1
|
Fujita H, Haruki T, Sudo K, Koga Y, Nakamura Y, Abe K, Yoshida Y, Koizumi K, M Watanabe T. Yuragi biomarker concept for evaluating human induced pluripotent stem cells using heterogeneity-based Raman finger-printing. Biophys Physicobiol 2024; 21:e211016. [PMID: 39175855 PMCID: PMC11338688 DOI: 10.2142/biophysico.bppb-v21.s016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/21/2024] [Indexed: 08/24/2024] Open
Abstract
Considering the fundamental mechanism causing singularity phenomena, we performed the following abduction: Assuming that a multicellular system is driven by spontaneous fluctuation of each cell and dynamic interaction of the cells, state transition of the system would be experimentally predictable from cellular heterogeneity. This study evaluates the abductive hypothesis by analyzing cellular heterogeneity to distinguish pre-state of state transition of differentiating cells with Raman spectroscopy and human induced pluripotent stem cells (hiPSCs) technique. Herein, we investigated the time development of cellular heterogeneity in Raman spectra during cardiomyogenesis of six hiPSC lines and tested two types of analyses for heterogeneity. As expected, some spectral peaks, possibly attributed to glycogen, correctively exhibited higher heterogeneity, prior to intensity changes of the spectrum in the both analyses in the all cell-lines tested. The combination of spectral data and heterogeneity-based analysis will be an approach to the arrival of biology that uses not only signal intensity but also heterogeneity as a biological index.
Collapse
Affiliation(s)
- Hideaki Fujita
- Department of Stem Cell Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima 734-8553, Japan
| | - Takayuki Haruki
- Faculty of Sustainable Design, Academic Assembly, University of Toyama, Toyama 930-8555, Japan
| | - Kazuhiro Sudo
- Technology and Development Team for Mammalian Genome Dynamics, RIKEN BioResource Research Center, Tsukuba, Ibaragi 305-0074, Japan
| | - Yumiko Koga
- Technology and Development Team for Mammalian Genome Dynamics, RIKEN BioResource Research Center, Tsukuba, Ibaragi 305-0074, Japan
| | - Yukio Nakamura
- Technology and Development Team for Mammalian Genome Dynamics, RIKEN BioResource Research Center, Tsukuba, Ibaragi 305-0074, Japan
| | - Kuniya Abe
- Technology and Development Team for Mammalian Genome Dynamics, RIKEN BioResource Research Center, Tsukuba, Ibaragi 305-0074, Japan
| | - Yasuhiko Yoshida
- Department of Intellectual Information Engineering, Graduate School of Science and Engineering, University of Toyama, Toyama 930-8555, Japan
| | - Keiichi Koizumi
- Laboratory of Drug Discovery and Development for Pre-disease, Division of Presymptomatic Disease, Department of Re-search and Development and Department of Academia-Industry-Government Collaboration, Institute of Natural Medicine, University of Toyama, Toyama 930-0194, Japan
| | - Tomonobu M Watanabe
- Department of Stem Cell Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima 734-8553, Japan
- Laboratory for Comprehensive Bioimaging, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Hyogo 650-0047, Japan
| |
Collapse
|
2
|
Kang C, McElroy M, Voulgarakis NK. Emergent Criticality in Coupled Boolean Networks. ENTROPY (BASEL, SWITZERLAND) 2023; 25:235. [PMID: 36832602 PMCID: PMC9955248 DOI: 10.3390/e25020235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 06/01/2023]
Abstract
Early embryonic development involves forming all specialized cells from a fluid-like mass of identical stem cells. The differentiation process consists of a series of symmetry-breaking events, starting from a high-symmetry state (stem cells) to a low-symmetry state (specialized cells). This scenario closely resembles phase transitions in statistical mechanics. To theoretically study this hypothesis, we model embryonic stem cell (ESC) populations through a coupled Boolean network (BN) model. The interaction is applied using a multilayer Ising model that considers paracrine and autocrine signaling, along with external interventions. It is demonstrated that cell-to-cell variability can be interpreted as a mixture of steady-state probability distributions. Simulations have revealed that such models can undergo a series of first- and second-order phase transitions as a function of the system parameters that describe gene expression noise and interaction strengths. These phase transitions result in spontaneous symmetry-breaking events that generate new types of cells characterized by various steady-state distributions. Coupled BNs have also been shown to self-organize in states that allow spontaneous cell differentiation.
