1
|
Mzedawee HRH, Kowsar R, Moradi-Hajidavaloo R, Shiasi-Sardoabi R, Sadeghi K, Nasr-Esfahani MH, Hajian M. Heat shock interferes with the amino acid metabolism of bovine cumulus-oocyte complexes in vitro: a multistep analysis. Amino Acids 2024; 56:2. [PMID: 38285159 PMCID: PMC10824825 DOI: 10.1007/s00726-023-03370-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 11/27/2023] [Indexed: 01/30/2024]
Abstract
By affecting the ovarian pool of follicles and their enclosed oocytes, heat stress has an impact on dairy cow fertility. This study aimed to determine how heat shock (HS) during in vitro maturation affected the ability of the bovine cumulus-oocyte complexes (COCs) to develop, as well as their metabolism of amino acids (AAs). In this study, COCs were in vitro matured for 23 h at 38.5 °C (control; n = 322), 39.5 °C (mild HS (MHS); n = 290), or 40.5 °C (severe HS (SHS); n = 245). In comparison to the control group, the MHS and SHS groups significantly decreased the percentage of metaphase-II oocytes, as well as cumulus cell expansion and viability. The SHS decreased the rates of cleavage and blastocyst formation in comparison to the control and MHS. Compared to the control and MHS-COCs, the SHS-COCs produced significantly more phenylalanine, threonine, valine, arginine, alanine, glutamic acid, and citrulline while depleting less leucine, glutamine, and serine. Data showed that SHS-COCs had the highest appearance and turnover of all AAs and essential AAs. Heat shock was positively correlated with the appearance of glutamic acid, glutamine, isoleucine, alanine, serine, valine, phenylalanine, and asparagine. Network analysis identified the relationship between HS and alanine or glutamic acid, as well as the relationship between blastocyst and cleavage rates and ornithine. The findings imply that SHS may have an impact on the quality and metabolism of AAs in COCs. Moreover, the use of a multistep analysis could simply identify the AAs most closely linked to HS and the developmental competence of bovine COCs.
Collapse
Affiliation(s)
| | - Rasoul Kowsar
- Department of Animal Sciences, College of Agriculture, Isfahan University of Technology, Isfahan, Iran.
| | - Reza Moradi-Hajidavaloo
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Roya Shiasi-Sardoabi
- Department of Animal Sciences, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | - Khaled Sadeghi
- Department of Animal Sciences, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | - Mohammad Hossein Nasr-Esfahani
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Mehdi Hajian
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.
| |
Collapse
|
2
|
Cen Y, Feng D, Kowsar R, Cheng Z, Luo Y, Xiao Q. Sex-Specific Variations in the mRNA Levels of Candidate Genes in Peripheral Blood Mononuclear Cells from Patients with Diabetes: A Multistep Study. Endocr Res 2024; 49:59-74. [PMID: 37947760 DOI: 10.1080/07435800.2023.2280571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 10/28/2023] [Indexed: 11/12/2023]
Abstract
BACKGROUND Type 2 diabetes (T2D) is one of the most prevalent diseases that also show sexual dimorphism in many different aspects. OBJECTIVES This study aimed to distinguish the mRNA expression of genes in peripheral blood mononuclear cells (PBMCs) in men or women with T2D using a multistep analysis. METHODS A total of 95 patients with T2D were compared based on their sex in terms of clinical variables and mRNA expression in their PBMCs. RESULTS Men with T2D had lower LDLC, HDLC, and HbA1c values in their blood, but greater creatinine levels. In men with T2D, TLR4, CCR2, NOX2, and p67phox mRNA expression was greater, but IL6 and NF-κB mRNA expression was lesser in PBMCs. There was a link between fasting plasma glucose (FPG), triglycerides, and hs-CRP, as well as COX1 mRNA in men with T2D. In women with T2D, FPG was associated with the mRNA expression of THBS1 and p67phox, as well as triglycerides and HDLC levels. We found the exclusive effect of FPG on HDLC, HbA1c, as well as p67phox mRNA in PBMCs of women with T2D. Analysis revealed the exclusive effect of FPG on hs-CRP and PAFR mRNA in PBMCs of men with T2D. FPG was shown to be associated with body mass index, hs-CRP, triglycerides, and COX1 mRNA in men with T2D, and with serum triglycerides, THSB1, and p67phox mRNA in women with T2D, according to network analysis. HbA1c was linked with NF-κB mRNA in women with T2D. CONCLUSIONS Using a multistep analysis, it was shown that network analysis outperformed traditional analytic techniques in identifying sex-specific alterations in mRNA gene expression in PBMCs of T2D patients. The development of sex-specific therapeutic approaches may result from an understanding of these disparities.
