standardization and dimension reduction procedures before classification without re-training improved the prediction accuracy obtained using NCC (0.804) without a loss in prediction accuracy for the TCIA dataset. Furthermore, we confirmed the same tendency in a model for IDH1/2 mutation prediction with standardization and application of dimension reduction that was also applicable to multiple hospitals. Our results demonstrated that overfitting may occur when an ML method providing the highest accuracy in a small training dataset is used for different heterogeneous data sets, and suggested a promising process for developing an ML method applicable to multiple cohorts.
Collapse
|
37
|
La Greca Saint-Esteven A, Vuong D, Tschanz F, van Timmeren JE, Dal Bello R, Waller V, Pruschy M, Guckenberger M, Tanadini-Lang S. Systematic Review on the Association of Radiomics with Tumor Biological Endpoints. Cancers (Basel) 2021; 13:cancers13123015. [PMID: 34208595 PMCID: PMC8234501 DOI: 10.3390/cancers13123015] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 12/23/2022] Open
Abstract
Radiomics supposes an alternative non-invasive tumor characterization tool, which has experienced increased interest with the advent of more powerful computers and more sophisticated machine learning algorithms. Nonetheless, the incorporation of radiomics in cancer clinical-decision support systems still necessitates a thorough analysis of its relationship with tumor biology. Herein, we present a systematic review focusing on the clinical evidence of radiomics as a surrogate method for tumor molecular profile characterization. An extensive literature review was conducted in PubMed, including papers on radiomics and a selected set of clinically relevant and commonly used tumor molecular markers. We summarized our findings based on different cancer entities, additionally evaluating the effect of different modalities for the prediction of biomarkers at each tumor site. Results suggest the existence of an association between the studied biomarkers and radiomics from different modalities and different tumor sites, even though a larger number of multi-center studies are required to further validate the reported outcomes.
Collapse
Affiliation(s)
- Agustina La Greca Saint-Esteven
- Department of Radiation Oncology, University Hospital Zurich and University of Zurich, 8091 Zurich, Switzerland; (D.V.); (J.E.v.T.); (R.D.B.); (M.G.); (S.T.-L.)
- Correspondence:
| | - Diem Vuong
- Department of Radiation Oncology, University Hospital Zurich and University of Zurich, 8091 Zurich, Switzerland; (D.V.); (J.E.v.T.); (R.D.B.); (M.G.); (S.T.-L.)
| | - Fabienne Tschanz
- Laboratory of Applied Radiobiology, Department of Radiation Oncology, University of Zurich, 8091 Zurich, Switzerland; (F.T.); (V.W.); (M.P.)
| | - Janita E. van Timmeren
- Department of Radiation Oncology, University Hospital Zurich and University of Zurich, 8091 Zurich, Switzerland; (D.V.); (J.E.v.T.); (R.D.B.); (M.G.); (S.T.-L.)
| | - Riccardo Dal Bello
- Department of Radiation Oncology, University Hospital Zurich and University of Zurich, 8091 Zurich, Switzerland; (D.V.); (J.E.v.T.); (R.D.B.); (M.G.); (S.T.-L.)
| | - Verena Waller
- Laboratory of Applied Radiobiology, Department of Radiation Oncology, University of Zurich, 8091 Zurich, Switzerland; (F.T.); (V.W.); (M.P.)
| | - Martin Pruschy
- Laboratory of Applied Radiobiology, Department of Radiation Oncology, University of Zurich, 8091 Zurich, Switzerland; (F.T.); (V.W.); (M.P.)
| | - Matthias Guckenberger
- Department of Radiation Oncology, University Hospital Zurich and University of Zurich, 8091 Zurich, Switzerland; (D.V.); (J.E.v.T.); (R.D.B.); (M.G.); (S.T.-L.)
| | - Stephanie Tanadini-Lang
- Department of Radiation Oncology, University Hospital Zurich and University of Zurich, 8091 Zurich, Switzerland; (D.V.); (J.E.v.T.); (R.D.B.); (M.G.); (S.T.-L.)
| |
Collapse
|
38
|
van Kempen EJ, Post M, Mannil M, Kusters B, ter Laan M, Meijer FJA, Henssen DJHA. Accuracy of Machine Learning Algorithms for the Classification of Molecular Features of Gliomas on MRI: A Systematic Literature Review and Meta-Analysis. Cancers (Basel) 2021; 13:cancers13112606. [PMID: 34073309 PMCID: PMC8198025 DOI: 10.3390/cancers13112606] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Glioma prognosis and treatment are based on histopathological characteristics and molecular profile. Following the World Health Organization (WHO) guidelines (2016), the most important molecular diagnostic markers include IDH1/2-genotype and 1p/19q codeletion status, although more recent publications also include ARTX genotype and TERT- and MGMT promoter methylation. Machine learning algorithms (MLAs), however, were described to successfully determine these molecular characteristics non-invasively by using magnetic resonance imaging (MRI) data. The aim of this review and meta-analysis was to define the diagnostic accuracy of MLAs with regard to these different molecular markers. We found high accuracies of MLAs to predict each individual molecular marker, with IDH1/2-genotype being the most investigated and the most accurate. Radiogenomics could therefore be a promising tool for discriminating genetically determined gliomas in a non-invasive fashion. Although encouraging results are presented here, large-scale, prospective trials with external validation groups are warranted. Abstract Treatment planning and prognosis in glioma treatment are based on the classification into low- and high-grade oligodendroglioma or astrocytoma, which is mainly based on molecular characteristics (IDH1/2- and 1p/19q codeletion status). It would be of great value if this classification could be made reliably before surgery, without biopsy. Machine learning algorithms (MLAs) could play a role in achieving this by enabling glioma characterization on magnetic resonance imaging (MRI) data without invasive tissue sampling. The aim of this study is to provide a performance evaluation and meta-analysis of various MLAs for glioma characterization. Systematic literature search and meta-analysis were performed on the aggregated data, after which subgroup analyses for several target conditions were conducted. This study is registered with PROSPERO, CRD42020191033. We identified 724 studies; 60 and 17 studies were eligible to be included in the systematic review and meta-analysis, respectively. Meta-analysis showed excellent accuracy for all subgroups, with the classification of 1p/19q codeletion status scoring significantly poorer than other subgroups (AUC: 0.748, p = 0.132). There was considerable heterogeneity among some of the included studies. Although promising results were found with regard to the ability of MLA-tools to be used for the non-invasive classification of gliomas, large-scale, prospective trials with external validation are warranted in the future.
