1
|
Li Y, Li Y, Wang Y, Yang Y, Qi M, Su T, Li R, Liu D, Gao Y, Qi Y, Qiu L. Flg22-facilitated PGPR colonization in root tips and control of root rot. MOLECULAR PLANT PATHOLOGY 2024; 25:e70026. [PMID: 39497329 PMCID: PMC11534644 DOI: 10.1111/mpp.70026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 10/15/2024] [Accepted: 10/20/2024] [Indexed: 11/08/2024]
Abstract
Plant root border cells (RBCs) prevent the colonization of plant growth-promoting rhizobacteria (PGPR) at the root tip, rendering the PGPR unable to effectively control pathogens infecting the root tip. In this study, we engineered four strains of Pseudomonas sp. UW4, a typical PGPR strain, each carrying an enhanced green fluorescent protein (EGFP)-expressing plasmid. The UW4E strain harboured only the plasmid, whereas the UW4E-flg22 strain expressed a secreted EGFP-Flg22 fusion protein, the UW4E-Flg(flg22) strain expressed a non-secreted Flg22, and the UW4E-flg22-D strain expressed a secreted Flg22-DNase fusion protein. UW4E-flg22 and UW4E-flg22-D, which secreted Flg22, induced an immune response in wheat RBCs and colonized wheat root tips, whereas the other strains, which did not secrete Flg22, failed to elicit this response and did not colonize wheat root tips. The immune response revealed that wheat RBCs synthesized mucilage, extracellular DNA, and reactive oxygen species. Furthermore, the Flg22-secreting strains showed a 33.8%-93.8% higher colonization of wheat root tips and reduced the root rot incidence caused by Rhizoctonia solani and Fusarium pseudograminearum by 24.6%-35.7% compared to the non-Flg22-secreting strains in pot trials. There was a negative correlation between the incidence of wheat root rot and colonization of wheat root tips by these strains. In contrast, wheat root length and dry weight were positively correlated with the colonization of wheat root tips by these strains. These results demonstrate that engineered secretion of Flg22 by PGPR is an effective strategy for controlling root rot and improving plant growth.
Collapse
Affiliation(s)
- Yanan Li
- College of Life SciencesHenan Agricultural University, Key Laboratory of Enzyme Engineering of Agricultural Microbiology, Ministry of Agriculture and Rural AffairsZhengzhouChina
| | - Yafei Li
- College of Life SciencesHenan Agricultural University, Key Laboratory of Enzyme Engineering of Agricultural Microbiology, Ministry of Agriculture and Rural AffairsZhengzhouChina
| | - Yuepeng Wang
- College of Life SciencesHenan Agricultural University, Key Laboratory of Enzyme Engineering of Agricultural Microbiology, Ministry of Agriculture and Rural AffairsZhengzhouChina
| | - Yanqing Yang
- College of Life SciencesHenan Agricultural University, Key Laboratory of Enzyme Engineering of Agricultural Microbiology, Ministry of Agriculture and Rural AffairsZhengzhouChina
| | - Man Qi
- College of Life SciencesHenan Agricultural University, Key Laboratory of Enzyme Engineering of Agricultural Microbiology, Ministry of Agriculture and Rural AffairsZhengzhouChina
| | - Tongfu Su
- College of SciencesHenan Agricultural UniversityZhengzhouChina
| | - Rui Li
- College of Life SciencesHenan Agricultural University, Key Laboratory of Enzyme Engineering of Agricultural Microbiology, Ministry of Agriculture and Rural AffairsZhengzhouChina
| | - Dehai Liu
- Institute of Biology Co., Ltd., Henan Academy of ScienceZhengzhouChina
| | - Yuqian Gao
- College of Life SciencesHenan Agricultural University, Key Laboratory of Enzyme Engineering of Agricultural Microbiology, Ministry of Agriculture and Rural AffairsZhengzhouChina
| | - Yuancheng Qi
- College of Life SciencesHenan Agricultural University, Key Laboratory of Enzyme Engineering of Agricultural Microbiology, Ministry of Agriculture and Rural AffairsZhengzhouChina
| | - Liyou Qiu
- College of Life SciencesHenan Agricultural University, Key Laboratory of Enzyme Engineering of Agricultural Microbiology, Ministry of Agriculture and Rural AffairsZhengzhouChina
| |
Collapse
|
2
|
Chaudhary S, Ricardo RMN, Dubey M, Jensen DF, Grenville-Briggs L, Karlsson M. Genotypic variation in winter wheat for fusarium foot rot and its biocontrol using Clonostachys rosea. G3 (BETHESDA, MD.) 2024; 14:jkae240. [PMID: 39373570 PMCID: PMC11631536 DOI: 10.1093/g3journal/jkae240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/24/2024] [Accepted: 10/04/2024] [Indexed: 10/08/2024]
Abstract