Collapse
Affiliation(s)
- Yuzhen Cen
- Department of Blood Transfusion, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Dana Feng
- Department of Blood Transfusion, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Rasoul Kowsar
- Department of Animal Science, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | - Zhen Cheng
- Guantian Community Healthcare Center, Shenzhen Baoan Shiyan People's Hospital, Shenzhen, China
| | - Yu Luo
- Guantian Community Healthcare Center, Shenzhen Baoan Shiyan People's Hospital, Shenzhen, China
| | - Qingyu Xiao
- Department of Blood Transfusion, Shenzhen Baoan Shiyan People's Hospital, Shenzhen, China
| |
Collapse
|
3
|
Zhang M, Zhang J, Wang D, Liu Z, Xing K, Wang Y, Jiao M, Wang Y, Shi B, Zhang H, Zhang Y. C-X-C motif chemokine ligand 12 improves the developmental potential of bovine oocytes by activating SH2 domain-containing tyrosine phosphatase 2 during maturation†. Biol Reprod 2023; 109:282-298. [PMID: 37498179 DOI: 10.1093/biolre/ioad079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 03/21/2023] [Accepted: 07/25/2023] [Indexed: 07/28/2023] Open
Abstract
In vitro maturation of mammalian oocytes is an important means in assisted reproductive technology. Most bovine immature oocytes complete nuclear maturation, but less than half develop to the blastocyst stage after fertilization. Thus, inefficient in vitro production is mainly caused by a suboptimal in vitro culture process, in which oocyte quality appears to be the limiting factor. In our study, a potential maternal regulator, C-X-C motif chemokine ligand 12, was identified by analyzing transcriptome data. C-X-C motif chemokine ligand 12 supplementation promoted the developmental potential of oocytes by improving protein synthesis and reorganizing cortical granules and mitochondria during in vitro maturation, which eventually increased blastocyst formation efficiency and cell number after parthenogenesis, fertilization, and cloning. All these promoting effects by C-X-C motif chemokine ligand 12 were achieved by activating SH2 domain-containing tyrosine phosphatase 2, thereby promoting the mitogen-activated protein kinase signaling pathway. These findings provide an in vitro maturation system that closely resembles the maternal environment to provide high-quality oocytes for in vitro production.