Collapse
Affiliation(s)
- Evi J. van Kempen
- Department of Medical Imaging, Radboud University Medical Center, Radboud University, 6500HB Nijmegen, The Netherlands; (E.J.v.K.); (M.P.); (F.J.A.M.)
| | - Max Post
- Department of Medical Imaging, Radboud University Medical Center, Radboud University, 6500HB Nijmegen, The Netherlands; (E.J.v.K.); (M.P.); (F.J.A.M.)
| | - Manoj Mannil
- Clinic of Radiology, University Hospital Münster, WWU University of Münster, 48149 Münster, Germany;
| | - Benno Kusters
- Department of Pathology, Radboud University Medical Center, Radboud University, 6500HB Nijmegen, The Netherlands;
| | - Mark ter Laan
- Department of Neurosurgery, Radboud University Medical Center, Radboud University, 6500HB Nijmegen, The Netherlands;
| | - Frederick J. A. Meijer
- Department of Medical Imaging, Radboud University Medical Center, Radboud University, 6500HB Nijmegen, The Netherlands; (E.J.v.K.); (M.P.); (F.J.A.M.)
| | - Dylan J. H. A. Henssen
- Department of Medical Imaging, Radboud University Medical Center, Radboud University, 6500HB Nijmegen, The Netherlands; (E.J.v.K.); (M.P.); (F.J.A.M.)
- Correspondence:
| |
Collapse
|
39
|
Buchlak QD, Esmaili N, Leveque JC, Bennett C, Farrokhi F, Piccardi M. Machine learning applications to neuroimaging for glioma detection and classification: An artificial intelligence augmented systematic review. J Clin Neurosci 2021; 89:177-198. [PMID: 34119265 DOI: 10.1016/j.jocn.2021.04.043] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 04/30/2021] [Indexed: 12/13/2022]
Abstract
Glioma is the most common primary intraparenchymal tumor of the brain and the 5-year survival rate of high-grade glioma is poor. Magnetic resonance imaging (MRI) is essential for detecting, characterizing and monitoring brain tumors but definitive diagnosis still relies on surgical pathology. Machine learning has been applied to the analysis of MRI data in glioma research and has the potential to change clinical practice and improve patient outcomes. This systematic review synthesizes and analyzes the current state of machine learning applications to glioma MRI data and explores the use of machine learning for systematic review automation. Various datapoints were extracted from the 153 studies that met inclusion criteria and analyzed. Natural language processing (NLP) analysis involved keyword extraction, topic modeling and document classification. Machine learning has been applied to tumor grading and diagnosis, tumor segmentation, non-invasive genomic biomarker identification, detection of progression and patient survival prediction. Model performance was generally strong (AUC = 0.87 ± 0.09; sensitivity = 0.87 ± 0.10; specificity = 0.0.86 ± 0.10; precision = 0.88 ± 0.11). Convolutional neural network, support vector machine and random forest algorithms were top performers. Deep learning document classifiers yielded acceptable performance (mean 5-fold cross-validation AUC = 0.71). Machine learning tools and data resources were synthesized and summarized to facilitate future research. Machine learning has been widely applied to the processing of MRI data in glioma research and has demonstrated substantial utility. NLP and transfer learning resources enabled the successful development of a replicable method for automating the systematic review article screening process, which has potential for shortening the time from discovery to clinical application in medicine.
Collapse
Affiliation(s)
- Quinlan D Buchlak
- School of Medicine, The University of Notre Dame Australia, Sydney, NSW, Australia.
