1
|
Goralska J, Razny U, Gruca A, Zdzienicka A, Micek A, Dembinska-Kiec A, Solnica B, Malczewska-Malec M. Plasma Cytokeratin-18 Fragment Level Reflects the Metabolic Phenotype in Obesity. Biomolecules 2023; 13:biom13040675. [PMID: 37189422 DOI: 10.3390/biom13040675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/05/2023] [Accepted: 04/12/2023] [Indexed: 05/17/2023] Open
Abstract
There is growing interest in the non-invasive identification and monitoring of the outcome of liver damage in obese patients. Plasma cytokeratin-18 (CK-18) fragment levels correlate with the magnitude of hepatocyte apoptosis and have recently been proposed to independently predict the presence of non-alcoholic steatohepatitis (NASH). The aim of the study was to analyze the associations of CK-18 with obesity and related complications: insulin resistance, impaired lipid metabolism and the secretion of hepatokines, adipokines and pro-inflammatory cytokines. The study involved 151 overweight and obese patients (BMI 25-40), without diabetes, dyslipidemia or apparent liver disease. Liver function was assessed based on alanine aminotransferase (ALT), gamma-glutamyl transferase (GGT) and the fatty liver index (FLI). CK-18 M30 plasma levels, FGF-21, FGF-19 and cytokines were determined by ELISA. CK-18 values >150 U/l were accompanied by high ALT, GGT and FLI, insulin resistance, postprandial hypertriglyceridemia, elevated FGF-21 and MCP-1 and decreased adiponectin. ALT activity was the strongest independent factor influencing high CK-18 plasma levels, even after an adjustment for age, sex and BMI [β coefficient (95%CI): 0.40 (0.19-0.61)]. In conclusion, the applied CK-18 cut-off point at 150 U/l allows to distinguish between two metabolic phenotypes in obesity.
Collapse
Affiliation(s)
- Joanna Goralska
- Department of Clinical Biochemistry, Jagiellonian University Medical College, Skawinska 8, 31-066 Krakow, Poland
| | - Urszula Razny
- Department of Clinical Biochemistry, Jagiellonian University Medical College, Skawinska 8, 31-066 Krakow, Poland
| | - Anna Gruca
- Department of Clinical Biochemistry, Jagiellonian University Medical College, Skawinska 8, 31-066 Krakow, Poland
| | - Anna Zdzienicka
- Department of Clinical Biochemistry, Jagiellonian University Medical College, Skawinska 8, 31-066 Krakow, Poland
| | - Agnieszka Micek
- Institute of Nursing and Midwifery, Jagiellonian University Medical College; Michałowskiego 12, 31-126 Krakow, Poland
| | - Aldona Dembinska-Kiec
- Department of Clinical Biochemistry, Jagiellonian University Medical College, Skawinska 8, 31-066 Krakow, Poland
| | - Bogdan Solnica
- Department of Clinical Biochemistry, Jagiellonian University Medical College, Skawinska 8, 31-066 Krakow, Poland
| | - Malgorzata Malczewska-Malec
- Department of Clinical Biochemistry, Jagiellonian University Medical College, Skawinska 8, 31-066 Krakow, Poland
| |
Collapse
|
2
|
Karmakar E, Das N, Mukherjee B, Das P, Mukhopadhyay S, Roy SS. Lipid-induced alteration in retinoic acid signaling leads to mitochondrial dysfunction in HepG2 and Huh7 cells. Biochem Cell Biol 2023. [PMID: 36787544 DOI: 10.1139/bcb-2022-0266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
Abstract
A surfeit of mitochondrial reactive oxygen species (ROS) and inflammation serve as obligatory mediators of lipid-associated hepatocellular maladies. While retinoid homeostasis is essential in restoring systemic energy balance, its role in hepatic mitochondrial function remains elusive. The role of lecithin-retinol acyltransferase (LRAT) in maintenance of retinoid homeostasis is appreciated earlier; however, its role in modulating retinoic acid (RA) bioavailability upon lipid-imposition is unexplored. We identified LRAT overexpression in high-fat diet (HFD)-fed rats and palmitate-treated hepatoma cells. Elevation in LRAT expression depletes RA production and deregulates RA signaling. This altered RA metabolism enhances fat accumulation, accompanied by inflammation that leads to impaired mitochondrial function through enhanced ROS generation. Hence, LRAT inhibition could be a novel approach preventing lipid-induced mitochondrial dysfunction in hepatoma cells.
