1
|
Wong SL, Shih CL, Cho HY, Wu SN. Effective suppression of I h and I Na caused by capsazepine, known to be a blocker of TRPV1 receptor. Brain Res 2024; 1839:149008. [PMID: 38761846 DOI: 10.1016/j.brainres.2024.149008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 05/20/2024]
Abstract
A synthetic inhibitor of capsaicin-induced TRPV1 channel activation is called capsazepine (CPZ). In this study, we aimed to explore the effects of CPZ on hyperpolarization-activated cationic current (Ih) and voltage-gated Na + current (INa) in pituitary tumor (GH3) cells. Through patch-clamp recordings, we found that CPZ concentration-dependently inhibited Ih amplitude and slowed its activation time course. The IC50 and KD values were 3.1 and 3.16 μM, respectively. CPZ also shifted the steady-state activation curve of Ih towards a more hyperpolarized potential. However, there was no change in the gating charge of the curve. A modified Markovian model predicted the CPZ-induced decrease in the voltage-dependent hysteresis of Ih. CPZ suppressed INa in GH3 cells, without altering its activation or inactivation time course. Additionally, exposure to CPZ reduced spontaneous firing. These findings suggest that CPZ's inhibitory effects on Ih and INa are direct and not dependent on vanilloid receptor binding. This could provide light on an unidentified ionic mechanism influencing the membrane excitability of neurons and endocrine or neuroendocrine cells in vivo.
Collapse
Affiliation(s)
- Siew-Lee Wong
- Department of Pediatrics, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi City 60002, Taiwan
| | - Chia-Lung Shih
- Clinical Research Center, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi City 60002, Taiwan.
| | - Hsin-Yen Cho
- Department of Physiology, National Cheng Kung University Medical College, Tainan 70101, Taiwan
| | - Sheng-Nan Wu
- Department of Physiology, National Cheng Kung University Medical College, Tainan 70101, Taiwan; Department of Research and Education, An Nan Hospital, China Medical University, Tainan 709040, Taiwan; School of Medicine, College of Medicine, National Sun Yat-sen University, Kaohsiung, 804201 Taiwan.
| |
Collapse
|
2
|
Li E, Wang L, Wang D, Chi J, Lin Z, Smith GI, Klein S, Cohen P, Rosen ED. Control of lipolysis by a population of oxytocinergic sympathetic neurons. Nature 2024; 625:175-180. [PMID: 38093006 PMCID: PMC10952125 DOI: 10.1038/s41586-023-06830-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 11/03/2023] [Indexed: 01/05/2024]
Abstract
Oxytocin (OXT), a nine-amino-acid peptide produced in the hypothalamus and released by the posterior pituitary, has well-known actions in parturition, lactation and social behaviour1, and has become an intriguing therapeutic target for conditions such as autism and schizophrenia2. Exogenous OXT has also been shown to have effects on body weight, lipid levels and glucose homeostasis1,3, suggesting that it may also have therapeutic potential for metabolic disease1,4. It is unclear, however, whether endogenous OXT participates in metabolic homeostasis. Here we show that OXT is a critical regulator of adipose tissue lipolysis in both mice and humans. In addition, OXT serves to facilitate the ability of β-adrenergic agonists to fully promote lipolysis. Most surprisingly, the relevant source of OXT in these metabolic actions is a previously unidentified subpopulation of tyrosine hydroxylase-positive sympathetic neurons. Our data reveal that OXT from the peripheral nervous system is an endogenous regulator of adipose and systemic metabolism.
Collapse
Affiliation(s)
- Erwei Li
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Luhong Wang
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Daqing Wang
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Jingyi Chi
- Harvard Medical School, Boston, MA, USA
- Laboratory of Molecular Metabolism, The Rockefeller University, New York, NY, USA
| | - Zeran Lin
- Laboratory of Molecular Metabolism, The Rockefeller University, New York, NY, USA
| | - Gordon I Smith
- Center for Human Nutrition, Washington University School of Medicine, St Louis, MO, USA
| | - Samuel Klein
- Center for Human Nutrition, Washington University School of Medicine, St Louis, MO, USA
| | - Paul Cohen
- Laboratory of Molecular Metabolism, The Rockefeller University, New York, NY, USA
| | - Evan D Rosen
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
- Broad Institute, Cambridge, MA, USA.