| | - Nazanin Esmaili
- School of Medicine, The University of Notre Dame Australia, Sydney, NSW, Australia; Faculty of Engineering and IT, University of Technology Sydney, Ultimo, NSW, Australia
| | | | - Christine Bennett
- School of Medicine, The University of Notre Dame Australia, Sydney, NSW, Australia
| | - Farrokh Farrokhi
- Neuroscience Institute, Virginia Mason Medical Center, Seattle, WA, USA
| | - Massimo Piccardi
- Faculty of Engineering and IT, University of Technology Sydney, Ultimo, NSW, Australia
| |
Collapse
|
40
|
Zhang J, Peng H, Wang YL, Xiao HF, Cui YY, Bian XB, Zhang DK, Ma L. Predictive Role of the Apparent Diffusion Coefficient and MRI Morphologic Features on IDH Status in Patients With Diffuse Glioma: A Retrospective Cross-Sectional Study. Front Oncol 2021; 11:640738. [PMID: 34055608 PMCID: PMC8155475 DOI: 10.3389/fonc.2021.640738] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 04/26/2021] [Indexed: 11/13/2022] Open
Abstract
Purpose To evaluate isocitrate dehydrogenase (IDH) status in clinically diagnosed grade II~IV glioma patients using the 2016 World Health Organization (WHO) classification based on MRI parameters. Materials and Methods One hundred and seventy-six patients with confirmed WHO grade II~IV glioma were retrospectively investigated as the study set, including lower-grade glioma (WHO grade II, n = 64; WHO grade III, n = 38) and glioblastoma (WHO grade IV, n = 74). The minimum apparent diffusion coefficient (ADCmin) in the tumor and the contralateral normal-appearing white matter (ADCn) and the rADC (ADCmin to ADCn ratio) were defined and calculated. Intraclass correlation coefficient (ICC) analysis was carried out to evaluate interobserver and intraobserver agreement for the ADC measurements. Interobserver agreement for the morphologic categories was evaluated by Cohen’s kappa analysis. The nonparametric Kruskal-Wallis test was used to determine whether the ADC measurements and glioma subtypes were related. By univariable analysis, if the differences in a variable were significant (P<0.05) or an image feature had high consistency (ICC >0.8; κ >0.6), then it was chosen as a predictor variable. The performance of the area under the receiver operating characteristic curve (AUC) was evaluated using several machine learning models, including logistic regression, support vector machine, Naive Bayes and Ensemble. Five evaluation indicators were adopted to compare the models. The optimal model was developed as the final model to predict IDH status in 40 patients with glioma as the subsequent test set. DeLong analysis was used to compare significant differences in the AUCs. Results In the study set, six measured variables (rADC, age, enhancement, calcification, hemorrhage, and cystic change) were selected for the machine learning model. Logistic regression had better performance than other models. Two predictive models, model 1 (including all predictor variables) and model 2 (excluding calcification), correctly classified IDH status with an AUC of 0.897 and 0.890, respectively. The test set performed equally well in prediction, indicating the effectiveness of the trained classifier. The subgroup analysis revealed that the model predicted IDH status of LGG and GBM with accuracy of 84.3% (AUC = 0.873) and 85.1% (AUC = 0.862) in the study set, and with the accuracy of 70.0% (AUC = 0.762) and 70.0% (AUC = 0.833) in the test set, respectively. Conclusion Through the use of machine-learning algorithms, the accurate prediction of IDH-mutant versus IDH-wildtype was achieved for adult diffuse gliomas via noninvasive MR imaging characteristics, including ADC values and tumor morphologic features, which are considered widely available in most clinical workstations.
Collapse
Affiliation(s)
- Jun Zhang
- The Medical School of Chinese People's Liberation Army (PLA) General Hospital, Beijing, China.,Department of Radiology, The First Medical Center, Chinese PLA General Hospital, Beijing, China.,Department of Radiology, The Sixth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Hong Peng
- The Medical School of Chinese People's Liberation Army (PLA) General Hospital, Beijing, China.,Department of Radiology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yu-Lin Wang
- Department of Radiology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Hua-Feng Xiao
- Department of Radiology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yuan-Yuan Cui
- The Medical School of Chinese People's Liberation Army (PLA) General Hospital, Beijing, China.,Department of Radiology, Qingdao Special Servicemen Recuperation Center of PLA Navy, Qingdao, China
| | - Xiang-Bing Bian
- Department of Radiology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - De-Kang Zhang
- Department of Radiology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Lin Ma
- Department of Radiology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
41
|
Shibahara I, Sato S, Hide T, Saito R, Kanamori M, Sonoda Y, Tominaga T, Kumabe T. Postcentral gyrus resection of opercular gliomas is a risk factor for motor deficits caused by damaging the radiologically invisible arteries supplying the descending motor pathway. Acta Neurochir (Wien) 2021; 163:1269-1278. [PMID: 33537863 DOI: 10.1007/s00701-021-04737-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 01/26/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND Postoperative motor deficits are among the worst morbidities of glioma surgery. We aim to investigate factors associated with postoperative motor deficits in patients with frontoparietal opercular gliomas. METHODS Thirty-four patients with frontoparietal opercular gliomas were retrospectively investigated. We examined the postoperative ischemic changes and locations obtained from MRI. RESULTS Twenty-one patients (62%) presented postoperative ischemic changes. Postoperative MRI was featured with ischemic changes, all located at the subcortical area of the resection cavity. Six patients had postoperative motor deficits, whereas 28 patients did not. Compared to those without motor deficits, those with motor deficits were associated with old age, pre- and postcentral gyri resection, and postcentral gyrus resection (P = 0.023, 0,024, and 0.0060, respectively). A merged image of the resected cavity and T1-weighted brain atlas of the Montreal Neurological Institute showed that a critical area for postoperative motor deficits is the origin of the long insular arteries (LIAs) and the postcentral gyrus. Detail anatomical architecture created by the Human Connectome Project database and T2-weighted images showed that the subcortical area of the operculum of the postcentral gyrus is where the medullary arteries supply, and the motor pathways originated from the precentral gyrus run. CONCLUSIONS We verified that the origin of the LIAs could damage the descending motor pathways during the resection of frontoparietal opercular gliomas. Also, we identified that motor pathways run the subcortical area of the operculum of the postcentral gyrus, indicating that the postcentral gyrus is an unrecognized area of damaging the descending motor pathways.