Collapse
Affiliation(s)
- Min Zhang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Jingcheng Zhang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Debao Wang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhengqing Liu
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Kangning Xing
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Yongsheng Wang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Mei Jiao
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Yong Wang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Binqiang Shi
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Hexu Zhang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Yong Zhang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
4
|
Multi-level analysis reveals the association between diabetes, body mass index, and HbA1c in an Iraqi population. Sci Rep 2022; 12:21135. [PMID: 36477157 PMCID: PMC9729599 DOI: 10.1038/s41598-022-25813-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022] Open
Abstract
Type 2 diabetes (T2D) known as a complex metabolic disorder may cause health problems and changes in blood biochemical markers. A growing number of studies have looked into several biomarkers and their connections with T2D risk. However, few have explored the interconnection of these biomarkers, as well as the prospective alterations in the diabetes biomarker correlation network. We conducted a secondary analysis in order to introduce a multi-level approach to establish a relationship between diabetes, pre-diabetes, blood biochemical markers, age, and body mass index (BMI). The dataset was obtained from the Mendeley Data (available at https://data.mendeley.com/datasets/wj9rwkp9c2/1 . In this study, three groups were established: non-diabetic (n = 103), pre-diabetic (n = 53), and diabetic (n = 844). According to the Heatmap analysis, non-diabetic and pre-diabetic individuals had the lowest BMI, age, and HbA1c. Diabetes and pre-diabetes were correlated with BMI (r = 0.58 and - 0.27, respectively), age (r = 0.47 and - 0.28, respectively), and HbA1c (r = 0.55 and - 0.21, respectively) using Pearson analysis. Using multivariate analysis, we found that diabetes, BMI, age, HbA1c, cholesterol, triglyceride, LDL, VLDL, and HDL were all associated. Network analysis revealed a connection between BMI and diabetes at the highest cut-off point. Moreover, receiver operating characteristic (ROC) analysis validated the network findings, revealing that BMI (area under the ROC curve, AUC = 0.95), HbA1c (AUC = 0.94), and age (AUC = 0.84) were the best predictors of diabetes. In conclusion, our multi-step study revealed that identifying significant T2D predictors, such as BMI and HbA1c, required a series of mathematical analyses.
Collapse
|
5
|
Culture conditions for in vitro maturation of oocytes – A review. REPRODUCTION AND BREEDING 2022. [DOI: 10.1016/j.repbre.2022.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
6
|
Epidermal growth factor alleviates the negative impact of urea on frozen-thawed bovine sperm, but the subsequent developmental competence is compromised. Sci Rep 2021; 11:4687. [PMID: 33633199 PMCID: PMC7907109 DOI: 10.1038/s41598-021-83929-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 02/09/2021] [Indexed: 11/14/2022] Open
Abstract
Upon insemination, sperm cells are exposed to components of the female reproductive tract (FRT) fluids, such as urea and epidermal growth factor (EGF). It has been shown that both urea and EGF use EGF receptor signaling and produce reactive oxygen species (ROS) that are required at certain levels for sperm capacitation and acrosome reaction. We therefore hypothesized that during bovine sperm capacitation, a high level of urea and EGF could interfere with sperm function through overproduction of ROS. High-level urea (40 mg/dl urea is equal to 18.8 mg/dl of blood urea nitrogen) significantly increased ROS production and TUNEL-positive sperm (sperm DNA fragmentation, sDF) percentage, but decreased HOS test score, progressive motility, acrosome reaction and capacitation. The EGF reversed the negative effects of urea on all sperm parameters, with the exception of ROS production and DNA fragmentation, which were higher in urea-EGF-incubated sperm than in control-sperm. The developmental competence of oocytes inseminated with urea-EGF-incubated sperm was significantly reduced compared to the control. A close association of ROS production or sDF with 0-pronuclear and sperm non-capacitation rates was found in the network analysis. In conclusion, EGF enhanced urea-reduced sperm motility; however, it failed to reduce urea-increased sperm ROS or sDF levels and to enhance subsequent oocyte competence. The data suggests that any study to improve sperm quality should be followed by a follow-up assessment of the fertilization outcome.