| |
Collapse
|
3
|
Ortiz-Carpena JF, Inclan-Rico JM, Pastore CF, Hung LY, Wilkerson WB, Weiner MB, Lin C, Gentile ME, Cohen NA, Saboor IA, Vaughan AE, Rossi HL, Herbert DR. [WITHDRAWN] Neuron-dependent tuft cell expansion initiates sinonasal allergic Type 2 inflammation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.04.547596. [PMID: 37461610 PMCID: PMC10349937 DOI: 10.1101/2023.07.04.547596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
The authors have withdrawn this manuscript owing to inaccuracies in the calculation of tuft cell numbers and errors in the selection of immunofluorescence images used to support our claims. Therefore, the authors do not wish this work to be cited as reference for the project. If you have any questions, please contact the corresponding author.
Collapse
|
4
|
Özcan Türkmen M, Karaduman T, Mergen H. Comparison of ELISA and RIA methods to quantify arginine vasopressin hormone levels in cell culture. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-022-01301-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
5
|
Maddahi A, Edvinsson L, Warfvinge K. Expression of vasopressin and its receptors in migraine-related regions in CNS and the trigeminal system: influence of sex. J Headache Pain 2022; 23:152. [PMID: 36456902 PMCID: PMC9713967 DOI: 10.1186/s10194-022-01524-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/21/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Hypothalamus is a key region in migraine attacks. In addition, women are disproportionately affected by migraine. The calcitonin gene-related peptide (CGRP) system is an important key player in migraine pathophysiology. CGRP signaling could be a target of hormones that influence migraine. Our aim is to identify the expression of vasopressin and its receptors in the brain and in the trigeminovascular system with focus on the migraine-related regions and, furthermore, to examine the role of sex on the expression of neurohormones in the trigeminal ganglion. METHODS Rat brain and trigeminal ganglia were carefully harvested, and protein and mRNA levels were analyzed by immunohistochemistry and real-time PCR, respectively. RESULTS Vasopressin and its receptors immunoreactivity were found in migraine-related areas within the brain and, in the trigeminal ganglion, predominantly in neuronal cytoplasm. There were no differences in the number of positive immunoreactivity cells expression of CGRP and vasopressin in the trigeminal ganglion between male and female rats. In contrast, the number of RAMP1 (CGRP receptor), oxytocin (molecular relative to vasopressin), oxytocin receptor and vasopressin receptors (V1aR and V1bR) immunoreactive cells were higher in female compared to male rats. Vasopressin and its receptors mRNA were expressed in both hypothalamus and trigeminal ganglion; however, the vasopressin mRNA level was significantly higher in the hypothalamus. CONCLUSIONS A better understanding of potential hormonal influences on migraine mechanisms is needed to improve treatment of female migraineurs. It is intriguing that vasopressin is an output of hypothalamic neurons that influences areas associated with migraine. Therefore, vasopressin and the closely related oxytocin might be important hypothalamic components that contribute to migraine pathophysiology.
Collapse
Affiliation(s)
- Aida Maddahi
- grid.411843.b0000 0004 0623 9987Division of Experimental Vascular Research, Department of Clinical Sciences, Lund University Hospital, Lund, Sweden
| | - Lars Edvinsson
- grid.411843.b0000 0004 0623 9987Division of Experimental Vascular Research, Department of Clinical Sciences, Lund University Hospital, Lund, Sweden ,grid.475435.4Department of Clinical Experimental Research, Glostrup Research Institute, Rigshospitalet, Glostrup, Denmark
| | - Karin Warfvinge
- grid.411843.b0000 0004 0623 9987Division of Experimental Vascular Research, Department of Clinical Sciences, Lund University Hospital, Lund, Sweden ,grid.475435.4Department of Clinical Experimental Research, Glostrup Research Institute, Rigshospitalet, Glostrup, Denmark
| |
Collapse
|
6
|
Noguri T, Hatakeyama D, Kitahashi T, Oka K, Ito E. Profile of dorsal root ganglion neurons: study of oxytocin expression. Mol Brain 2022; 15:44. [PMID: 35534837 PMCID: PMC9082903 DOI: 10.1186/s13041-022-00927-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 05/03/2022] [Indexed: 11/29/2022] Open
Abstract
Although dorsal root ganglion (DRG) neurons have been so far classified according to the difference in their fibers (Aβ, Aδ, and C), this classification should be further subdivided according to gene expression patterns. We focused on oxytocin (OXT) and its related receptors, because OXT plays a local role in DRG neurons. We measured the mRNA levels of OXT, OXT receptor (OXTR), vasopressin V1a receptor (V1aR), transient receptor potential cation channel subfamily V member 1 (TRPV1), and piezo-type mechanosensitive ion channel component 2 (Piezo2) in single DRG neurons by using real-time PCR, and then performed a cluster analysis. According to the gene expression patterns, DRG neurons were classified into 4 clusters: Cluster 1 was characterized mainly by Piezo2, Cluster 2 by TRPV1, Cluster 4 by OXTR, and neurons in Cluster 3 did not express any of the target genes. The cell body diameter of OXT-expressing neurons was significantly larger in Cluster 1 than in Cluster 2. These results suggest that OXT-expressing DRG neurons with small cell bodies (Cluster 2) and large cell bodies (Cluster 1) probably correspond to C-fiber neurons and Aβ-fiber neurons, respectively. Furthermore, the OXT-expressing neurons contained not only TRPV1 but also Piezo2, suggesting that OXT may be released by mechanical stimulation regardless of nociception. Thus, mechanoreception and nociception themselves may induce the autocrine/paracrine function of OXT in the DRG, contributing to alleviation of pain.