Biological control to manage plant diseases is an environmentally friendly alternative to using chemical pesticides. However, little is known about the role of genetic variation in plants affecting the efficacy of biological control agents (BCAs). The aim of this study was to explore the genetic variation in winter wheat for disease susceptibility to fusarium foot rot caused by Fusarium graminearum and variation in biocontrol efficacy of the fungal BCA Clonostachys rosea to control the disease. In total, 190 winter wheat genotypes were evaluated under controlled conditions in two treatments, i.e. (i) F. graminearum (Fg) and (ii) F. graminearum infection on C. rosea treated seeds (FgCr). Alongside disease severity, plant growth-related traits such as shoot length and root length were also measured. Comparison of genotypes between the two treatments enabled the dissection of genotypic variation for disease resistance and C. rosea efficacy. The study revealed significant variation among plant genotypes for fusarium foot rot susceptibility and other growth traits in treatment Fg. Moreover, significant variation in C. rosea efficacy was also observed in genotype contrasts between the two treatments for all traits. Using a 20K marker array, a genome-wide association study was also performed. We identified a total of 18 significant marker-trait associations for disease resistance and C. rosea efficacy for all the traits. Moreover, the markers associated with disease resistance and C. rosea efficacy were not co-localized, highlighting the independent inheritance of these traits, which can facilitate simultaneous selection for cultivar improvement.
Collapse
Affiliation(s)
- Sidhant Chaudhary
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala SE-75007, Sweden
| | | | - Mukesh Dubey
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala SE-75007, Sweden
| | - Dan Funck Jensen
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala SE-75007, Sweden
| | - Laura Grenville-Briggs
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Lomma SE-23422, Sweden
| | - Magnus Karlsson
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala SE-75007, Sweden
| |
Collapse
|
3
|
Chibuogwu MO, Groves CL, Mueller B, Smith DL. Effect of Fungicide Application and Corn Hybrid Class on the Presence of Fusarium graminearum and the Concentration of Deoxynivalenol in Ear and Stalk Parts of Corn ( Zea mays) Used for Silage. PLANT DISEASE 2024; 108:2090-2095. [PMID: 38393756 DOI: 10.1094/pdis-12-23-2662-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
In Wisconsin, the use of brown midrib (BMR) corn (Zea mays) hybrids for ensiling and subsequent feeding to dairy cows is quite common. The overall milk production from cows fed silage from BMR hybrids is typically higher than those fed silage made from dual-purpose hybrids. Gibberella diseases (ear and stalk rot) caused by Gibberella zeae (anamorph; Fusarium graminearum) and the accompanying accumulation of the mycotoxin deoxynivalenol (DON) can be significant issues during the field production of BMR hybrids. The work presented here aimed to understand the role of hybrid class on the distribution of F. graminearum DNA and DON in the ear and stalk parts of corn for silage. An ear and stalk partitioned sample experiment was conducted on silage corn from field trials in Arlington, Wisconsin, in 2020 and 2021. The trials were arranged in a randomized complete block design in both years, including one BMR hybrid, one dual-purpose hybrid, and seven fungicide application regimes. Paired ear and stalk samples were physically separated, dried, and ground at harvest before determining the concentration of F. graminearum DNA and DON in each sample. Across both years, the main effects of hybrid, treatment, and plant part were not significant (P > 0.1) on DON concentration. However, the hybrid-by-plant part interaction effect was significant (P < 0.01). Ears of the BMR hybrid accumulated the most DON, whereas the dual-purpose hybrid ears had the lowest DON concentration. The concentrations of DON and F. graminearum DNA were significantly (P < 0.01) and highly correlated in the ear (r = 0.73) but not in the stalk (r = 0.09, P = 0.33). These findings suggest that DON accumulation in the corn ear is a major contributor in the difference observed in the total DON between the hybrid classes. Therefore, growers and researchers are encouraged to focus production and breeding on hybrids in both classes that accumulate less DON in ears, resulting in lower total DON in corn chopped for silage.
