1
|
Silva MLFD, Costa MCB, Gonçalves SDF, Huebner R, Navarro TP. Numerical analysis of blood flow in a branched modular stent-graft for aneurysms covering all zones of the aortic arch. Biomech Model Mechanobiol 2024; 23:2177-2191. [PMID: 39304550 DOI: 10.1007/s10237-024-01887-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 09/07/2024] [Indexed: 09/22/2024]
Abstract
Due to the anatomical complexity of the aortic arch for the development of stent-grafts for total repair, this region remains without a validated and routinely used endovascular option. In this work, a modular stent-graft for aneurysms that covers all aortic arch zones, proposed by us and previously structurally evaluated, was evaluated from the point of view of haemodynamics using fluid-structural numerical simulations. Blood was assumed to be non-Newtonian shear-thinning using the Carreau model, and the arterial wall was assumed to be anisotropic hyperelastic using the Holzapfel model. Nitinol and expanded polytetrafluoroethylene (PTFE-e) were used as materials for the stents and the graft, respectively. Nitinol was modelled as a superelastic material with shape memory by the Auricchio model, and PTFE-e was modelled as an isotropic linear elastic material. To validate the numerical model, a silicone model representative of the aneurysmal aorta was subjected to tests on an experimental bench representative of the circulatory system. The numerical results showed that the stent-graft restored flow behaviour, making it less oscillatory, but increasing the strain rate, turbulence kinetic energy, and viscosity compared to the pathological case. Taking the mean of the entire cycle, the increase in turbulence kinetic energy was 198.82% in the brachiocephalic trunk, 144.63% in the left common carotid artery and 284.03% in the left subclavian artery after stent-graft implantation. Based on wall shear stress parameters, it was possible to identify that the internal branches of the stent-graft and the stent-graft fixation sites in the artery were the most favourable regions for the deposition and accumulation of thrombus. In these regions, the oscillating shear index reached the maximum value of 0.5 and the time-averaged wall shear stress was close to zero, which led the relative residence time to reach values above 15 Pa-1. The stent-graft was able to preserve flow in the supra-aortic branches.
Collapse
Affiliation(s)
- Mário Luis Ferreira da Silva
- Department of Mechanical Engineering, Graduate Program in Mechanical Engineering, Universidade Federal de Minas Gerais, Avenida Presidente Antônio Carlos, 6627, Pampulha, Belo Horizonte, Minas Gerais, 31270-901, Brazil.
| | - Matheus Carvalho Barbosa Costa
- Department of Mechanical Engineering, Graduate Program in Mechanical Engineering, Universidade Federal de Minas Gerais, Avenida Presidente Antônio Carlos, 6627, Pampulha, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Saulo de Freitas Gonçalves
- Department of Mechanical Engineering, Graduate Program in Mechanical Engineering, Universidade Federal de Minas Gerais, Avenida Presidente Antônio Carlos, 6627, Pampulha, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Rudolf Huebner
- Department of Mechanical Engineering, Universidade Federal de Minas Gerais, Avenida Presidente Antônio Carlos, 6627, Pampulha, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Túlio Pinho Navarro
- Department of Surgery, Faculty of Medicine, Universidade Federal de Minas Gerais, Avenida Professor Alfredo Balena, 190, Santa Efigênia, Belo Horizonte, Minas Gerais, 30130-100, Brazil
| |
Collapse
|
2
|
Sun X, Li S, He Y, Liu Y, Ma T, Zeng R, Liu Z, Chen Y, Zheng Y, Liu X. Effects of cardiac function alterations on the risk of postoperative thrombotic complications in patients receiving endovascular aortic repair. Front Physiol 2023; 13:1114110. [PMID: 36703931 PMCID: PMC9871241 DOI: 10.3389/fphys.2022.1114110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 12/28/2022] [Indexed: 01/11/2023] Open
Abstract
Introduction: Chronic heart disease (CHD) is a common comorbidity of patients receiving endovascular aneurysm repair (EVAR) for abdominal aortic aneurysms (AAA). The explicit relationship between ventricular systolic function and EVAR complication of thrombotic events is unknown. Methods: In this study, we proposed a three-dimensional numerical model coupled with the lumped-elements heart model, which is capable of simulating thrombus formation in diverse systolic functions. The relation of cardiac functions and the predicted risk of thrombus formation in the aorta and/or endograft of 4 patients who underwent EVAR was investigated. Relative risks for thrombus formation were identified using machine-learning algorithms. Results: The computational results demonstrate that thrombus tended to form on the interior side of the aorta arch and iliac branches, and cardiac function can affect blood flow field and affect thrombus formation, which is consistent with the four patients' post-operative imaging follow-up. We also found that RRT, OSI, TAWSS in thrombosis area are lower than whole average. In addition, we found that the thrombus formation has negative correlations with the maximum ventricular contractile force (r = -.281 ± .101) and positive correlations with the minimum ventricular contractile force (r = .238 ± .074), whereas the effect of heart rate (r = -.015 ± .121) on thrombus formation is not significant. Conclusion: In conclusion, changes in ventricular systolic function may alter the risk of thrombotic events after EVAR repair, which could provide insight into the selection of adjuvant therapy strategies for AAA patients with CHD.