Collapse
Affiliation(s)
- Taisei Noguri
- Department of Biology, Waseda University, Tokyo, 162-8480, Japan
| | - Dai Hatakeyama
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, 770-8514, Japan
| | - Takashi Kitahashi
- Kushiro Nature Conservation Office, Ministry of the Environment, Kushiro, 085-8639, Japan
| | - Kotaro Oka
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, Yokohama, 223-8522, Japan
- Waseda Research Institute for Science and Engineering, Waseda University, Tokyo, 169-8555, Japan
- Graduate Institute of Medicine, School of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Etsuro Ito
- Department of Biology, Waseda University, Tokyo, 162-8480, Japan.
- Waseda Research Institute for Science and Engineering, Waseda University, Tokyo, 169-8555, Japan.
- Graduate Institute of Medicine, School of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
| |
Collapse
|
7
|
Higuchi Y, Arakawa H. Contrasting central and systemic effects of arginine-vasopressin on urinary marking behavior as a social signal in male mice. Horm Behav 2022; 141:105128. [PMID: 35180615 DOI: 10.1016/j.yhbeh.2022.105128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 01/28/2022] [Accepted: 01/29/2022] [Indexed: 01/14/2023]
Abstract
Arginine-vasopressin (AVP) is a neurohypophyseal peptide that plays a critical role in the regulation of social behavior in mammals. Neuronal AVP regulates male-specific social signaling processes, such as exocrine urinary scent deposition and marking behavior in mice. In the periphery, AVP is transported to the portal bloodstream and acts as an antidiuretic hormone. These AVP dynamics imply that the central role of AVP in the stimulation of urinary marking is dissociated with the peripheral role of AVP in the retention of osmotic conditions. Using male BALB/c mice as subjects, peripheral injection of AVP decreased urinary marking and urination. In contrast, a central infusion of AVP facilitated urinary marking with no effect on urination, while an antagonist of the AVP 1a receptor inhibited marking. Centrally AVP-injected mice also exhibited typical behaviors, such as hiccough/sneeze-like reactions and flash scratching, particularly when confronted with a stimulus mouse through a wire mesh screen. Significant expression of these typical reactions in these mice resulted in the disruption of marking deposition. Further analysis of AVP synthesis illustrated that AVP levels increased in the midbrain but not in the circulation immediately after the test, particularly when confronted with a stimulus mouse. The central AVP regulates urinary marking and other typical behaviors in a dose- and situation-dependent manner. The sequential process implies that centrally synthesized AVP may be secreted into the circulation following immediate neuronal processes, and then peripheral AVP acts as an antidiuretic hormone on urinary marking behavior.