Collapse
Affiliation(s)
| | - Carol L Groves
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI
| | - Brian Mueller
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI
| | - Damon L Smith
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI
| |
Collapse
|
4
|
Phetluan W, Wanchana S, Aesomnuk W, Adams J, Pitaloka MK, Ruanjaichon V, Vanavichit A, Toojinda T, Gray JE, Arikit S. Candidate genes affecting stomatal density in rice (Oryza sativa L.) identified by genome-wide association. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 330:111624. [PMID: 36737006 DOI: 10.1016/j.plantsci.2023.111624] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/18/2022] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Stomata regulate photosynthesis and water loss. They have been an active subject of research for centuries, but our knowledge of the genetic components that regulate stomatal development in crops remains very limited in comparison to the model plant Arabidopsis thaliana. Leaf stomatal density was found to vary by over 2.5-fold across a panel of 235 rice accessions. Using GWAS, we successfully identified five different QTLs associated with stomatal density on chromosomes 2, 3, 9, and 12. Forty-two genes were identified within the haplotype blocks corresponding to these QTLs. Of these, nine genes contained haplotypes that were associated with different stomatal densities. These include a gene encoding a trehalose-6-phosphate synthase, an enzyme that has previously been associated with altered stomatal density in Arabidopsis, and genes encoding a B-BOX zinc finger family protein, a leucine-rich repeat family protein, and the 40 S ribosomal protein S3a, none of which have previously been linked to stomatal traits. We investigated further and show that a closely related B-BOX protein regulates stomatal development in Arabidopsis. The results of this study provide information on genetic associations with stomatal density in rice. The QTLs and candidate genes may be useful in future breeding programs for low or high stomatal density and, consequently, improved photosynthetic capacity, water use efficiency, or drought tolerance.
Collapse
Affiliation(s)
- Watchara Phetluan
- Center for Agricultural Biotechnology, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand; Center of Excellence on Agricultural Biotechnology: (AG-BIO/MHESI), Bangkok 10900, Thailand.
| | - Samart Wanchana
- National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Pahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand.
| | - Wanchana Aesomnuk
- National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Pahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand.
| | - Julian Adams
- Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, Sheffield S102TN, United Kingdom.
| | - Mutiara K Pitaloka
- Rice Science Center, Kasetsart University, Kamphaeng Saen, Nakhon Pathom 73140, Thailand.
| | - Vinitchan Ruanjaichon
- National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Pahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand.
| | - Apichart Vanavichit
- Rice Science Center, Kasetsart University, Kamphaeng Saen, Nakhon Pathom 73140, Thailand; Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Nakhon Pathom 73140, Thailand.
| | - Theerayut Toojinda
- National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Pahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand.
| | - Julie E Gray
- Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, Sheffield S102TN, United Kingdom.
| | - Siwaret Arikit
- Rice Science Center, Kasetsart University, Kamphaeng Saen, Nakhon Pathom 73140, Thailand; Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Nakhon Pathom 73140, Thailand.