Collapse
|
7
|
Kowsar R, Komeili M, Sadeghi N, Sadeghi K. Multistep analysis reveals the relationship between blood indices at the time of ovum pick-up and in vitro embryo production in heifers. Theriogenology 2020; 159:153-164. [PMID: 33157453 DOI: 10.1016/j.theriogenology.2020.10.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 10/08/2020] [Accepted: 10/22/2020] [Indexed: 10/23/2022]
Abstract
The inflammatory factors of complete blood count (CBC) are associated with a decrease in the in vitro embryo production (IVP) outcome in women. The relation between the blood indices and in vitro fertilization (IVF) outcomes in bovines remains to be elucidated. Using ovum pick-up (OPU), oocytes were retrieved from heifers (n = 60) and inseminated separately with sperm. The blastocyst formation was recorded on day 7 after insemination for each animal and the blood indices were evaluated at the time of OPU. Then, heifers were classified on the basis of (1) blastocyst formation, cleaved vs. failed, or (2) inflammation, low-grade inflammation (lymphocyte counts > 5.6 × 109/L) vs. no inflammation (lymphocyte counts < 5.6 × 109/L). Oocytes derived from heifers with higher lymphocytes, red blood cells (RBC), platelets, hematocrit, red cell distribution width (RDW-SD) and plateletcrit values and lower monocytes, eosinophils, mean corpuscular hemoglobin (MCH) and MCH concentration (MCHC) successfully developed to the blastocyst stage. Heifers with low-grade inflammation numerically had a higher percentage of blastocyst formation than normal heifers. The principle component analysis (PCA) showed that blastocyst formation had the strongest positive association with RDW-cv and RDW-SD, while having a strong negative association with mean corpuscular volume (MCV), hemoglobin, MCHC and MCH. The PCA determined that the number of grade A COCs and the percentage of COCs reached the cleavage stage had a negative association with white blood cells (WBC), lymphocytes, basophils and monocytes, and a positive correlation with platelet to lymphocyte ratio, platelet distribution width (PDW) and plateletcrit. Network mapping detected close similarities between BFR and RDW-SD, MPV, and lymphocytes. The area under the receiver operating characteristic curve (AUC) identified that, eosinophils (AUC 0.80), RDW-SD (AUC 0.76), monocytes (AUC 0.76) and lymphocytes (AUC 0.76) had a good predictive ability to detect heifers with high OPU-IVP outcome (≥60%). In conclusion, these findings suggest that CBC indices at the time of OPU were associated with the IVF outcome and may be incorporated into protocols for the identification of heifers with high potential for blastocyst formation.
Collapse
Affiliation(s)
- Rasoul Kowsar
- Department of Animal Sciences, College of Agriculture, Isfahan University of Technology, Isfahan, 84156-83111, Iran.
| | - Mehdi Komeili
- Department of Animal Sciences, College of Agriculture, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Nima Sadeghi
- FKA, Animal Husbandry and Agriculture Co., Isfahan, Iran
| | - Khaled Sadeghi
- Department of Animal Sciences, College of Agriculture, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| |
Collapse
|
8
|
Kowsar R, Mansouri A, Sadeghi N, Abadi MHA, Ghoreishi SM, Sadeghi K, Miyamoto A. A multilevel analysis identifies the different relationships between amino acids and the competence of oocytes matured individually or in groups. Sci Rep 2020; 10:16082. [PMID: 32999417 PMCID: PMC7528030 DOI: 10.1038/s41598-020-73225-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 09/11/2020] [Indexed: 11/03/2022] Open
Abstract
High-protein diets contribute to an increase in urea follicular concentrations associated with decreased fertility. Urea has been shown to interfere with the epidermal growth factor (EGF)/EGFR system, which has been shown to have a beneficial effect during in vitro maturation (IVM) of oocytes. Of note, the number of cumulus-oocyte complexes (COCs) in the maturation medium can change the maturation and the developmental competence of COCs. Therefore, it was hypothesized that, the presence of urea and EGF may have a differential effect on the depletion/appearance of AAs and competence of COCs matured individually (I-IVM system) or in groups (G-IVM system). In the G-IVM system, COCs increased consumption (depletion) of AAs compared with other groups in the presence of high-level urea (40 mg/dl) + EGF (10 ng/ml). In the I-IVM system, the non-cleaved COCs depleted more AAs than the cleaved COCs, in particular in the presence of urea. The combination of urea and EGF increased the depletion of AAs in the G-IVM system. However, the EGF abrogated the urea-induced depletion of AAs by the I-IVM COCs. The use of N-acetyl-L-cysteine as an EGFR inhibitor canceled urea-induced depletion of AAs. This shows the inhibiting effect of urea over the EGF/EGFR system. In the presence of urea + EGF, COCs had a lower degree of developmental competence than control in both I- and G-IVM systems. Arginine had the best predictive power to identify highly competent COCs in the G-IVM system, while glutamine was the best predictor of the cleavage in the I-IVM system. In conclusion, this multi-level study shows that COCs matured individually or in groups may have different association with AAs metabolism. These findings provide new insights into the relationships between AA metabolism and the subsequent developmental competence of COCs.