Collapse
Affiliation(s)
- Yuki Higuchi
- Department of Systems Physiology, University of the Ryukyus School of Medicine, Okinawa, Japan
| | - Hiroyuki Arakawa
- Department of Systems Physiology, University of the Ryukyus School of Medicine, Okinawa, Japan.
| |
Collapse
|
8
|
Zhang C, Lin Y, Wu Q, Yan C, Wong MW, Zeng F, Zhu P, Bowes K, Lee K, Zhang X, Song Z, Lin S, Shi Y. Arcuate NPY is involved in salt‐induced hypertension via modulation of paraventricular vasopressin and brain‐derived neurotrophic factor. J Cell Physiol 2022; 237:2574-2588. [PMID: 35312067 PMCID: PMC9544553 DOI: 10.1002/jcp.30719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 02/24/2022] [Accepted: 03/07/2022] [Indexed: 12/17/2022]
Abstract
Chronic high salt intake is one of the leading causes of hypertension. Salt activates the release of the key neurotransmitters in the hypothalamus such as vasopressin to increase blood pressure, and neuropepetide Y (NPY) has been implicated in the modulation of vasopressin levels. NPY in the hypothalamic arcuate nucleus (Arc) is best known for its control in appetite and energy homeostasis, but it is unclear whether it is also involved in the development of salt‐induced hypertension. Here, we demonstrate that wild‐type mice given 2% NaCl salt water for 8 weeks developed hypertension which was associated with marked downregulation of NPY expression in the hypothalamic Arc as demonstrated in NPY‐GFP reporter mice as well as by in situ hybridization analysis. Furthermore, salt intake activates neurons in the hypothalamic paraventricular nucleus (PVN) where mRNA expression of brain‐derived neurotrophic factor (BDNF) and vasopressin was found to be upregulated, leading to elevated serum vasopressin levels. This finding suggests an inverse correlation between the Arc NPY level and expression of vasopressin and BDNF in the PVN. Specific restoration of NPY by injecting AAV‐Cre recombinase into the Arc only of the NPY‐targeted mutant mice carrying a loxP‐flanked STOP cassette reversed effects of salt intake on vasopressin and BDNF expression, leading to a normalization of salt‐dependent blood pressure. In summary, our study uncovers an important Arc NPY‐originated neuronal circuitry that could sense and respond to peripheral electrolyte signals and thereby regulate hypertension via vasopressin and BDNF in the PVN.
Collapse
Affiliation(s)
- Chen‐Liang Zhang
- Department of Cardiology, Southwest Hospital Third Military Medical University (Army Medical University) Chongqing China
| | - Yi‐Zhang Lin
- Department of Cardiology, Southwest Hospital Third Military Medical University (Army Medical University) Chongqing China
| | - Qi Wu
- Group of Neuroendocrinology, Diabetes and Metabolism Division Garvan Institute of Medical Research Sydney New South Wales Australia
- The Second Affiliated Hospital Fujian Medical University Quanzhou China
| | - Chenxu Yan
- Group of Neuroendocrinology, Diabetes and Metabolism Division Garvan Institute of Medical Research Sydney New South Wales Australia
- The Second Affiliated Hospital Fujian Medical University Quanzhou China
| | - Matthew Wai‐Kin Wong
- Group of Neuroendocrinology, Diabetes and Metabolism Division Garvan Institute of Medical Research Sydney New South Wales Australia
| | - Fan Zeng
- Department of Cardiology, Southwest Hospital Third Military Medical University (Army Medical University) Chongqing China
| | - Ping Zhu
- Department of Cardiology, Southwest Hospital Third Military Medical University (Army Medical University) Chongqing China
| | - Kelsey Bowes
- Group of Neuroendocrinology, Diabetes and Metabolism Division Garvan Institute of Medical Research Sydney New South Wales Australia
| | - Kailun Lee
- Group of Neuroendocrinology, Diabetes and Metabolism Division Garvan Institute of Medical Research Sydney New South Wales Australia
| | - Xuan Zhang
- Group of Neuroendocrinology, Diabetes and Metabolism Division Garvan Institute of Medical Research Sydney New South Wales Australia
| | - Zhi‐Yuan Song
- Department of Cardiology, Southwest Hospital Third Military Medical University (Army Medical University) Chongqing China
| | - Shu Lin
- Department of Cardiology, Southwest Hospital Third Military Medical University (Army Medical University) Chongqing China
- Group of Neuroendocrinology, Diabetes and Metabolism Division Garvan Institute of Medical Research Sydney New South Wales Australia
- The Second Affiliated Hospital Fujian Medical University Quanzhou China
| | - Yan‐Chuan Shi
- Group of Neuroendocrinology, Diabetes and Metabolism Division Garvan Institute of Medical Research Sydney New South Wales Australia
- St Vincent's Clinical School UNSW Sydney Sydney New South Wales Australia
| |
Collapse
|
9
|
Ueta Y. Transgenic approaches to opening up new fields of vasopressin and oxytocin research. J Neuroendocrinol 2021; 33:e13055. [PMID: 34713515 DOI: 10.1111/jne.13055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 10/07/2021] [Accepted: 10/07/2021] [Indexed: 11/29/2022]
Abstract