Collapse
Affiliation(s)
- Chris Kang
- Department of Mathematics and Statistics, Washington State University, Pullman, WA 99164, USA
| | - Madelynn McElroy
- Department of Mathematics and Statistics, Washington State University, Pullman, WA 99164, USA
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164, USA
| | - Nikolaos K. Voulgarakis
- Department of Mathematics and Statistics, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
3
|
Haas AS, Shi D, Greb T. Cell Fate Decisions Within the Vascular Cambium-Initiating Wood and Bast Formation. FRONTIERS IN PLANT SCIENCE 2022; 13:864422. [PMID: 35548289 PMCID: PMC9082745 DOI: 10.3389/fpls.2022.864422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/11/2022] [Indexed: 06/15/2023]
Abstract
Precise coordination of cell fate decisions is a hallmark of multicellular organisms. Especially in tissues with non-stereotypic anatomies, dynamic communication between developing cells is vital for ensuring functional tissue organization. Radial plant growth is driven by a plant stem cell niche known as vascular cambium, usually strictly producing secondary xylem (wood) inward and secondary phloem (bast) outward, two important structures serving as much-needed CO2 depositories and building materials. Because of its bidirectional nature and its developmental plasticity, the vascular cambium serves as an instructive paradigm for investigating principles of tissue patterning. Although genes and hormones involved in xylem and phloem formation have been identified, we have a yet incomplete picture of the initial steps of cell fate transitions of stem cell daughters into xylem and phloem progenitors. In this mini-review perspective, we describe two possible scenarios of cell fate decisions based on the current knowledge about gene regulatory networks and how cellular environments are established. In addition, we point out further possible research directions.
Collapse
Affiliation(s)
- Aylin S. Haas
- Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany
| | - Dongbo Shi
- Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany
- RIKEN Center for Sustainable Resource Science (CSRS), Tsurumi-Yokohama, Japan
- Japan Science and Technology Agency (JST), Precursory Research for Embryonic Science and Technology (PRESTO), Kawaguchi, Japan
| | - Thomas Greb
- Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany
| |
Collapse
|
4
|
Bioimaging approaches for quantification of individual cell behavior during cell fate decisions. Biochem Soc Trans 2022; 50:513-527. [PMID: 35166330 DOI: 10.1042/bst20210534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 01/10/2022] [Accepted: 01/24/2022] [Indexed: 11/17/2022]
Abstract
Tracking individual cells has allowed a new understanding of cellular behavior in human health and disease by adding a dynamic component to the already complex heterogeneity of single cells. Technically, despite countless advances, numerous experimental variables can affect data collection and interpretation and need to be considered. In this review, we discuss the main technical aspects and biological findings in the analysis of the behavior of individual cells. We discuss the most relevant contributions provided by these approaches in clinically relevant human conditions like embryo development, stem cells biology, inflammation, cancer and microbiology, along with the cellular mechanisms and molecular pathways underlying these conditions. We also discuss the key technical aspects to be considered when planning and performing experiments involving the analysis of individual cells over long periods. Despite the challenges in automatic detection, features extraction and long-term tracking that need to be tackled, the potential impact of single-cell bioimaging is enormous in understanding the pathogenesis and development of new therapies in human pathophysiology.
Collapse
|
5
|
Ichimura T, Kakizuka T, Horikawa K, Seiriki K, Kasai A, Hashimoto H, Fujita K, Watanabe TM, Nagai T. Exploring rare cellular activity in more than one million cells by a transscale scope. Sci Rep 2021; 11:16539. [PMID: 34400683 PMCID: PMC8368064 DOI: 10.1038/s41598-021-95930-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 08/03/2021] [Indexed: 02/07/2023] Open
Abstract
In many phenomena of biological systems, not a majority, but a minority of cells act on the entire multicellular system causing drastic changes in the system properties. To understand the mechanisms underlying such phenomena, it is essential to observe the spatiotemporal dynamics of a huge population of cells at sub-cellular resolution, which is difficult with conventional tools such as microscopy and flow cytometry. Here, we describe an imaging system named AMATERAS that enables optical imaging with an over-one-centimeter field-of-view and a-few-micrometer spatial resolution. This trans-scale-scope has a simple configuration, composed of a low-power lens for machine vision and a hundred-megapixel image sensor. We demonstrated its high cell-throughput, capable of simultaneously observing more than one million cells. We applied it to dynamic imaging of calcium ions in HeLa cells and cyclic-adenosine-monophosphate in Dictyostelium discoideum, and successfully detected less than 0.01% of rare cells and observed multicellular events induced by these cells.
Collapse
Affiliation(s)
- T Ichimura
- Transdimensional Life Imaging Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Yamadaoka 2-1, Suita, Osaka, 565-0871, Japan.
- PRESTO, Japan Science and Technology Agency, Tokyo, 113-0033, Japan.