Collapse
Affiliation(s)
- Xiaoning Sun
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China,Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Siting Li
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China,Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Yuan He
- Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Yuxi Liu
- Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Tianxiang Ma
- Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Rong Zeng
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Zhili Liu
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Yu Chen
- Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Yuehong Zheng
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China,Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China,*Correspondence: Yuehong Zheng, ; Xiao Liu,
| | - Xiao Liu
- Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China,*Correspondence: Yuehong Zheng, ; Xiao Liu,
| |
Collapse
|
3
|
Throop A, Bukac M, Zakerzadeh R. Prediction of wall stress and oxygen flow in patient-specific abdominal aortic aneurysms: the role of intraluminal thrombus. Biomech Model Mechanobiol 2022; 21:1761-1779. [PMID: 35908098 DOI: 10.1007/s10237-022-01618-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 07/13/2022] [Indexed: 11/28/2022]
Abstract
In this study, the biomechanical role of intraluminal thrombus (ILT) in an abdominal aortic aneurysm (AAA) is investigated. The implications of ILT in AAA are controversial in literature. Previous studies have demonstrated that ILT provides a biomechanical advantage by decreasing wall stress, whereas other studies have associated ILT with inhibiting oxygen transport and inducing aortic wall weakening. Therefore, we sought to explore the connection between ILT, mechanical stresses, and oxygen flow in different geometries of patient-specific aneurysms with varying ILT morphologies. The objective is to investigate the extent to which ILT influences the prediction of aneurysmal wall stresses that are associated with rupture, as well as oxygen concentrations to measure tissue oxygen deprivation. Three patient-specific AAA geometries are considered, and two models, one with ILT and one without ILT, are created for each patient to assess the effect of ILT presence. A fluid-structure interaction approach is used to couple the blood flow, wall deformation, and oxygen mass transport. Results are presented for hemodynamics patterns, wall stress measures, and oxygen metrics within the arterial wall. While ILT is found to reduce wall stress, simulations confirm that ILT decreases oxygen transport within the tissue significantly, leading to wall hypoxia.
Collapse
Affiliation(s)
- Alexis Throop
- Department of Engineering, Rangos School of Health Sciences, Duquesne University, 413 Libermann Hall, 600 Forbes Avenue, Pittsburgh, PA, 15282, USA
| | - Martina Bukac
- Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, Notre Dame, IN, USA
| | - Rana Zakerzadeh
- Department of Engineering, Rangos School of Health Sciences, Duquesne University, 413 Libermann Hall, 600 Forbes Avenue, Pittsburgh, PA, 15282, USA.
| |
Collapse
|
4
|
Carbino B, Guy A, Durka M, Zakerzadeh R. The Effects of Geometric Features of Intraluminal Thrombus on the Vessel Wall Oxygen Deprivation. Front Bioeng Biotechnol 2022; 10:814995. [PMID: 35419349 PMCID: PMC8997837 DOI: 10.3389/fbioe.2022.814995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 02/21/2022] [Indexed: 12/20/2022] Open
Abstract
The objective of this paper is to analyze the association of intraluminal thrombus (ILT) presence and morphology with oxygen transport in abdominal aortic aneurysms (AAA) and local hypoxia. The biomechanical role of the ILT layer in the evolution of the aneurysm is still not fully understood. ILT has been shown to create an inflammatory environment by reducing oxygen flux to the arterial wall and therefore decreasing its strength. It has been also hypothesized that the geometry of the ILT may further affect AAA rupture. However, no previous research has attempted to explore the effect of morphological features of ILT on oxygen distributions within the AAA, in a systematic manner. In this study, we perform a comprehensive analysis to investigate how physiologically meaningful variations in ILT geometric characteristics affect oxygen transport within an AAA. We simulate twenty-seven AAA models with variable ILT dimensions and investigate the extent to which ILT attenuates oxygen concentration in the arterial wall. Geometric variations studied include ILT thickness and ILT length, as well as the bulge diameter of the aneurysm which is related to ILT curvature. Computer simulations of coupled fluid flow-mass transport between arterial wall, ILT, and blood are solved and spatial variations of oxygen concentrations within the ILT and wall are obtained. The comparison of the results for all twenty-seven simulations supports the hypothesis that the presence of ILT in AAA correlates to significantly impaired oxygen transport to the aneurysmal wall. Mainly, we observed that ILT thickness and length are the parameters that influence decreased oxygen flow and concentration values the most, and thick thrombi exacerbate hypoxic conditions in the arterial wall, which may contribute to increased tissue degradation. Conversely, we observed that the arterial wall oxygen concentration is nearly independent of the AAA bulge diameter. This confirms that consideration of ILT size and anatomy is crucial in the analysis of AAA development.