Transgenic approaches have been applied to generate transgenic rats that express exogenous genes in arginine vasopressin (AVP)- and oxytocin (OXT)-producing magnocellular neurosecretory cells (MNCs) of the hypothalamic-neurohypophyseal system (HNS). First, the fusion gene that expresses AVP-enhanced green fluorescent protein (eGFP) and OXT-monomeric red fluorescent protein 1 (mRFP1) was used to visualize AVP- and OXT-producing MNCs and their axon terminals in the HNS under fluorescence microscopy. Second, the fusion gene that expresses c-fos-eGFP and c-fos-mRFP1 was used to identify activated neurons physiologically in the central nervous system, including MNCs, circumventricular organs and spinal cord. In addition, AVP-eGFP x c-fos-mRFP1 and OXT-mRFP1 × c-fos-eGFP double transgenic rats were generated to identify activated AVP- and OXT-producing MNCs using appropriate physiological stimuli. Third, the fusion gene that expresses AVP-chanelrhodopsin 2 (ChR2)-eGFP and AVP-hM3Dq-mCherry was used to activate AVP- and OXT-producing MNCs by optogenetic and chemogenetic approaches. In each step, these transgenic approaches in rats have provided new insights on the physiological roles of AVP and OXT not only in the HNS, but also in the whole body. In this review, we summarize the transgenic rats that we generated, as well as related physiological findings.
Collapse
Affiliation(s)
- Yoichi Ueta
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| |
Collapse
|
10
|
Zheng H, Lim JY, Kim Y, Jung ST, Hwang SW. The role of oxytocin, vasopressin, and their receptors at nociceptors in peripheral pain modulation. Front Neuroendocrinol 2021; 63:100942. [PMID: 34437871 DOI: 10.1016/j.yfrne.2021.100942] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 08/01/2021] [Accepted: 08/17/2021] [Indexed: 10/20/2022]
Abstract
Oxytocin and vasopressin are neurohypophyseal hormones with sequence similarity and play a central role in bodily homeostatic regulation. Pain is currently understood to be an important phenotype that those two neurohormones strongly downregulate. Nociceptors, the first component of the ascending neural circuit for pain signals, have constantly been shown to be modulated by those peptides. The nociceptor modulation appears to be critical in pain attenuation, which has led to a gradual increase in scientific interest about their physiological processes and also drawn attention to their translational potentials. This review focused on what are recently understood and stay under investigation in the functional modulation of nociceptors by oxytocin and vasopressin. Effort to produce a nociceptor-specific view could help to construct a more systematic picture of the peripheral pain modulation by oxytocin and vasopressin.
Collapse
Affiliation(s)
- Haiyan Zheng
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul 02841, Korea; Department of Physiology, College of Medicine, Korea University, Seoul 02841, Korea
| | - Ji Yeon Lim
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul 02841, Korea; Department of Physiology, College of Medicine, Korea University, Seoul 02841, Korea
| | - Yerin Kim
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul 02841, Korea; Department of Physiology, College of Medicine, Korea University, Seoul 02841, Korea
| | - Sang Taek Jung
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul 02841, Korea
| | - Sun Wook Hwang
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul 02841, Korea; Department of Physiology, College of Medicine, Korea University, Seoul 02841, Korea.
| |
Collapse
|
11
|
Hormonal influences in migraine - interactions of oestrogen, oxytocin and CGRP. Nat Rev Neurol 2021; 17:621-633. [PMID: 34545218 DOI: 10.1038/s41582-021-00544-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2021] [Indexed: 02/07/2023]
Abstract
Migraine is ranked as the second highest cause of disability worldwide and the first among women aged 15-49 years. Overall, the incidence of migraine is threefold higher among women than men, though the frequency and severity of attacks varies during puberty, the menstrual cycle, pregnancy, the postpartum period and menopause. Reproductive hormones are clearly a key influence in the susceptibility of women to migraine. A fall in plasma oestrogen levels can trigger attacks of migraine without aura, whereas higher oestrogen levels seem to be protective. The basis of these effects is unknown. In this Review, we discuss what is known about sex hormones and their receptors in migraine-related areas in the CNS and the peripheral trigeminovascular pathway. We consider the actions of oestrogen via its multiple receptor subtypes and the involvement of oxytocin, which has been shown to prevent migraine attacks. We also discuss possible interactions of these hormones with the calcitonin gene-related peptide (CGRP) system in light of the success of anti-CGRP treatments. We propose a simple model to explain the hormone withdrawal trigger in menstrual migraine, which could provide a foundation for improved management and therapy for hormone-related migraine in women.