| | - T Kakizuka
- Transdimensional Life Imaging Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Yamadaoka 2-1, Suita, Osaka, 565-0871, Japan
| | - K Horikawa
- Department of Optical Imaging, Advanced Research Promotion Center, Tokushima University, Kuramoto-cho 3-18-15, Tokushima, Tokushima, 770-8503, Japan
| | - K Seiriki
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Yamadaoka 1-6, Suita, Osaka, 565-0871, Japan
| | - A Kasai
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Yamadaoka 1-6, Suita, Osaka, 565-0871, Japan
| | - H Hashimoto
- Transdimensional Life Imaging Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Yamadaoka 2-1, Suita, Osaka, 565-0871, Japan
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Yamadaoka 1-6, Suita, Osaka, 565-0871, Japan
- Institute for Transdisciplinary Graduate Degree Programs, Osaka University, Yamadaoka 1-1, Suita, Osaka, 565-0871, Japan
| | - K Fujita
- Transdimensional Life Imaging Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Yamadaoka 2-1, Suita, Osaka, 565-0871, Japan
- Department of Applied Physics, Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita, Osaka, 565-0871, Japan
| | - T M Watanabe
- Laboratory for Comprehensive Bioimaging, RIKEN Center for Biosystems Dynamics Research (BDR), Minatomachi-minami 2-2-3, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
- Department of Stem Cell Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima, 734-8553, Japan
| | - T Nagai
- Transdimensional Life Imaging Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Yamadaoka 2-1, Suita, Osaka, 565-0871, Japan.
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, Mihogaoka 8-1, Ibaraki, Osaka, 567-0047, Japan.
| |
Collapse
|
6
|
First person – Kazuko Okamoto. Biol Open 2021. [DOI: 10.1242/bio.058901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
ABSTRACT
First Person is a series of interviews with the first authors of a selection of papers published in Biology Open, helping early-career researchers promote themselves alongside their papers. Kazuko Okamoto is first author on ‘ Pressure-induced changes on the morphology and gene expression in mammalian cells’, published in BiO. Kazuko conducted the research described in this article while a research scientist in Tomonobu M. Watanabe's lab at RIKEN Center for Biosystems Dynamics Research, Kobe, Japan. She is now an assistant professor in the lab of Satoru Okuda at Nano Life Science Institute, Kanazawa University, Japan, investigating intracellular communication and transcription regulation.
Collapse
|
7
|
Wadkin LE, Orozco-Fuentes S, Neganova I, Lako M, Barrio RA, Baggaley AW, Parker NG, Shukurov A. OCT4 expression in human embryonic stem cells: spatio-temporal dynamics and fate transitions. Phys Biol 2021; 18:026003. [PMID: 33296887 DOI: 10.1088/1478-3975/abd22b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The improved in vitro regulation of human embryonic stem cell (hESC) pluripotency and differentiation trajectories is required for their promising clinical applications. The temporal and spatial quantification of the molecular interactions controlling pluripotency is also necessary for the development of successful mathematical and computational models. Here we use time-lapse experimental data of OCT4-mCherry fluorescence intensity to quantify the temporal and spatial dynamics of the pluripotency transcription factor OCT4 in a growing hESC colony in the presence and absence of BMP4. We characterise the internal self-regulation of OCT4 using the Hurst exponent and autocorrelation analysis, quantify the intra-cellular fluctuations and consider the diffusive nature of OCT4 evolution for individual cells and pairs of their descendants. We find that OCT4 abundance in the daughter cells fluctuates sub-diffusively, showing anti-persistent self-regulation. We obtain the stationary probability distributions governing hESC transitions amongst the different cell states and establish the times at which pro-fate cells (which later give rise to pluripotent or differentiated cells) cluster in the colony. By quantifying the similarities between the OCT4 expression amongst neighbouring cells, we show that hESCs express similar OCT4 to cells within their local neighbourhood within the first two days of the experiment and before BMP4 treatment. Our framework allows us to quantify the relevant properties of proliferating hESC colonies and the procedure is widely applicable to other transcription factors and cell populations.
Collapse
Affiliation(s)
- L E Wadkin
- School of Mathematics, Statistics and Physics, Newcastle University, Newcastle upon Tyne, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Ota N, Yonamine Y, Asai T, Yalikun Y, Ito T, Ozeki Y, Hoshino Y, Tanaka Y. Isolating Single Euglena gracilis Cells by Glass Microfluidics for Raman Analysis of Paramylon Biogenesis. Anal Chem 2019; 91:9631-9639. [DOI: 10.1021/acs.analchem.9b01007] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Nobutoshi Ota
- Center for Biosystems Dynamics Research, RIKEN, Suita, Osaka 565-0871, Japan
| | - Yusuke Yonamine
- Research Institute for Electronic Science, Hokkaido University, Sapporo, Hokkaido 001-0021, Japan
| | - Takuya Asai
- Department of Electrical Engineering and Information Systems, The University of Tokyo, Tokyo 113-8656, Japan
| | - Yaxiaer Yalikun
- Center for Biosystems Dynamics Research, RIKEN, Suita, Osaka 565-0871, Japan
| | - Takuro Ito
- Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan
- Department of Chemistry, School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Yasuyuki Ozeki
- Department of Electrical Engineering and Information Systems, The University of Tokyo, Tokyo 113-8656, Japan
| | - Yu Hoshino
- Department of Chemistry, Kyushu University, Fukuoka 819-0395, Japan
| | - Yo Tanaka
- Center for Biosystems Dynamics Research, RIKEN, Suita, Osaka 565-0871, Japan
| |
Collapse
|