Collapse
Affiliation(s)
- Ichiyo Shibahara
- Department of Neurosurgery, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0374, Japan.
| | - Sumito Sato
- Department of Neurosurgery, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0374, Japan
| | - Takuichiro Hide
- Department of Neurosurgery, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0374, Japan
| | - Ryuta Saito
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Masayuki Kanamori
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Yukihiko Sonoda
- Department of Neurosurgery, Yamagata University School of Medicine, Yamagata, Japan
| | - Teiji Tominaga
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Toshihiro Kumabe
- Department of Neurosurgery, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0374, Japan
| |
Collapse
|
42
|
Santinha J, Matos C, Figueiredo M, Papanikolaou N. Improving performance and generalizability in radiogenomics: a pilot study for prediction of IDH1/2 mutation status in gliomas with multicentric data. J Med Imaging (Bellingham) 2021; 8:031905. [PMID: 33937440 PMCID: PMC8082292 DOI: 10.1117/1.jmi.8.3.031905] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 04/13/2021] [Indexed: 12/22/2022] Open
Abstract
Purpose: Radiogenomics offers a potential virtual and noninvasive biopsy. However, radiogenomics models often suffer from generalizability issues, which cause a performance degradation on unseen data. In MRI, differences in the sequence parameters, manufacturers, and scanners make this generalizability issue worse. Such image acquisition information may be used to define different environments and select robust and invariant radiomic features associated with the clinical outcome that should be included in radiomics/radiogenomics models. Approach: We assessed 77 low-grade gliomas and glioblastomas multiform patients publicly available in TCGA and TCIA. Radiomics features were extracted from multiparametric MRI images (T1-weighted, contrast-enhanced T1-weighted, T2-weighted, and fluid-attenuated inversion recovery) and different regions-of-interest (enhancing tumor, nonenhancing tumor/necrosis, and edema). A method developed to find variables that are part of causal structures was used for feature selection and compared with an embedded feature selection approach commonly used in radiomics/radiogenomics studies, across two different scenarios: (1) leaving data from a center as an independent held-out test set and tuning the model with the data from the remaining centers and (2) use stratified partitioning to obtain the training and the held-out test sets. Results: In scenario (1), the performance of the proposed methodology and the traditional embedded method was AUC: 0.75 [0.25; 1.00] versus 0.83 [0.50; 1.00], Sens.: 0.67 [0.20; 0.93] versus 0.67 [0.20; 0.93], Spec.: 0.75 [0.30; 0.95] versus 0.75 [0.30; 0.95], and MCC: 0.42 [0.19; 0.68] versus 0.42 [0.19; 0.68] for center 1 as the held-out test set. The performance of both methods for center 2 as the held-out test set was AUC: 0.64 [0.36; 0.91] versus 0.55 [0.27; 0.82], Sens.: 0.00 [0.00; 0.73] versus 0.00 [0.00; 0.73], Spec.: 0.82 [0.52; 0.94] versus 0.91 [0.62; 0.98], and MCC: - 0.13 [ - 0.38 ; - 0.04 ] versus - 0.09 [ - 0.38 ; - 0.02 ] , whereas for center 3 was AUC: 0.80 [0.62; 0.95] versus 0.89 [0.56; 0.96], Sens.: 0.86 [0.48; 0.97] versus 0.86 [0.48; 0.97], Spec.: 0.72 [0.54; 0.85] versus 0.79 [0.61; 0.90], and MCC: 0.47 [0.41; 0.53] versus 0.55 [0.48; 0.60]. For center 4, the performance of both methods was AUC: 0.77 [0.51; 1.00] versus 0.75 [0.47; 0.97], Sens.: 0.53 [0.30; 0.75] versus 0.00 [0.00; 0.15], Spec.: 0.71 [0.35; 0.91] versus 0.86 [0.48; 0.97], and MCC: 0.23 [0.16; 0.31] versus. - 0.32 [ - 0.46 ; - 0.20 ] . In scenario (2), the performance of these methods was AUC: 0.89 [0.71; 1.00] versus 0.79 [0.58; 0.94], Sens.: 0.86 [0.80; 0.92] versus 0.43 [0.15; 0.74], Spec.: 0.87 [0.62; 0.96] versus 0.87 [0.62; 0.96], and MCC: 0.70 [0.60; 0.77] versus 0.33 [0.24; 0.42]. Conclusions: This proof-of-concept study demonstrated good performance by the proposed feature selection method in the majority of the studied scenarios, as it promotes robustness of features included in the models and the models' generalizability by making used imaging data of different scanners or with sequence parameters.