Collapse
Affiliation(s)
- Burton Carbino
- Department of Engineering, Rangos School of Health Sciences, Duquesne University, Pittsburgh, PA, United States
| | - Alexander Guy
- Department of Engineering, Rangos School of Health Sciences, Duquesne University, Pittsburgh, PA, United States
| | - Michael Durka
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States
- Department of Mechanical Engineering and Materials Science, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Rana Zakerzadeh
- Department of Engineering, Rangos School of Health Sciences, Duquesne University, Pittsburgh, PA, United States
- *Correspondence: Rana Zakerzadeh,
| |
Collapse
|
5
|
Morrell CN, Mix D, Aggarwal A, Bhandari R, Godwin M, Owens Iii AP, Lyden SP, Doyle A, Krauel K, Rondina MT, Mohan A, Lowenstein CJ, Shim S, Stauffer S, Josyula VP, Ture SK, Yule DI, Wagner Iii LE, Ashton JM, Elbadawi A, Cameron SJ. Platelet olfactory receptor activation limits platelet reactivity and growth of aortic aneurysms. J Clin Invest 2022; 132:152373. [PMID: 35324479 PMCID: PMC9057618 DOI: 10.1172/jci152373] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 03/16/2022] [Indexed: 11/28/2022] Open
Abstract
As blood transitions from steady laminar flow (S-flow) in healthy arteries to disturbed flow (D-flow) in aneurysmal arteries, platelets are subjected to external forces. Biomechanical platelet activation is incompletely understood and is a potential mechanism behind antiplatelet medication resistance. Although it has been demonstrated that antiplatelet drugs suppress the growth of abdominal aortic aneurysms (AAA) in patients, we found that a certain degree of platelet reactivity persisted in spite of aspirin therapy, urging us to consider additional antiplatelet therapeutic targets. Transcriptomic profiling of platelets from patients with AAA revealed upregulation of a signal transduction pathway common to olfactory receptors, and this was explored as a mediator of AAA progression. Healthy platelets subjected to D-flow ex vivo, platelets from patients with AAA, and platelets in murine models of AAA demonstrated increased membrane olfactory receptor 2L13 (OR2L13) expression. A drug screen identified a molecule activating platelet OR2L13, which limited both biochemical and biomechanical platelet activation as well as AAA growth. This observation was further supported by selective deletion of the OR2L13 ortholog in a murine model of AAA that accelerated aortic aneurysm growth and rupture. These studies revealed that olfactory receptors regulate platelet activation in AAA and aneurysmal progression through platelet-derived mediators of aortic remodeling.