Collapse
|
12
|
Tabarean IV. Activation of Preoptic Arginine Vasopressin Neurons Induces Hyperthermia in Male Mice. Endocrinology 2021; 162:6010022. [PMID: 33249461 PMCID: PMC7758908 DOI: 10.1210/endocr/bqaa217] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Indexed: 11/19/2022]
Abstract
Arginine vasopressin (AVP) is a neuropeptide acting as a neuromodulator in the brain and plays multiple roles, including a thermoregulatory one. However, the cellular mechanisms of action are not fully understood. Carried out are patch clamp recordings and calcium imaging combined with pharmacological tools and single-cell RT-PCR to dissect the signaling mechanisms activated by AVP. Optogenetics combined with patch-clamp recordings were used to determine the neurochemical nature of these neurons. Also used is telemetry combined with chemogenetics to study the effect of activation of AVP neurons in thermoregulatory mechanisms. This article reports that AVP neurons in the medial preoptic (MPO) area release GABA and display thermosensitive firing activity. Their optogenetic stimulation results in a decrease of the firing rates of MPO pituitary adenylate cyclase-activating polypeptide (PACAP) neurons. Local application of AVP potently modulates the synaptic inputs of PACAP neurons, by activating neuronal AVPr1a receptors and astrocytic AVPr1b receptors. Chemogenetic activation of MPO AVP neurons induces hyperthermia. Chemogenetic activation of all AVP neurons in the brain similarly induces hyperthermia and, in addition, decreases the endotoxin activated fever as well as the stress-induced hyperthermia.
Collapse
Affiliation(s)
- Iustin V Tabarean
- Scintillon Institute, San Diego, CA, USA
- Correspondence: Iustin Tabarean, PhD, Scintillon Institute, 6868 Nancy Ridge Dr, San Diego, CA 92121, USA.
| |
Collapse
|
13
|
Warfvinge K, Krause DN, Maddahi A, Grell AS, Edvinsson JC, Haanes KA, Edvinsson L. Oxytocin as a regulatory neuropeptide in the trigeminovascular system: Localization, expression and function of oxytocin and oxytocin receptors. Cephalalgia 2020; 40:1283-1295. [PMID: 32486908 DOI: 10.1177/0333102420929027] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
BACKGROUND Recent clinical findings suggest that oxytocin could be a novel treatment for migraine. However, little is known about the role of this neuropeptide/hormone and its receptor in the trigeminovascular pathway. Here we determine expression, localization, and function of oxytocin and oxytocin receptors in rat trigeminal ganglia and targets of peripheral (dura mater and cranial arteries) and central (trigeminal nucleus caudalis) afferents. METHODS The methods include immunohistochemistry, messenger RNA measurements, quantitative PCR, release of calcitonin gene-related peptide and myography of arterial segments. RESULTS Oxytocin receptor mRNA was expressed in rat trigeminal ganglia and the receptor protein was localized in numerous small to medium-sized neurons and thick axons characteristic of A∂ sensory fibers. Double immunohistochemistry revealed only a small number of neurons expressing both oxytocin receptors and calcitonin gene-related peptide. In contrast, double immunostaining showed expression of the calcitonin gene-related peptide receptor component receptor activity-modifying protein 1 and oxytocin receptors in 23% of the small cells and in 47% of the medium-sized cells. Oxytocin immunofluorescence was observed only in trigeminal ganglia satellite glial cells. Oxytocin mRNA was below detection limit in the trigeminal ganglia. The trigeminal nucleus caudalis expressed mRNA for both oxytocin and its receptor. K+-evoked calcitonin gene-related peptide release from either isolated trigeminal ganglia or dura mater and it was not significantly affected by oxytocin (10 µM). Oxytocin directly constricted cranial arteries ex vivo (pEC50 ∼ 7); however, these effects were inhibited by the vasopressin V1A antagonist SR49059. CONCLUSION Oxytocin receptors are extensively expressed throughout the rat trigeminovascular system and in particular in trigeminal ganglia A∂ neurons and fibers, but no functional oxytocin receptors were demonstrated in the dura and cranial arteries. Thus, circulating oxytocin may act on oxytocin receptors in the trigeminal ganglia to affect nociception transmission. These effects may help explain hormonal influences in migraine and offer a novel way for treatment.