Collapse
Affiliation(s)
- João Santinha
- Clinical Computational Imaging Group, Champalimaud Research, Champalimaud Foundation, Lisboa, Portugal.,Universidade de Lisboa, Instituto de Telecomunicações, Instituto Superior Técnico, Lisboa, Portugal
| | - Celso Matos
- Champalimaud Clinical Center, Radiology Department, Champalimaud Foundation, Lisboa, Portugal
| | - Mário Figueiredo
- Universidade de Lisboa, Instituto de Telecomunicações, Instituto Superior Técnico, Lisboa, Portugal
| | - Nikolaos Papanikolaou
- Clinical Computational Imaging Group, Champalimaud Research, Champalimaud Foundation, Lisboa, Portugal
| |
Collapse
|
43
|
Choi YS, Bae S, Chang JH, Kang SG, Kim SH, Kim J, Rim TH, Choi SH, Jain R, Lee SK. Fully automated hybrid approach to predict the IDH mutation status of gliomas via deep learning and radiomics. Neuro Oncol 2021; 23:304-313. [PMID: 32706862 DOI: 10.1093/neuonc/noaa177] [Citation(s) in RCA: 118] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Glioma prognosis depends on isocitrate dehydrogenase (IDH) mutation status. We aimed to predict the IDH status of gliomas from preoperative MR images using a fully automated hybrid approach with convolutional neural networks (CNNs) and radiomics. METHODS We reviewed 1166 preoperative MR images of gliomas (grades II-IV) from Severance Hospital (n = 856), Seoul National University Hospital (SNUH; n = 107), and The Cancer Imaging Archive (TCIA; n = 203). The Severance set was subdivided into the development (n = 727) and internal test (n = 129) sets. Based on T1 postcontrast, T2, and fluid-attenuated inversion recovery images, a fully automated model was developed that comprised a CNN for tumor segmentation (Model 1) and CNN-based classifier for IDH status prediction (Model 2) that uses a hybrid approach based on 2D tumor images and radiomic features from 3D tumor shape and loci guided by Model 1. The trained model was tested on internal (a subset of the Severance set) and external (SNUH and TCIA) test sets. RESULTS The CNN for tumor segmentation (Model 1) achieved a dice coefficient of 0.86-0.92 across datasets. Our hybrid model achieved accuracies of 93.8%, 87.9%, and 78.8%, with areas under the receiver operating characteristic curves of 0.96, 0.94, and 0.86 and areas under the precision-recall curves of 0.88, 0.82, and 0.81 in the internal test, SNUH, and TCIA sets, respectively. CONCLUSIONS Our fully automated hybrid model demonstrated the potential to be a highly reproducible and generalizable tool across different datasets for the noninvasive prediction of the IDH status of gliomas.
Collapse
Affiliation(s)
- Yoon Seong Choi
- Duke-NUS Medical School, RADSC ACP, Singapore.,Department of Diagnostic Radiology, Singapore General Hospital, Singapore.,Department of Radiology and Research Institute of Radiological Science, Yonsei University College of Medicine, Seoul, Korea
| | - Sohi Bae
- Department of Radiology, National Health Insurance Service Ilsan Hospital, Goyang, Korea
| | - Jong Hee Chang
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, Korea
| | - Seok-Gu Kang
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, Korea
| | - Se Hoon Kim
- Department of Pathology, Yonsei University College of Medicine, Seoul, Korea
| | - Jinna Kim
- Department of Radiology and Research Institute of Radiological Science, Yonsei University College of Medicine, Seoul, Korea
| | - Tyler Hyungtaek Rim
- Singapore Eye Research Institute, Singapore National Eye Centre, Duke-NUS Medical School, Singapore
| | - Seung Hong Choi
- Department of Radiology, Seoul National University College of Medicine, Seoul, Korea
| | - Rajan Jain
- Department of Radiology, New York University School of Medicine, New York, New York, USA.,Department of Neurosurgery, New York University School of Medicine, New York, New York, USA
| | - Seung-Koo Lee
- Department of Radiology and Research Institute of Radiological Science, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
44
|
Unterrainer M, Ruf V, von Rohr K, Suchorska B, Mittlmeier LM, Beyer L, Brendel M, Wenter V, Kunz WG, Bartenstein P, Herms J, Niyazi M, Tonn JC, Albert NL. TERT-Promoter Mutational Status in Glioblastoma - Is There an Association With Amino Acid Uptake on Dynamic 18F-FET PET? Front Oncol 2021; 11:645316. [PMID: 33996563 PMCID: PMC8121001 DOI: 10.3389/fonc.2021.645316] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 03/26/2021] [Indexed: 12/19/2022] Open
Abstract
Objective The mutation of the ‘telomerase reverse transcriptase gene promoter’ (TERTp) has been identified as an important factor for individual prognostication and tumorigenesis and will be implemented in upcoming glioma classifications. Uptake characteristics on dynamic 18F-FET PET have been shown to serve as additional imaging biomarker for prognosis. However, data on the correlation of TERTp-mutational status and amino acid uptake on dynamic 18F-FET PET are missing. Therefore, we aimed to analyze whether static and dynamic 18F-FET PET parameters are associated with the TERTp-mutational status in de-novo IDH-wildtype glioblastoma and whether a TERTp-mutation can be predicted by dynamic 18F-FET PET. Methods Patients with de-novo IDH-wildtype glioblastoma, WHO grade IV, available TERTp-mutational status and dynamic 18F-FET PET scan prior to any therapy were included. Here, established clinical parameters maximal and mean tumor-to-background-ratios (TBRmax/TBRmean), the biological-tumor-volume (BTV) and minimal-time-to-peak (TTPmin) on dynamic PET were analyzed and correlated with the TERTp-mutational status. Results One hundred IDH-wildtype glioblastoma patients were evaluated; 85/100 of the analyzed tumors showed a TERTp-mutation (C228T or C250T), 15/100 were classified as TERTp-wildtype. None of the static PET parameters was associated with the TERTp-mutational status (median TBRmax 3.41 vs. 3.32 (p=0.362), TBRmean 2.09 vs. 2.02 (p=0.349) and BTV 26.1 vs. 22.4 ml (p=0.377)). Also, the dynamic PET parameter TTPmin did not differ in both groups (12.5 vs. 12.5 min, p=0.411). Within the TERTp-mutant subgroups (i.e., C228T (n=23) & C250T (n=62)), the median TBRmax (3.33 vs. 3.69, p=0.095), TBRmean (2.08 vs. 2.09, p=0.352), BTV (25.4 vs. 30.0 ml, p=0.130) and TTPmin (12.5 vs. 12.5 min, p=0.190) were comparable, too. Conclusion Uptake characteristics on dynamic 18F-FET PET are not associated with the TERTp-mutational status in glioblastoma However, as both, dynamic 18F-FET PET parameters as well as the TERTp-mutation status are well-known prognostic biomarkers, future studies should investigate the complementary and independent prognostic value of both factors in order to further stratify patients into risk groups.