Collapse
Affiliation(s)
- Craig N Morrell
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine, Rochester, United States of America
| | - Doran Mix
- Department of Surgery, Division of Vascular Surgery, University of Rochester School of Medicine, Rochester, United States of America
| | - Anu Aggarwal
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner College of Medicine, Cleveland, United States of America
| | - Rohan Bhandari
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner College of Medicine, Cleveland, United States of America
| | - Matthew Godwin
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner College of Medicine, Cleveland, United States of America
| | - A Phillip Owens Iii
- Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, United States of America
| | - Sean P Lyden
- Department of Vascular Surgery, Cleveland Clinic, Cleveland, United States of America
| | - Adam Doyle
- Department of Surgery, Division of Vascular Surgery, University of Rochester School of Medicine, Rochester, United States of America
| | - Krystin Krauel
- Department of Molecular Medicine, University of Utah, Salt Lake City, United States of America
| | - Matthew T Rondina
- Department of Internal Medicine, University of Utah, Salt Lake City, United States of America
| | - Amy Mohan
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine, Rochester, United States of America
| | - Charles J Lowenstein
- Department of Medicine, Division of Cardiology, Johns Hopkins University, Baltimore, United States of America
| | - Sharon Shim
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner College of Medicine, Cleveland, United States of America
| | - Shaun Stauffer
- Center for Therapeutics Discovery, Cleveland Clinic Lerner College of Medicine, Cleveland, United States of America
| | - Vara Prasad Josyula
- Center for Therapeutics Discovery, Cleveland Clinic Lerner College of Medicine, Cleveland, United States of America
| | - Sara K Ture
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine, Rochester, United States of America
| | - David I Yule
- Department of Pharmacology and Physiology, University of Rochester School of Medicine, Rochester, United States of America
| | - Larry E Wagner Iii
- Department of Pharmacology and Physiology, University of Rochester School of Medicine, Rochester, United States of America
| | - John M Ashton
- Department of Biomedical Genetics, University of Rochester School of Medicine, Rochester, United States of America
| | - Ayman Elbadawi
- Department of Cardiovascular Medicine, University of Texas Medical Branch, Galveston, United States of America
| | - Scott J Cameron
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner College of Medicine, Cleveland, United States of America
| |
Collapse
|
6
|
Siennicka A, Adamowicz M, Grzesch N, Kłysz M, Woźniak J, Cnotliwy M, Galant K, Jastrzębska M. Association of Aneurysm Tissue Neutrophil Mediator Levels with Intraluminal Thrombus Thickness in Patients with Abdominal Aortic Aneurysm. Biomolecules 2022; 12:biom12020254. [PMID: 35204755 PMCID: PMC8961541 DOI: 10.3390/biom12020254] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/26/2022] [Accepted: 02/02/2022] [Indexed: 12/04/2022] Open
Abstract
An intraluminal thrombus (ILT), which accumulates large numbers of neutrophils, plays a key role in abdominal aortic aneurysm (AAA) pathogenesis. This study aimed to compare levels of selected neutrophil inflammatory mediators in thick and thin ILT, plus adjacent AAA walls, to determine whether levels depend on ILT thickness. Neutrophil mediator levels were analysed by enzyme-linked immunosorbent assays in thick and thin segments of ILT, plus adjacent aneurysm wall sections, taken from one aneurysm sac each from 36 AAA patients. In aneurysmal walls covered by thick ILT, neutrophil elastase and TNF-a levels were significantly higher, as were concentrations of IL-6, in thick ILT compared to thin layers. Positive correlations of NGAL, MPO, and neutrophil elastase were observed between thick ILT and the adjacent wall and thin ILT and the adjacent wall, suggesting that these mediators probably infiltrate thick AAA compartments as well as thin. These observations might support the idea that neutrophil mediators and inflammatory cytokines differentially accumulate in AAA tissues according to ILT thickness. The increased levels of neutrophil mediators within thicker AAA segments might suggest the existence of an intensified proinflammatory state that in turn presumably might preferentially weaken the AAA wall at that region.
Collapse
Affiliation(s)
- Aldona Siennicka
- Department of Laboratory Diagnostics, Pomeranian Medical University, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (A.S.); (M.A.); (N.G.); (M.J.)
| | - Monika Adamowicz
- Department of Laboratory Diagnostics, Pomeranian Medical University, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (A.S.); (M.A.); (N.G.); (M.J.)
| | - Natalie Grzesch
- Department of Laboratory Diagnostics, Pomeranian Medical University, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (A.S.); (M.A.); (N.G.); (M.J.)
| | - Magdalena Kłysz
- Department of Laboratory Diagnostics, Pomeranian Medical University, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (A.S.); (M.A.); (N.G.); (M.J.)
- Correspondence: ; Tel.: +48-914661505
| | - Jarosław Woźniak
- Institute of Mathematics, University of Szczecin, Wielkopolska 15, 70-451 Szczecin, Poland;
| | - Miłosław Cnotliwy
- Department of Vascular Surgery and Angiology, Pomeranian Medical University, Powstańców Wlkp. 72, 70-111 Szczecin, Poland;
| | - Katarzyna Galant
- Department of Laboratory Medicine, Chair of Microbiology, Immunological Diagnostics and Laboratory Medicine, Pomeranian Medical University, Powstańców Wlkp. 72, 70-111 Szczecin, Poland;
| | - Maria Jastrzębska
- Department of Laboratory Diagnostics, Pomeranian Medical University, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (A.S.); (M.A.); (N.G.); (M.J.)