Collapse
Affiliation(s)
- Karin Warfvinge
- Department of Clinical Experimental Research, Glostrup Research Institute, Rigshospitalet, Glostrup, Denmark.,Division of Experimental Vascular Research, Department of Clinical Sciences, Lund University Hospital, Lund, Sweden
| | - Diana N Krause
- Division of Experimental Vascular Research, Department of Clinical Sciences, Lund University Hospital, Lund, Sweden.,Department of Pharmaceutical Sciences, College of Health Sciences, University of California at Irvine, Irvine, CA, USA
| | - Aida Maddahi
- Department of Clinical Experimental Research, Glostrup Research Institute, Rigshospitalet, Glostrup, Denmark
| | - Anne-Sofie Grell
- Department of Clinical Experimental Research, Glostrup Research Institute, Rigshospitalet, Glostrup, Denmark
| | - Jacob Ca Edvinsson
- Department of Clinical Experimental Research, Glostrup Research Institute, Rigshospitalet, Glostrup, Denmark.,Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kristian A Haanes
- Department of Clinical Experimental Research, Glostrup Research Institute, Rigshospitalet, Glostrup, Denmark
| | - Lars Edvinsson
- Department of Clinical Experimental Research, Glostrup Research Institute, Rigshospitalet, Glostrup, Denmark.,Division of Experimental Vascular Research, Department of Clinical Sciences, Lund University Hospital, Lund, Sweden
| |
Collapse
|
14
|
Nishimura H, Kawasaki M, Matsuura T, Suzuki H, Motojima Y, Baba K, Ohnishi H, Yamanaka Y, Fujitani T, Yoshimura M, Maruyama T, Ueno H, Sonoda S, Nishimura K, Tanaka K, Sanada K, Onaka T, Ueta Y, Sakai A. Acute Mono-Arthritis Activates the Neurohypophysial System and Hypothalamo-Pituitary Adrenal Axis in Rats. Front Endocrinol (Lausanne) 2020; 11:43. [PMID: 32117068 PMCID: PMC7026388 DOI: 10.3389/fendo.2020.00043] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 01/23/2020] [Indexed: 01/04/2023] Open
Abstract
Various types of acute/chronic nociceptive stimuli cause neuroendocrine responses such as activation of the hypothalamo-neurohypophysial [oxytocin (OXT) and arginine vasopressin (AVP)] system and hypothalamo-pituitary adrenal (HPA) axis. Chronic multiple-arthritis activates the OXT/AVP system, but the effects of acute mono-arthritis on the OXT/AVP system in the same animals has not been simultaneously evaluated. Further, AVP, not corticotropin-releasing hormone (CRH), predominantly activates the HPA axis in chronic multiple-arthritis, but the participation of AVP in HPA axis activation in acute mono-arthritis remains unknown. Therefore, we aimed to simultaneously evaluate the effects of acute mono-arthritis on the activity of the OXT/AVP system and the HPA axis. In the present study, we used an acute mono-arthritic model induced by intra-articular injection of carrageenan in a single knee joint of adult male Wistar rats. Acute mono-arthritis was confirmed by a significant increase in knee diameter in the carrageenan-injected knee and a significant decrease in the mechanical nociceptive threshold in the ipsilateral hind paw. Immunohistochemical analysis revealed that the number of Fos-immunoreactive (ir) cells in the ipsilateral lamina I-II of the dorsal horn was significantly increased, and the percentage of OXT-ir and AVP-ir neurons expressing Fos-ir in both sides of the supraoptic (SON) and paraventricular nuclei (PVN) was increased in acute mono-arthritic rats. in situ hybridization histochemistry revealed that levels of OXT mRNA and AVP hnRNA in the SON and PVN, CRH mRNA in the PVN, and proopiomelanocortin mRNA in the anterior pituitary were also significantly increased in acute mono-arthritic rats. Further, plasma OXT, AVP, and corticosterone levels were significantly increased in acute mono-arthritic rats. These results suggest that acute mono-arthritis activates ipsilateral nociceptive afferent pathways at the spinal level and causes simultaneous and integrative activation of the OXT/AVP system. In addition, the HPA axis is activated by both AVP and CRH in acute mono-arthritis with a distinct pattern compared to that in chronic multiple-arthritis.