Collapse
Affiliation(s)
- Marcus Unterrainer
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany.,Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany.,German Cancer Consortium (DKTK), Partner Site Munich and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Viktoria Ruf
- Department of Neuropathology and Prion Research, LMU Munich, Munich, Germany
| | - Katharina von Rohr
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Bogdana Suchorska
- German Cancer Consortium (DKTK), Partner Site Munich and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Neurosurgery, University Hospital, LMU Munich, Munich, Germany
| | | | - Leonie Beyer
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Matthias Brendel
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Vera Wenter
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Wolfgang G Kunz
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Peter Bartenstein
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany.,German Cancer Consortium (DKTK), Partner Site Munich and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jochen Herms
- Department of Neuropathology and Prion Research, LMU Munich, Munich, Germany
| | - Maximilian Niyazi
- German Cancer Consortium (DKTK), Partner Site Munich and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Jörg C Tonn
- German Cancer Consortium (DKTK), Partner Site Munich and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Neurosurgery, University Hospital, LMU Munich, Munich, Germany
| | - Nathalie Lisa Albert
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany.,German Cancer Consortium (DKTK), Partner Site Munich and German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
45
|
SGPNet: A Three-Dimensional Multitask Residual Framework for Segmentation and IDH Genotype Prediction of Gliomas. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2021. [DOI: 10.1155/2021/5520281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Glioma is the main type of malignant brain tumor in adults, and the status of isocitrate dehydrogenase (IDH) mutation highly affects the diagnosis, treatment, and prognosis of gliomas. Radiographic medical imaging provides a noninvasive platform for sampling both inter and intralesion heterogeneity of gliomas, and previous research has shown that the IDH genotype can be predicted from the fusion of multimodality radiology images. The features of medical images and IDH genotype are vital for medical treatment; however, it still lacks a multitask framework for the segmentation of the lesion areas of gliomas and the prediction of IDH genotype. In this paper, we propose a novel three-dimensional (3D) multitask deep learning model for segmentation and genotype prediction (SGPNet). The residual units are also introduced into the SGPNet that allows the output blocks to extract hierarchical features for different tasks and facilitate the information propagation. Our model reduces 26.6% classification error rates comparing with previous models on the datasets of Multimodal Brain Tumor Segmentation Challenge (BRATS) 2020 and The Cancer Genome Atlas (TCGA) gliomas’ databases. Furthermore, we first practically investigate the influence of lesion areas on the performance of IDH genotype prediction by setting different groups of learning targets. The experimental results indicate that the information of lesion areas is more important for the IDH genotype prediction. Our framework is effective and generalizable, which can serve as a highly automated tool to be applied in clinical decision making.
Collapse
|
46
|
Habib A, Jovanovich N, Hoppe M, Ak M, Mamindla P, R. Colen R, Zinn PO. MRI-Based Radiomics and Radiogenomics in the Management of Low-Grade Gliomas: Evaluating the Evidence for a Paradigm Shift. J Clin Med 2021; 10:1411. [PMID: 33915813 PMCID: PMC8036428 DOI: 10.3390/jcm10071411] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/23/2021] [Accepted: 03/25/2021] [Indexed: 12/29/2022] Open
Abstract
Low-grade gliomas (LGGs) are tumors that affect mostly adults. These neoplasms are comprised mainly of oligodendrogliomas and diffuse astrocytomas. LGGs remain vexing to current management and therapeutic modalities although they exhibit more favorable survival rates compared with high-grade gliomas (HGGs). The specific genetic subtypes that these tumors exhibit result in variable clinical courses and the need to involve multidisciplinary teams of neurologists, epileptologists, neurooncologists and neurosurgeons. Currently, the diagnosis of an LGG pivots mainly around the preliminary radiological findings and the subsequent definitive surgical diagnosis (via surgical sampling). The introduction of radiomics as a high throughput quantitative imaging technique that allows for improved diagnostic, prognostic and predictive indices has created more interest for such techniques in cancer research and especially in neurooncology (MRI-based classification of LGGs, predicting Isocitrate dehydrogenase (IDH) and Telomerase reverse transcriptase (TERT) promoter mutations and predicting LGG associated seizures). Radiogenomics refers to the linkage of imaging findings with the tumor/tissue genomics. Numerous applications of radiomics and radiogenomics have been described in the clinical context and management of LGGs. In this review, we describe the recently published studies discussing the potential application of radiomics and radiogenomics in LGGs. We also highlight the potential pitfalls of the above-mentioned high throughput computerized techniques and, most excitingly, explore the use of machine learning artificial intelligence technologies as standalone and adjunct imaging tools en route to enhance a personalized MRI-based tumor diagnosis and management plan design.