Collapse
Affiliation(s)
- Eshani Karmakar
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata, 700032, India
| | - Nabanita Das
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata, 700032, India.,Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli, Bijnor-sisendi Road, Lucknow, Uttar Pradesh, 226002, India
| | - Bidisha Mukherjee
- Department of Endocrinology and Metabolism, Institute of Post Graduate Medical Education and Research, 244, A.J.C. Bose Road, Kolkata, 700020, India
| | - Prosenjit Das
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata, 700032, India
| | - Satinath Mukhopadhyay
- Department of Endocrinology and Metabolism, Institute of Post Graduate Medical Education and Research, 244, A.J.C. Bose Road, Kolkata, 700020, India
| | - Sib Sankar Roy
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata, 700032, India.,Academy of Scientific & Innovative Research (AcSIR), India
| |
Collapse
|
3
|
PPARα in the Epigenetic Driver Seat of NAFLD: New Therapeutic Opportunities for Epigenetic Drugs? Biomedicines 2022; 10:biomedicines10123041. [PMID: 36551797 PMCID: PMC9775974 DOI: 10.3390/biomedicines10123041] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/11/2022] [Accepted: 11/16/2022] [Indexed: 11/27/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a growing epidemic and the most common cause of chronic liver disease worldwide. It consists of a spectrum of liver disorders ranging from simple steatosis to NASH which predisposes patients to further fibrosis, cirrhosis and even hepatocarcinoma. Despite much research, an approved treatment is still lacking. Finding new therapeutic targets has therefore been a main priority. Known as a main regulator of the lipid metabolism and highly expressed in the liver, the nuclear receptor peroxisome proliferator-activated receptor-α (PPARα) has been identified as an attractive therapeutic target. Since its expression is silenced by DNA hypermethylation in NAFLD patients, many research strategies have aimed to restore the expression of PPARα and its target genes involved in lipid metabolism. Although previously tested PPARα agonists did not ameliorate the disease, current research has shown that PPARα also interacts and regulates epigenetic DNMT1, JMJD3, TET and SIRT1 enzymes. Moreover, there is a growing body of evidence suggesting the orchestrating role of epigenetics in the development and progression of NAFLD. Therefore, current therapeutic strategies are shifting more towards epigenetic drugs. This review provides a concise overview of the epigenetic regulation of NAFLD with a focus on PPARα regulation and highlights recently identified epigenetic interaction partners of PPARα.
Collapse
|
4
|
Liver Protective Effect of Fenofibrate in NASH/NAFLD Animal Models. PPAR Res 2022; 2022:5805398. [PMID: 35754743 PMCID: PMC9232374 DOI: 10.1155/2022/5805398] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/19/2022] [Accepted: 06/02/2022] [Indexed: 12/12/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is initiated by excessive fat buildup in the liver, affecting around 35% of the world population. Various circumstances contribute to the initiation and progression of NAFLD, and it encompasses a wide range of disorders, from simple steatosis to nonalcoholic steatohepatitis (NASH), cirrhosis, and liver cancer. Although several treatments have been proposed, there is no definitive cure for NAFLD. In recent decades, several medications related to other metabolic disorders have been evaluated in preclinical studies and in clinical trials due to the correlation of NAFLD with other metabolic diseases. Fenofibrate is a fibrate drug approved for dyslipidemia that could be used for modulation of hepatic fat accumulation, targeting peroxisome proliferator-activator receptors, and de novo lipogenesis. This drug offers potential therapeutic efficacy for NAFLD due to its capacity to decrease the accumulation of hepatic lipids, as well as its antioxidant, anti-inflammatory, and antifibrotic properties. To better elucidate the pathophysiological processes underlying NAFLD, as well as to test therapeutic agents/interventions, experimental animal models have been extensively used. In this article, we first reviewed experimental animal models that have been used to evaluate the protective effects of fenofibrate on NAFLD/NASH. Next, we investigated the impact of fenofibrate on the hepatic microcirculation in NAFLD and then summarized the beneficial effects of fenofibrate, as compared to other drugs, for the treatment of NAFLD. Lastly, we discuss possible adverse side effects of fenofibrate on the liver.