Collapse
Affiliation(s)
- Rasoul Kowsar
- Department of Animal Sciences, College of Agriculture, Isfahan University of Technology, 84156-83111, Isfahan, Iran. .,Global Agromedicine Research Center (GAMRC), Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, 080-8555, Japan.
| | - Alireza Mansouri
- Global Agromedicine Research Center (GAMRC), Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, 080-8555, Japan
| | - Nima Sadeghi
- FKA, Animal Husbandry and Agriculture Co, Isfahan, Iran
| | - Mohammad Heidaran Ali Abadi
- Department of Animal Sciences, College of Agriculture, Isfahan University of Technology, 84156-83111, Isfahan, Iran
| | - Seyed Mehdi Ghoreishi
- Department of Animal Sciences, College of Agriculture, Shiraz University, Shiraz, Iran
| | - Khaled Sadeghi
- Department of Animal Sciences, College of Agriculture, Isfahan University of Technology, 84156-83111, Isfahan, Iran
| | - Akio Miyamoto
- Global Agromedicine Research Center (GAMRC), Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, 080-8555, Japan
| |
Collapse
|
9
|
Kowsar R, Kowsar Z, Miyamoto A. Up-regulated mRNA expression of some anti-inflammatory mediators in bovine oviduct epithelial cells by urea in vitro: Cellular pathways by Reactome analysis. Reprod Biol 2019; 19:75-82. [PMID: 30626534 DOI: 10.1016/j.repbio.2019.01.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 12/06/2018] [Accepted: 01/02/2019] [Indexed: 12/28/2022]
Abstract
Increased urea concentration is a major cause of low fertility in dairy cows fed high-protein diets. A strong correlation exists between the urea concentration in the blood and oviduct fluid of dairy cows. In this study, bovine oviduct epithelial cells (BOECs) were incubated with varying concentrations of urea (0, 20, 40, and 80 mg/dL) in the absence of ovarian sex steroids (estradiol and progesterone) and luteinizing hormone. The 80 mg/dL urea reduced the cell viability, and thus was excluded in further analysis. Compared to the control (U0), the 20 mg/dL urea (U20) increased the mRNA expression of Toll-like receptor (TLR) 4, interleukin (IL) 10, IL4, and prostaglandin (PG) E synthase (mPGES) but decreased the mRNA expression of tumor necrosis factor α (TNFA). Compared to U0, the 40 mg/dL urea (U40) decreased the mRNA expression of TNFA and increased alpha-1-acid glycoprotein (AGP). U40 also increased TLR2, IL10, and IL4 mRNA expression compared to U0. In addition, compared to U20, the U40 decreased the mRNA expression of TLR4 and IL1B but increased that of AGP and TLR2. Subsequently, the mRNA expression data were then projected into the Reactome database. The Reactome analysis showed that pathways, including cytokine signaling in the immune system (i.e., TNFs bind their physiological receptors) and death receptor signaling (i.e., TNF signaling), were down-regulated in the presence of urea compared to the U0 group. These in vitro data implied that high urea level can alter the balance between pro- and anti-inflammatory responses in BOECs, thus providing a suboptimal environment for the early reproductive events or a weakened innate immune system, predisposing the oviduct to infections.
Collapse
Affiliation(s)
- Rasoul Kowsar
- Department of Animal Sciences, College of Agriculture, Isfahan University of Technology, Isfahan, 84156-83111, Iran; Graduate School of Animal and Food Hygiene, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan.
| | - Zohre Kowsar
- Department of Animal Sciences, College of Agriculture, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Akio Miyamoto
- Graduate School of Animal and Food Hygiene, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| |
Collapse
|