Collapse
Affiliation(s)
- Ahmed Habib
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15232, USA;
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA 15232, USA; (N.J.); (M.H.); (M.A.); (P.M.); (R.R.C.)
| | - Nicolina Jovanovich
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA 15232, USA; (N.J.); (M.H.); (M.A.); (P.M.); (R.R.C.)
| | - Meagan Hoppe
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA 15232, USA; (N.J.); (M.H.); (M.A.); (P.M.); (R.R.C.)
| | - Murat Ak
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA 15232, USA; (N.J.); (M.H.); (M.A.); (P.M.); (R.R.C.)
- Department of Diagnostic Radiology, University of Pittsburgh Medical Center, Pittsburgh, PA 15232, USA
| | - Priyadarshini Mamindla
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA 15232, USA; (N.J.); (M.H.); (M.A.); (P.M.); (R.R.C.)
| | - Rivka R. Colen
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA 15232, USA; (N.J.); (M.H.); (M.A.); (P.M.); (R.R.C.)
- Department of Diagnostic Radiology, University of Pittsburgh Medical Center, Pittsburgh, PA 15232, USA
| | - Pascal O. Zinn
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15232, USA;
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA 15232, USA; (N.J.); (M.H.); (M.A.); (P.M.); (R.R.C.)
| |
Collapse
|
47
|
Radiomics feature robustness as measured using an MRI phantom. Sci Rep 2021; 11:3973. [PMID: 33597610 PMCID: PMC7889870 DOI: 10.1038/s41598-021-83593-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 01/15/2021] [Indexed: 12/19/2022] Open
Abstract
Radiomics involves high-throughput extraction of large numbers of quantitative features from medical images and analysis of these features to predict patients’ outcome and support clinical decision-making. However, radiomics features are sensitive to several factors, including scanning protocols. The purpose of this study was to investigate the robustness of magnetic resonance imaging (MRI) radiomics features with various MRI scanning protocol parameters and scanners using an MRI radiomics phantom. The variability of the radiomics features with different scanning parameters and repeatability measured using a test–retest scheme were evaluated using the coefficient of variation and intraclass correlation coefficient (ICC) for both T1- and T2-weighted images. For variability measures, the features were categorized into three groups: large, intermediate, and small variation. For repeatability measures, the average T1- and T2-weighted image ICCs for the phantom (0.963 and 0.959, respectively) were higher than those for a healthy volunteer (0.856 and 0.849, respectively). Our results demonstrated that various radiomics features are dependent on different scanning parameters and scanners. The radiomics features with a low coefficient of variation and high ICC for both the phantom and volunteer can be considered good candidates for MRI radiomics studies. The results of this study will assist current and future MRI radiomics studies.
Collapse
|
48
|
Nuechterlein N, Li B, Feroze A, Holland EC, Shapiro L, Haynor D, Fink J, Cimino PJ. Radiogenomic modeling predicts survival-associated prognostic groups in glioblastoma. Neurooncol Adv 2021; 3:vdab004. [PMID: 33615222 PMCID: PMC7883769 DOI: 10.1093/noajnl/vdab004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background Combined whole-exome sequencing (WES) and somatic copy number alteration (SCNA) information can separate isocitrate dehydrogenase (IDH)1/2-wildtype glioblastoma into two prognostic molecular subtypes, which cannot be distinguished by epigenetic or clinical features. The potential for radiographic features to discriminate between these molecular subtypes has yet to be established. Methods Radiologic features (n = 35 340) were extracted from 46 multisequence, pre-operative magnetic resonance imaging (MRI) scans of IDH1/2-wildtype glioblastoma patients from The Cancer Imaging Archive (TCIA), all of whom have corresponding WES/SCNA data. We developed a novel feature selection method that leverages the structure of extracted MRI features to mitigate the dimensionality challenge posed by the disparity between a large number of features and the limited patients in our cohort. Six traditional machine learning classifiers were trained to distinguish molecular subtypes using our feature selection method, which was compared to least absolute shrinkage and selection operator (LASSO) feature selection, recursive feature elimination, and variance thresholding. Results We were able to classify glioblastomas into two prognostic subgroups with a cross-validated area under the curve score of 0.80 (±0.03) using ridge logistic regression on the 15-dimensional principle component analysis (PCA) embedding of the features selected by our novel feature selection method. An interrogation of the selected features suggested that features describing contours in the T2 signal abnormality region on the T2-weighted fluid-attenuated inversion recovery (FLAIR) MRI sequence may best distinguish these two groups from one another. Conclusions We successfully trained a machine learning model that allows for relevant targeted feature extraction from standard MRI to accurately predict molecularly-defined risk-stratifying IDH1/2-wildtype glioblastoma patient groups.