| |
Collapse
|
5
|
Zhong X, Li M, Zhang M, Feng Y, Zhang H, Tian H. Genome-wide analysis of the laccase gene family in wheat and relationship with arbuscular mycorrhizal colonization. PLANTA 2022; 257:15. [PMID: 36528718 DOI: 10.1007/s00425-022-04048-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
We identified 156 laccase genes belonging to 11 subfamilies in the wheat genome, and the natural variation of laccase genes significantly affected the development of wheat-arbuscular mycorrhizal symbiosis. Laccases (LACs) have a variety of functions in plant lignification, cell elongation and stress responses. This study aimed to reveal the phylogeny, chromosomal spatial distribution, coexpression and evolution of LAC genes in the wheat genome and to investigate the possible roles of LAC genes during arbuscular mycorrhizal (AM) symbiosis. The genomic characteristics of LAC genes were analyzed by using bioinformatics analysis methods, and the polymorphisms of LAC genes were analyzed by using a diverse wheat panel composed of 289 wheat cultivars. We identified 156 LAC genes belonging to 11 subfamilies in the wheat genome, and segmental duplication dominated the amplification of the LAC gene family in the wheat genome. LACs are dominantly located in the R2 region of wheat chromosomes. Some LACs are collinear with the characterized LACs in Arabidopsis thaliana or rice. A number of genes encoding transcription factors, kinases, and phosphatases were coexpressed with LAC genes in wheat. TaLACs may be potential targets for some miRNAs. Most TaLACs are mainly expressed in the roots and stems of plants. The expression of TaLACs could be regulated by the inoculation of Fusarium graminearum or AM fungi. The polymorphisms of TaLACs mainly accumulate by random drift instead of by selection. Through candidate gene association analysis, we found that the natural variations in TaLACs significantly affected root colonization by AM fungi. The present study provides useful information for further study of the biological functions of LAC genes in wheat, especially the roles of LAC genes during the development of AM symbiosis.
Collapse
Affiliation(s)
- Xiong Zhong
- Key Laboratory of Plant Nutrition and Agri-Environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Mengjiao Li
- Key Laboratory of Plant Nutrition and Agri-Environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Mingming Zhang
- Key Laboratory of Plant Nutrition and Agri-Environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yang Feng
- Key Laboratory of Plant Nutrition and Agri-Environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Hui Zhang
- Key Laboratory of Plant Nutrition and Agri-Environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Hui Tian
- Key Laboratory of Plant Nutrition and Agri-Environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
6
|
Reed H, Mueller B, Groves CL, Smith DL. Presence and Correlation of Fusarium graminearum and Deoxynivalenol Accumulation in Silage Corn Plant Parts. PLANT DISEASE 2022; 106:87-92. [PMID: 34491093 DOI: 10.1094/pdis-03-21-0641-re] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Corn silage, made from Zea mays, is a high-energy feed that is important for feeding dairy cows. Plant diseases, such as those caused by Fusarium graminearum, can decrease silage corn yields and quality. F. graminearum (teleomorph Gibberella zeae) is an ascomycete fungus that causes Gibberella ear and stalk rot in corn. F. graminearum produces deoxynivalenol (DON), a secondary metabolite toxic to humans and animals. An understanding of the distribution of DON and F. graminearum throughout the corn plant is important for determining the quality of corn silage. A partitioned sample experiment that included two brown midrib silage hybrids and three fungicide treatments was conducted in research plots located in Arlington, WI, U.S.A., in 2018 and 2019. At harvest, stalk and ear parts were physically separated, dried, and ground for analysis. DON concentration (in parts per million) was determined using an enzyme-linked immunosorbent assay, and F. graminearum DNA concentration (in picograms per nanogram) was determined using quantitative PCR. DON and F. graminearum DNA were detected in all samples, demonstrating accumulation of the fungus in stalks and ears of the plant. In 2018, DON contamination was as high as 30 ppm and varied drastically between stalks and ears. In 2019, DON concentrations were much lower (<5 ppm), but were consistently higher in stalk samples than ear samples. Across all samples, DON concentrations and F. graminearum accumulation were highly correlated within the separated stalk (r = 0.78) and ear portions (r = 0.87) but were not correlated between ears and stalks. Depending on the weather and planting conditions in a given year, stalk infections or ear infections may occur by F. graminearum, leading to subsequent DON increases in those respective parts that are independent of each other.