Collapse
|
5
|
Mahmoudi A, Jamialahmadi T, Johnston TP, Sahebkar A. Impact of fenofibrate on NAFLD/NASH: A genetic perspective. Drug Discov Today 2022; 27:2363-2372. [PMID: 35569762 DOI: 10.1016/j.drudis.2022.05.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/13/2022] [Accepted: 05/09/2022] [Indexed: 11/26/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD), caused by an accumulation of fat deposits in hepatocytes, prevalently affects at least one-third of the world's population. The progression of this disorder can potentially include a spectrum of consecutive stages, specifically: steatosis, steatohepatitis and cirrhosis. Fenofibrate exhibits potential therapeutic efficacy for NAFLD owing to several properties, which include antioxidant, apoptotic, anti-inflammatory and antifibrotic activity. In the present review, we discuss the direct or indirect impact of fenofibrate on genes involved at various stages in the progression of NAFLD. Moreover, we have reviewed studies that compare fenofibrate with other drugs in treating NAFLD, as well as recent clinical trials, in an attempt to identify reliable scientific and clinical evidence concerning the therapeutic effects and benefits of fenofibrate on NAFLD. Teaser.
Collapse
Affiliation(s)
- Ali Mahmoudi
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Iran
| | - Tannaz Jamialahmadi
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Thomas P Johnston
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
6
|
Lange NF, Graf V, Caussy C, Dufour JF. PPAR-Targeted Therapies in the Treatment of Non-Alcoholic Fatty Liver Disease in Diabetic Patients. Int J Mol Sci 2022; 23:ijms23084305. [PMID: 35457120 PMCID: PMC9028563 DOI: 10.3390/ijms23084305] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/06/2022] [Accepted: 04/08/2022] [Indexed: 02/06/2023] Open
Abstract
Peroxisome proliferator-activated receptors (PPAR), ligand-activated transcription factors of the nuclear hormone receptor superfamily, have been identified as key metabolic regulators in the liver, skeletal muscle, and adipose tissue, among others. As a leading cause of liver disease worldwide, non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH) cause a significant burden worldwide and therapeutic strategies are needed. This review provides an overview of the evidence on PPAR-targeted treatment of NAFLD and NASH in individuals with type 2 diabetes mellitus. We considered current evidence from clinical trials and observational studies as well as the impact of treatment on comorbid metabolic conditions such as obesity, dyslipidemia, and cardiovascular disease. Future areas of research, such as possible sexually dimorphic effects of PPAR-targeted therapies, are briefly reviewed.
Collapse
Affiliation(s)
- Naomi F. Lange
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
- Graduate School for Health Sciences, University of Bern, 3012 Bern, Switzerland
- Correspondence: (N.F.L.); (J.-F.D.)
| | - Vanessa Graf
- Department of Diabetes, Endocrinology, Clinical Nutrition, and Metabolism, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland;
| | - Cyrielle Caussy
- Univ Lyon, CarMen Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, 69495 Pierre-Bénite, France;
- Département Endocrinologie, Diabète et Nutrition, Hôpital Lyon Sud, Hospices Civils de Lyon, 69495 Pierre-Bénite, France
| | - Jean-François Dufour
- Centre des Maladies Digestives, 1003 Lausanne, Switzerland
- Swiss NASH Foundation, 3011 Bern, Switzerland
- Correspondence: (N.F.L.); (J.-F.D.)
| |
Collapse
|
7
|
Pessoa J, Teixeira J. Cytoskeleton alterations in non-alcoholic fatty liver disease. Metabolism 2022; 128:155115. [PMID: 34974078 DOI: 10.1016/j.metabol.2021.155115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/08/2021] [Accepted: 12/21/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Due to its extremely high prevalence and severity, non-alcoholic fatty liver disease (NALFD) is a serious health and economic concern worldwide. Developing effective methods of diagnosis and therapy demands a deeper understanding of its molecular basis. One of the strategies in such an endeavor is the analysis of alterations in the morphology of liver cells. Such alterations, widely reported in NAFLD patients and disease models, are related to the cytoskeleton. Therefore, the fate of the cytoskeleton components is useful to uncover the molecular basis of NAFLD, to further design innovative approaches for its diagnosis and therapy. MAIN FINDINGS Several cytoskeleton proteins are up-regulated in liver cells of NAFLD patients. Under pathological conditions, keratin 18 is released from hepatocytes and its detection in the blood emerges as a non-invasive diagnosis tool. α-Smooth muscle actin is up-regulated in hepatic stellate cells and its down-regulation has been widely tested as a potential NALFD therapeutic approach. Other cytoskeleton proteins, such as vimentin, are also up-regulated. CONCLUSIONS NAFLD progression involves alterations in expression levels of proteins that build the liver cytoskeleton or associate with it. These findings provide a timely opportunity of developing novel approaches for NAFLD diagnosis and therapy.