Collapse
Affiliation(s)
- Haruki Nishimura
- Department of Orthopaedics Surgery, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Makoto Kawasaki
- Department of Orthopaedics Surgery, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
- *Correspondence: Makoto Kawasaki
| | - Takanori Matsuura
- Department of Orthopaedics Surgery, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Hitoshi Suzuki
- Department of Orthopaedics Surgery, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Yasuhito Motojima
- Department of Orthopaedics Surgery, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Kazuhiko Baba
- Department of Orthopaedics Surgery, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Hideo Ohnishi
- Department of Orthopaedics Surgery, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Yoshiaki Yamanaka
- Department of Orthopaedics Surgery, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Teruaki Fujitani
- Department of Orthopaedics Surgery, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Mitsuhiro Yoshimura
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Takashi Maruyama
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Hiromichi Ueno
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Satomi Sonoda
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Kazuaki Nishimura
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Kentarou Tanaka
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Kenya Sanada
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Tatsushi Onaka
- Division of Brain and Neurophysiology, Department of Physiology, Jichi Medical University, Shimotsuke, Japan
| | - Yoichi Ueta
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Akinori Sakai
- Department of Orthopaedics Surgery, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| |
Collapse
|
15
|
Nishimura H, Kawasaki M, Suzuki H, Matsuura T, Motojima Y, Ohnishi H, Yamanaka Y, Yoshimura M, Maruyama T, Saito R, Ueno H, Sonoda S, Nishimura K, Onaka T, Ueta Y, Sakai A. Neuropathic Pain Up-Regulates Hypothalamo-Neurohypophysial and Hypothalamo-Spinal Oxytocinergic Pathways in Oxytocin-Monomeric Red Fluorescent Protein 1 Transgenic Rat. Neuroscience 2019; 406:50-61. [PMID: 30826522 DOI: 10.1016/j.neuroscience.2019.02.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 02/18/2019] [Accepted: 02/19/2019] [Indexed: 12/22/2022]
Abstract
Despite the high incidence of neuropathic pain, its mechanism remains unclear. Oxytocin (OXT) is an established endogenous polypeptide produced in the supraoptic nucleus (SON) and paraventricular nucleus (PVN) of the hypothalamus. OXT, which is synthesized by OXT neurons in the SON and the magnocellular part of the PVN (mPVN), is delivered into the posterior pituitary (PP), then released into the systemic blood circulation. Meanwhile, OXT-containing neurosecretory cells in the parvocellular part of the PVN (pPVN) are directly projected to the spinal cord and are associated with sensory modulation. In this study, the OXT system in the hypothalamo-neurohypophysial and hypothalamo-spinal pathway was surveyed using a rat neuropathic pain model induced by partial sciatic nerve ligation (PSL). In the present study, we used transgenic rats expressing an OXT-monomeric red fluorescent protein 1 (mRFP1) fusion gene. In a neuropathic pain model, mechanical allodynia was observed, and glial cell activation was also confirmed via immunohistochemistry. In this neuropathic pain model, a significant increase in the OXT-mRFP1 expression was observed in the PP, the SON, mPVN, and pPVN. Furthermore, OXT-mRFP1 granules with positive fluorescent reaction were remarkably increased in laminae I and II of the ipsilateral dorsal horn. Although the plasma concentrations of OXT did not significantly change, a significant increase of the mRNA levels of OXT and mRFP1 in the SON, mPVN, and pPVN were observed. These results suggest that neuropathic pain induced by PSL upregulates hypothalamic OXT synthesis and transportation to the OXTergic axon terminals in the PP and spinal cord.
Collapse
Affiliation(s)
- Haruki Nishimura
- Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Makoto Kawasaki
- Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan.
| | - Hitoshi Suzuki
- Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Takanori Matsuura
- Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Yasuhito Motojima
- Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan; Department of Physiology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Hideo Ohnishi
- Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Yoshiaki Yamanaka
- Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Mitsuhiro Yoshimura
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Takashi Maruyama
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Reiko Saito
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Hiromichi Ueno
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Satomi Sonoda
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Kazuaki Nishimura
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Tatsushi Onaka
- Division of Brain and Neurophysiology, Department of Physiology, Jichi Medical University, 3311-1 Yakushiji, Shimono, 329-0498, Japan
| | - Yoichi Ueta
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Akinori Sakai
- Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| |
Collapse
|