Collapse
Affiliation(s)
- Hannah Reed
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI 53706
| | - Brian Mueller
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI 53706
| | - Carol L Groves
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI 53706
| | - Damon L Smith
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI 53706
| |
Collapse
|
7
|
Evolution of Fusarium Head Blight Management in Wheat: Scientific Perspectives on Biological Control Agents and Crop Genotypes Protocooperation. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11198960] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Over the past century, the economically devastating Fusarium Head Blight (FHB) disease has persistently ravished small grain cereal crops worldwide. Annually, losses globally are in the billions of United States dollars (USD), with common bread wheat and durum wheat accounting for a major portion of these losses. Since the unforgettable FHB epidemics of the 1990s and early 2000s in North America, different management strategies have been employed to treat this disease. However, even with some of the best practices including chemical fungicides and innovative breeding technological advances that have given rise to a spectrum of moderately resistant cultivars, FHB still remains an obstinate problem in cereal farms globally. This is in part due to several constraints such as the Fusarium complex of species and the struggle to develop and employ methods that can effectively combat more than one pathogenic line or species simultaneously. This review highlights the last 100 years of major FHB epidemics in the US and Canada, as well as the evolution of different management strategies, and recent progress in resistance and cultivar development. It also takes a look at protocooperation between specific biocontrol agents and cereal genotypes as a promising tool for combatting FHB.
Collapse
|
8
|
Geißinger C, Gastl M, Becker T. Enzymes from Cereal and Fusarium Metabolism Involved in the Malting Process – A Review. JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2021. [DOI: 10.1080/03610470.2021.1911272] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Cajetan Geißinger
- Chair of Brewing and Beverage Technology, Technical University of Munich (TUM), Freising, Germany
| | - Martina Gastl
- Chair of Brewing and Beverage Technology, Technical University of Munich (TUM), Freising, Germany
| | - Thomas Becker
- Chair of Brewing and Beverage Technology, Technical University of Munich (TUM), Freising, Germany
| |
Collapse
|
9
|
Dossa K, Zhou R, Li D, Liu A, Qin L, Mmadi MA, Su R, Zhang Y, Wang J, Gao Y, Zhang X, You J. A novel motif in the 5'-UTR of an orphan gene 'Big Root Biomass' modulates root biomass in sesame. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:1065-1079. [PMID: 33369837 PMCID: PMC8131042 DOI: 10.1111/pbi.13531] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 11/30/2020] [Accepted: 12/08/2020] [Indexed: 05/06/2023]
Abstract
Developing crops with improved root system is crucial in current global warming scenario. Underexploited crops are valuable reservoirs of unique genes that can be harnessed for the improvement of major crops. In this study, we performed genome-wide association studies on seven root traits in sesame (Sesamum indicum L.) and uncovered 409 significant signals, 19 quantitative trait loci containing 32 candidate genes. A peak SNP significantly associated with root number and root dry weight traits was located in the promoter of the gene named 'Big Root Biomass' (BRB), which was subsequently validated in a bi-parental population. BRB has no functional annotation and is restricted to the Lamiales order. We detected the presence of a novel motif 'AACACACAC' located in the 5'-UTR of BRB in single and duplicated copy in accessions with high and small root biomass, respectively. A strong expression level of BRB was negatively correlated with high root biomass, and this was attributed to the gene SiMYB181 which represses the activity of BRB by binding specifically to the single motif but not to the duplicated one. Curiously, the allele that enhanced BRB expression has been intensively selected by modern breeding. Overexpression of BRB in Arabidopsis modulates auxin pathway leading to reduced root biomass, improved yield parameters under normal growth conditions and increased drought stress sensitivity. Overall, BRB represents a solid gene model for improving the performance of sesame and other crops.