Collapse
Affiliation(s)
- João Pessoa
- CNC - Center for Neuroscience and Cell Biology, CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.
| | - José Teixeira
- CNC - Center for Neuroscience and Cell Biology, CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
8
|
Priming, Triggering, Adaptation and Senescence (PTAS): A Hypothesis for a Common Damage Mechanism of Steatohepatitis. Int J Mol Sci 2021; 22:ijms222212545. [PMID: 34830427 PMCID: PMC8624051 DOI: 10.3390/ijms222212545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 11/17/2022] Open
Abstract
Understanding the pathomechanism of steatohepatitis (SH) is hampered by the difficulty of distinguishing between causes and consequences, by the broad spectrum of aetiologies that can produce the phenotype, and by the long time-span during which SH develops, often without clinical symptoms. We propose that SH develops in four phases with transitions: (i) priming lowers stress defence; (ii) triggering leads to acute damage; (iii) adaptation, possibly associated with cellular senescence, mitigates tissue damage, leads to the phenotype, and preserves liver function at a lower level; (iv) finally, senescence prevents neoplastic transformation but favours fibrosis (cirrhosis) and inflammation and further reduction in liver function. Escape from senescence eventually leads to hepatocellular carcinoma. This hypothesis for a pathomechanism of SH is supported by clinical and experimental observations. It allows organizing the various findings to uncover remaining gaps in our knowledge and, finally, to provide possible diagnostic and intervention strategies for each stage of SH development.
Collapse
|
9
|
Somlapura M, Gottschalk B, Lahiri P, Kufferath I, Pabst D, Rülicke T, Graier WF, Denk H, Zatloukal K. Different Roles of p62 (SQSTM1) Isoforms in Keratin-Related Protein Aggregation. Int J Mol Sci 2021; 22:ijms22126227. [PMID: 34207662 PMCID: PMC8227998 DOI: 10.3390/ijms22126227] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/01/2021] [Accepted: 06/05/2021] [Indexed: 12/03/2022] Open
Abstract
p62/Sequestosome-1 (p62) is a multifunctional adaptor protein and is also a constant component of disease-associated protein aggregates, including Mallory–Denk bodies (MDBs), in steatohepatitis and hepatocellular carcinoma. We investigated the interaction of the two human p62 isoforms, p62-H1 (full-length isoform) and p62-H2 (partly devoid of PB1 domain), with keratins 8 and 18, the major components of MDBs. In human liver, p62-H2 is expressed two-fold higher compared to p62-H1 at the mRNA level and is present in slightly but not significantly higher concentrations at the protein level. Co-transfection studies in CHO-K1 cells, PLC/PRF/5 cells as well as p62− total-knockout and wild-type mouse fibroblasts revealed marked differences in the cytoplasmic distribution and aggregation behavior of the two p62 isoforms. Transfection-induced overexpression of p62-H2 generated large cytoplasmic aggregates in PLC/PRF/5 and CHO-K1 cells that mostly co-localized with transfected keratins resembling MDBs or (transfection without keratins) intracytoplasmic hyaline bodies. In fibroblasts, however, transfected p62-H2 was predominantly diffusely distributed in the cytoplasm. Aggregation of p62-H2 and p62ΔSH2 as well as the interaction with K8 (but not with K18) involves acquisition of cross-β-sheet conformation as revealed by staining with luminescent conjugated oligothiophenes. These results indicate the importance of considering p62 isoforms in protein aggregation disease.
Collapse
Affiliation(s)
- Meghana Somlapura
- Diagnostic and Research Center for Molecular Biomedicine, Institute of Pathology, Medical University of Graz, 8010 Graz, Austria; (M.S.); (I.K.); (D.P.); (H.D.)
| | - Benjamin Gottschalk
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria; (B.G.); (W.F.G.)
| | - Pooja Lahiri
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India;
| | - Iris Kufferath
- Diagnostic and Research Center for Molecular Biomedicine, Institute of Pathology, Medical University of Graz, 8010 Graz, Austria; (M.S.); (I.K.); (D.P.); (H.D.)
| | - Daniela Pabst
- Diagnostic and Research Center for Molecular Biomedicine, Institute of Pathology, Medical University of Graz, 8010 Graz, Austria; (M.S.); (I.K.); (D.P.); (H.D.)
| | - Thomas Rülicke
- Department of Biomedical Sciences, University of Veterinary Medicine Vienna, 1210 Vienna, Austria;
| | - Wolfgang F. Graier
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria; (B.G.); (W.F.G.)
| | - Helmut Denk
- Diagnostic and Research Center for Molecular Biomedicine, Institute of Pathology, Medical University of Graz, 8010 Graz, Austria; (M.S.); (I.K.); (D.P.); (H.D.)
| | - Kurt Zatloukal
- Diagnostic and Research Center for Molecular Biomedicine, Institute of Pathology, Medical University of Graz, 8010 Graz, Austria; (M.S.); (I.K.); (D.P.); (H.D.)