Collapse
Affiliation(s)
- Nicholas Nuechterlein
- Paul G. Allen School of Computer Science & Engineering, University of Washington, Seattle, Washington, USA
| | - Beibin Li
- Paul G. Allen School of Computer Science & Engineering, University of Washington, Seattle, Washington, USA
| | - Abdullah Feroze
- Department of Neurological Surgery, University of Washington, Seattle, Washington, USA
| | - Eric C Holland
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Linda Shapiro
- Paul G. Allen School of Computer Science & Engineering, University of Washington, Seattle, Washington, USA
| | - David Haynor
- Department of Radiology, University of Washington, Seattle, Washington, USA
| | - James Fink
- Department of Radiology, University of Washington, Seattle, Washington, USA
| | - Patrick J Cimino
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.,Department of Pathology, Division of Neuropathology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
49
|
Fang S, Fan Z, Sun Z, Li Y, Liu X, Liang Y, Liu Y, Zhou C, Zhu Q, Zhang H, Li T, Li S, Jiang T, Wang Y, Wang L. Radiomics Features Predict Telomerase Reverse Transcriptase Promoter Mutations in World Health Organization Grade II Gliomas via a Machine-Learning Approach. Front Oncol 2021; 10:606741. [PMID: 33643908 PMCID: PMC7905226 DOI: 10.3389/fonc.2020.606741] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 12/24/2020] [Indexed: 12/16/2022] Open
Abstract
The detection of mutations in telomerase reverse transcriptase promoter (pTERT) is important since preoperative diagnosis of pTERT status helps with evaluating prognosis and determining the surgical strategy. Here, we aimed to establish a radiomics-based machine-learning algorithm and evaluated its performance with regard to the prediction of mutations in pTERT in patients with World Health Organization (WHO) grade II gliomas. In total, 164 patients with WHO grade II gliomas were enrolled in this retrospective study. We extracted a total of 1,293 radiomics features from multi-parametric magnetic resonance imaging scans. Elastic net (used for feature selection) and support vector machine with linear kernel were applied in nested 10-fold cross-validation loops. The predictive model was evaluated by receiver operating characteristic and precision-recall analyses. We performed an unpaired t-test to compare the posterior predictive probabilities among patients with differing pTERT statuses. We selected 12 valuable radiomics features using nested 10-fold cross-validation loops. The area under the curve (AUC) was 0.8446 (95% confidence interval [CI], 0.7735–0.9065) with an optimal summed value of sensitivity of 0.9355 (95% CI, 0.8802–0.9788) and specificity of 0.6197 (95% CI, 0.5071–0.7371). The overall accuracy was 0.7988 (95% CI, 0.7378–0.8598). The F1-score was 0.8406 (95% CI, 0.7684–0.902) with an optimal precision of 0.7632 (95% CI, 0.6818–0.8364) and recall of 0.9355 (95% CI, 0.8802–0.9788). Posterior probabilities of pTERT mutations were significantly different between patients with wild-type and mutant TERT promoters. Our findings suggest that a radiomics analysis with a machine-learning algorithm can be useful for predicting pTERT status in patients with WHO grade II glioma and may aid in glioma management.
Collapse
Affiliation(s)
- Shengyu Fang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Ziwen Fan
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zhiyan Sun
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Yiming Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xing Liu
- Department of Pathology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yuchao Liang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yukun Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Chunyao Zhou
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Qiang Zhu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Hong Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Tianshi Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Shaowu Li
- Department of Neuroradiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Tao Jiang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yinyan Wang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Lei Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
50
|
Qualitative and Quantitative MRI Analysis in IDH1 Genotype Prediction of Lower-Grade Gliomas: A Machine Learning Approach. BIOMED RESEARCH INTERNATIONAL 2021; 2021:1235314. [PMID: 33553421 PMCID: PMC7847347 DOI: 10.1155/2021/1235314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 12/30/2020] [Accepted: 01/09/2021] [Indexed: 11/18/2022]
Abstract
Purpose Preoperative prediction of isocitrate dehydrogenase 1 (IDH1) mutation in lower-grade gliomas (LGGs) is crucial for clinical decision-making. This study aimed to examine the predictive value of a machine learning approach using qualitative and quantitative MRI features to identify the IDH1 mutation in LGGs. Materials and Methods A total of 102 LGG patients were allocated to training (n = 67) and validation (n = 35) cohorts and were subject to Visually Accessible Rembrandt Images (VASARI) feature extraction (23 features) from conventional multimodal MRI and radiomics feature extraction (56 features) from apparent diffusion coefficient maps. Feature selection was conducted using the maximum Relevance Minimum Redundancy method and 0.632+ bootstrap method. A machine learning model to predict IDH1 mutation was then established using a random forest classifier. The predictive performance was evaluated using receiver operating characteristic (ROC) curves. Results After feature selection, the top 5 VASARI features were enhancement quality, deep white matter invasion, tumor location, proportion of necrosis, and T1/FLAIR ratio, and the top 10 radiomics features included 3 histogram features, 3 gray-level run-length matrix features, and 3 gray-level size zone matrix features and one shape feature. Using the optimal VASARI or radiomics feature sets for IDH1 prediction, the trained model achieved an area under the ROC curve (AUC) of 0.779 ± 0.001 or 0.849 ± 0.008 on the validation cohort, respectively. The fusion model that integrated outputs of both optimal VASARI and radiomics models improved the AUC to 0.879. Conclusion The proposed machine learning approach using VASARI and radiomics features can predict IDH1 mutation in LGGs.
Collapse
|