Collapse
Affiliation(s)
- Komivi Dossa
- Oil Crops Research Institute of the Chinese Academy of Agricultural SciencesKey Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of Agriculture and Rural AffairsWuhanChina
- Laboratory of Genetics, Horticulture and Seed SciencesFaculty of Agronomic SciencesUniversity of Abomey‐CalaviCotonouBenin
| | - Rong Zhou
- Oil Crops Research Institute of the Chinese Academy of Agricultural SciencesKey Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of Agriculture and Rural AffairsWuhanChina
| | - Donghua Li
- Oil Crops Research Institute of the Chinese Academy of Agricultural SciencesKey Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of Agriculture and Rural AffairsWuhanChina
| | - Aili Liu
- Oil Crops Research Institute of the Chinese Academy of Agricultural SciencesKey Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of Agriculture and Rural AffairsWuhanChina
| | - Lu Qin
- Oil Crops Research Institute of the Chinese Academy of Agricultural SciencesKey Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of Agriculture and Rural AffairsWuhanChina
| | - Marie A. Mmadi
- Oil Crops Research Institute of the Chinese Academy of Agricultural SciencesKey Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of Agriculture and Rural AffairsWuhanChina
| | - Ruqi Su
- Oil Crops Research Institute of the Chinese Academy of Agricultural SciencesKey Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of Agriculture and Rural AffairsWuhanChina
| | - Yujuan Zhang
- Oil Crops Research Institute of the Chinese Academy of Agricultural SciencesKey Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of Agriculture and Rural AffairsWuhanChina
- Cotton Research CenterShandong Academy of Agricultural SciencesJinanChina
| | - Jianqiang Wang
- Oil Crops Research Institute of the Chinese Academy of Agricultural SciencesKey Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of Agriculture and Rural AffairsWuhanChina
| | - Yuan Gao
- Oil Crops Research Institute of the Chinese Academy of Agricultural SciencesKey Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of Agriculture and Rural AffairsWuhanChina
| | - Xiurong Zhang
- Oil Crops Research Institute of the Chinese Academy of Agricultural SciencesKey Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of Agriculture and Rural AffairsWuhanChina
| | - Jun You
- Oil Crops Research Institute of the Chinese Academy of Agricultural SciencesKey Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of Agriculture and Rural AffairsWuhanChina
| |
Collapse
|
10
|
Genetic Improvement of Cereals and Grain Legumes. Genes (Basel) 2020; 11:genes11111255. [PMID: 33113769 PMCID: PMC7692374 DOI: 10.3390/genes11111255] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 10/22/2020] [Indexed: 12/24/2022] Open
Abstract
The anticipated population growth by 2050 will be coupled with increased food demand. To achieve higher and sustainable food supplies in order to feed the global population by 2050, a 2.4% rise in the yield of major crops is required. The key to yield improvement is a better understanding of the genetic variation and identification of molecular markers, quantitative trait loci, genes, and pathways related to higher yields and increased tolerance to biotic and abiotic stresses. Advances in genetic technologies are enabling plant breeders and geneticists to breed crop plants with improved agronomic traits. This Special Issue is an effort to report the genetic improvements by adapting genomic techniques and genomic selection.