- Correspondence: ; Tel.: +43-(0)316-385-71731
| |
Collapse
|
10
|
Peroxisome proliferator-activated receptors in the pathogenesis and therapies of liver fibrosis. Pharmacol Ther 2020; 222:107791. [PMID: 33321113 DOI: 10.1016/j.pharmthera.2020.107791] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 12/04/2020] [Indexed: 12/12/2022]
Abstract
Liver fibrosis is a dynamic wound-healing process associated with the deposition of extracellular matrix produced by myofibroblasts. HSCs activation, inflammation, oxidative stress, steatosis and aging play critical roles in the progression of liver fibrosis, which is correlated with the regulation of the peroxisome proliferator-activated receptor (PPAR) pathway. As nuclear receptors, PPARs reduce inflammatory response, regulate lipid metabolism, and inhibit fibrogenesis in the liver associated with aging. Thus, PPAR ligands have been investigated as possible therapeutic agents. Mounting evidence indicated that some PPAR agonists could reverse steatohepatitis and liver fibrosis. Consequently, targeting PPARs might be a promising and novel therapeutic option against liver fibrosis. This review summarizes recent studies on the role of PPARs on the pathogenesis and treatment of liver fibrosis.
Collapse
|
11
|
Fougerat A, Montagner A, Loiseau N, Guillou H, Wahli W. Peroxisome Proliferator-Activated Receptors and Their Novel Ligands as Candidates for the Treatment of Non-Alcoholic Fatty Liver Disease. Cells 2020; 9:E1638. [PMID: 32650421 PMCID: PMC7408116 DOI: 10.3390/cells9071638] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/26/2020] [Accepted: 07/04/2020] [Indexed: 12/11/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a major health issue worldwide, frequently associated with obesity and type 2 diabetes. Steatosis is the initial stage of the disease, which is characterized by lipid accumulation in hepatocytes, which can progress to non-alcoholic steatohepatitis (NASH) with inflammation and various levels of fibrosis that further increase the risk of developing cirrhosis and hepatocellular carcinoma. The pathogenesis of NAFLD is influenced by interactions between genetic and environmental factors and involves several biological processes in multiple organs. No effective therapy is currently available for the treatment of NAFLD. Peroxisome proliferator-activated receptors (PPARs) are nuclear receptors that regulate many functions that are disturbed in NAFLD, including glucose and lipid metabolism, as well as inflammation. Thus, they represent relevant clinical targets for NAFLD. In this review, we describe the determinants and mechanisms underlying the pathogenesis of NAFLD, its progression and complications, as well as the current therapeutic strategies that are employed. We also focus on the complementary and distinct roles of PPAR isotypes in many biological processes and on the effects of first-generation PPAR agonists. Finally, we review novel and safe PPAR agonists with improved efficacy and their potential use in the treatment of NAFLD.
Collapse
Affiliation(s)
- Anne Fougerat
- Institut National de la Recherche Agronomique (INRAE), ToxAlim, UMR1331 Toulouse, France; (A.M.); (N.L.); (H.G.)
| | - Alexandra Montagner
- Institut National de la Recherche Agronomique (INRAE), ToxAlim, UMR1331 Toulouse, France; (A.M.); (N.L.); (H.G.)
- Institut National de la Santé et de la Recherche Médicale (Inserm), Institute of Metabolic and Cardiovascular Diseases, UMR1048 Toulouse, France
- Institute of Metabolic and Cardiovascular Diseases, University of Toulouse, UMR1048 Toulouse, France
| | - Nicolas Loiseau
- Institut National de la Recherche Agronomique (INRAE), ToxAlim, UMR1331 Toulouse, France; (A.M.); (N.L.); (H.G.)
| | - Hervé Guillou
- Institut National de la Recherche Agronomique (INRAE), ToxAlim, UMR1331 Toulouse, France; (A.M.); (N.L.); (H.G.)
| | - Walter Wahli
- Institut National de la Recherche Agronomique (INRAE), ToxAlim, UMR1331 Toulouse, France; (A.M.); (N.L.); (H.G.)
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Clinical Sciences Building, 11 Mandalay Road, Singapore 308232, Singapore
- Center for Integrative Genomics, Université de Lausanne, Le Génopode, CH-1015 Lausanne, Switzerland
| |
Collapse
|