Collapse
|
11
|
Soni N, Hegde N, Dhariwal A, Kushalappa AC. Role of laccase gene in wheat NILs differing at QTL-Fhb1 for resistance against Fusarium head blight. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 298:110574. [PMID: 32771175 DOI: 10.1016/j.plantsci.2020.110574] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 06/16/2020] [Accepted: 06/19/2020] [Indexed: 05/20/2023]
Abstract
Fusarium head blight (FHB), caused mainly by Fusarium graminearum (Fg), is one of the most severe diseases of wheat. It affects grain yield and quality due to mycotoxin contamination, which is harmful for both human and livestock consumption. Cell wall lignification, following pathogen invasion, is one of the innate defense responses. Plant laccases are known to lignify the secondary cell walls. A metabolo-genomics study identified laccase as one of the candidate genes in QTL-Fhb1 of wheat NILs derived from Sumai 3*5/Thatcher cross. Based on phylogenetics, it was named as TaLAC4. Real-time qPCR revealed a strongly induced expression of TaLAC4 in NIL-R. The VIGS based transient silencing of TaLAC4 in NIL-R resulted in an increased susceptibility leading to Fg spread within the entire spike in 15dpi, contrasting to non-silenced where the infection was limited to inoculated spikelets. Histopathology revealed thickened cell walls, mainly due to G-lignin, in non-silenced NIL-R, relative to silenced, in conjunction with higher total lignin content. Metabolic profiling of TaLAC4 silenced NILs identified the accumulation of several precursor metabolites higher in abundances upstream TaLAC4. These results confirm that the resistance function of TaLAC4 in NIL-R is due to pathogen-induced lignification of secondary cell walls in the rachis.
Collapse
Affiliation(s)
- Nancy Soni
- Plant Science Department, McGill University, Ste.-Anne-de-Bellevue, QC, Canada
| | - Niranjan Hegde
- Plant Science Department, McGill University, Ste.-Anne-de-Bellevue, QC, Canada
| | | | | |
Collapse
|
12
|
Alahmad S, Kang Y, Dinglasan E, Mazzucotelli E, Voss-Fels KP, Able JA, Christopher J, Bassi FM, Hickey LT. Adaptive Traits to Improve Durum Wheat Yield in Drought and Crown Rot Environments. Int J Mol Sci 2020; 21:ijms21155260. [PMID: 32722187 PMCID: PMC7432628 DOI: 10.3390/ijms21155260] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/22/2020] [Accepted: 07/22/2020] [Indexed: 02/07/2023] Open
Abstract
Durum wheat (Triticum turgidum L. ssp. durum) production can experience significant yield losses due to crown rot (CR) disease. Losses are usually exacerbated when disease infection coincides with terminal drought. Durum wheat is very susceptible to CR, and resistant germplasm is not currently available in elite breeding pools. We hypothesize that deploying physiological traits for drought adaptation, such as optimal root system architecture to reduce water stress, might minimize losses due to CR infection. This study evaluated a subset of lines from a nested association mapping population for stay-green traits, CR incidence and yield in field experiments as well as root traits under controlled conditions. Weekly measurements of normalized difference vegetative index (NDVI) in the field were used to model canopy senescence and to determine stay-green traits for each genotype. Genome-wide association studies using DArTseq molecular markers identified quantitative trait loci (QTLs) on chromosome 6B (qCR-6B) associated with CR tolerance and stay-green. We explored the value of qCR-6B and a major QTL for root angle QTL qSRA-6A using yield datasets from six rainfed environments, including two environments with high CR disease pressure. In the absence of CR, the favorable allele for qSRA-6A provided an average yield advantage of 0.57 t·ha−1, whereas in the presence of CR, the combination of favorable alleles for both qSRA-6A and qCR-6B resulted in a yield advantage of 0.90 t·ha−1. Results of this study highlight the value of combining above- and belowground physiological traits to enhance yield potential. We anticipate that these insights will assist breeders to design improved durum varieties that mitigate production losses due to water deficit and CR.
Collapse
Affiliation(s)
- Samir Alahmad
- Centre for Crop Science, The University of Queensland, Queensland Alliance for Agriculture and Food Innovation, Brisbane, QLD 4072, Australia; (Y.K.); (E.D.); (K.P.V.-F.)
- Correspondence: (S.A.); (L.T.H.)
| | - Yichen Kang
- Centre for Crop Science, The University of Queensland, Queensland Alliance for Agriculture and Food Innovation, Brisbane, QLD 4072, Australia; (Y.K.); (E.D.); (K.P.V.-F.)
| | - Eric Dinglasan
- Centre for Crop Science, The University of Queensland, Queensland Alliance for Agriculture and Food Innovation, Brisbane, QLD 4072, Australia; (Y.K.); (E.D.); (K.P.V.-F.)
| | - Elisabetta Mazzucotelli
- Council for Agricultural Research and Economics (CREA)—Research Centre for Genomics and Bioinformatics, 29017 Fiorenzuola d’Arda (PC), Italy;
| | - Kai P. Voss-Fels
- Centre for Crop Science, The University of Queensland, Queensland Alliance for Agriculture and Food Innovation, Brisbane, QLD 4072, Australia; (Y.K.); (E.D.); (K.P.V.-F.)
| | - Jason A. Able
- School of Agriculture, Food and Wine, Waite Research Institute, The University of Adelaide, Urrbrae, SA 5064, Australia;
| | - Jack Christopher
- Centre for Crop Science, The University of Queensland, Queensland Alliance for Agriculture and Food Innovation, Leslie Research Facility, Toowoomba, QLD 4350, Australia;
| | - Filippo M. Bassi
- International Center for the Agricultural Research in the Dry Areas, Rabat 10000, Morocco;
| | - Lee T. Hickey
- Centre for Crop Science, The University of Queensland, Queensland Alliance for Agriculture and Food Innovation, Brisbane, QLD 4072, Australia; (Y.K.); (E.D.); (K.P.V.-F.)
- Correspondence: (S.A.); (L.T.H.)
| |
Collapse
|
13
|
Regulators of nitric oxide signaling triggered by host perception in a plant pathogen. Proc Natl Acad Sci U S A 2020; 117:11147-11157. [PMID: 32376629 DOI: 10.1073/pnas.1918977117] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The rhizosphere interaction between plant roots or pathogenic microbes is initiated by mutual exchange of signals. However, how soil pathogens sense host signals is largely unknown. Here, we studied early molecular events associated with host recognition in Fusarium graminearum, an economically important fungal pathogen that can infect both roots and heads of cereal crops. We found that host sensing prior to physical contact with plant roots radically alters the transcriptome and triggers nitric oxide (NO) production in F. graminearum We identified an ankyrin-repeat domain containing protein (FgANK1) required for host-mediated NO production and virulence in F. graminearum In the absence of host plant, FgANK1 resides in the cytoplasm. In response to host signals, FgANK1 translocates to the nucleus and interacts with a zinc finger transcription factor (FgZC1), also required for specific binding to the nitrate reductase (NR) promoter, NO production, and virulence in F. graminearum Our results reveal mechanistic insights into host-recognition strategies employed by soil pathogens.
Collapse
|
14
|
Cereal Root Interactions with Soilborne Pathogens—From Trait to Gene and Back. AGRONOMY-BASEL 2019. [DOI: 10.3390/agronomy9040188] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Realizing the yield potential of crop plants in the presence of shifting pathogen populations, soil quality, rainfall, and other agro-environmental variables remains a challenge for growers and breeders worldwide. In this review, we discuss current approaches for combatting the soilborne phytopathogenic nematodes, Pratylenchus and Heterodera of wheat and barley, and Meloidogyne graminicola Golden and Birchfield, 1965 of rice. The necrotrophic fungal pathogens, Rhizoctonia solani Kühn 1858 AG-8 and Fusarium spp. of wheat and barley, also are discussed. These pathogens constitute major causes of yield loss in small-grain cereals of the Pacific Northwest, USA and throughout the world. Current topics include new sources of genetic resistance, molecular leads from whole genome sequencing and genome-wide patterns of hosts, nematode or fungal gene expression during root-pathogen interactions, host-induced gene silencing, and building a molecular toolbox of genes and regulatory sequences for deployment of resistance genes. In conclusion, improvement of wheat, barley, and rice will require multiple approaches.
Collapse
|