| |
Collapse
|
7
|
Zambrano BA, Gharahi H, Lim CY, Lee W, Baek S. Association of vortical structures and hemodynamic parameters for regional thrombus accumulation in abdominal aortic aneurysms. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2022; 38:e3555. [PMID: 34859615 PMCID: PMC8858872 DOI: 10.1002/cnm.3555] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/18/2021] [Accepted: 11/27/2021] [Indexed: 05/08/2023]
Abstract
The intraluminal thrombus (ILT) has been shown to negatively impact the progression of the abdominal aortic aneurysms (AAAs). The formation of this thrombus layer has been connected to the local flow environment within AAAs, but the specific mechanisms leading to thrombus formation are still not fully understood. Our study investigated the association between vortical structures, near-wall hemodynamic metrics (e.g., time averaged wall shear stress (TAWSS) and oscillatory shear index (OSI)), and ILT accumulation in a longitudinal cohort of 14 AAAs (53 scans total). Vortices and hemodynamic parameters were estimated using hemodynamic simulations performed to each scan of each patient and compared to local 3D changes of ILT thickness between two consecutive scans (ΔILT). Results showed that vortices formed and remained strong and close to the lumen surface in AAAs without an ILT, while in AAAs with ILTs these detached from the lumen surface and dissipated nearby wall region where an increase in ILT thickness was observed. Although low TAWSS was observed in regions with and without ILT accumulation, an inverse correlation between ∆ ILT and TAWSS was observed within the regions that experienced a thrombus growth. Our results support the idea that vortical structures might be playing a role modulating ILT accumulation into specific wall regions. Also, it submits the idea that the low TAWSS will be modulating the growth of thrombus within these preferred ILT accumulated regions.
Collapse
Affiliation(s)
- Byron A Zambrano
- J. Mike Walker '66 Department of Mechanical Engineering, Texas A&M University, College Station, Texas, USA
| | - Hamidreza Gharahi
- Department of Mechanical Engineering, Michigan State University, East Lansing, Michigan, USA
| | - Chae Young Lim
- Department of Statistics, Seoul National University, Seoul, Korea
| | - Whal Lee
- Department of Radiology, Seoul National University, Seoul, Korea
| | - Seungik Baek
- Department of Mechanical Engineering, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
8
|
Boyd AJ. Intraluminal thrombus: Innocent bystander or factor in abdominal aortic aneurysm pathogenesis? JVS Vasc Sci 2021; 2:159-169. [PMID: 34617066 PMCID: PMC8489244 DOI: 10.1016/j.jvssci.2021.02.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 02/20/2021] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Abdominal aortic aneurysms (AAAs) represent a complex multifactorial hemodynamic, thrombotic, and inflammatory process that can ultimately result in aortic rupture and death. Despite improved screening and surgical management of AAAs, the mortality rates have remained high after rupture, and little progress has occurred in the development of nonoperative treatments. Intraluminal thrombus (ILT) is present in most AAAs and might be involved in AAA pathogenesis. The present review examined the latest clinical and experimental evidence for possible involvement of the ILT in AAA growth and rupture. METHODS A literature review was performed after a search of the PubMed database from 2012 to June 2020 using the terms "abdominal aortic aneurysm" and "intraluminal thrombus." RESULTS The structure, composition, and hemodynamics of ILT formation and propagation were reviewed in relation to the hemostatic and proteolytic factors favoring ILT deposition. The potential effects of the ILT on AAA wall degeneration and rupture, including a review of the current controversies regarding the position, thickness, and composition of ILT, are presented. Although initially potentially protective against increased wall stress, increasing evidence has shown that an increased volume and greater age of the ILT have direct detrimental effects on aortic wall integrity, which might predispose to an increased rupture risk. CONCLUSIONS ILT does not appear to be an innocent bystander in AAA pathophysiology. However, its exact role remains elusive and controversial. Despite computational evidence of a possible protective role of the ILT in reducing wall stress, increasing evidence has shown that the ILT promotes AAA wall degeneration in humans and in animal models. Further research, with large animal models and with more chronic ILT is crucial for a better understanding of the role of the ILT in AAAs and for the potential development of targeted therapies to slow or halt AAA progression.
Collapse
Affiliation(s)
- April J. Boyd
- Department of Vascular Surgery, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
9
|
Salimi Ashkezari SF, Mut F, Chung BJ, Robertson AM, Frösen J, Cebral JR. Analysis of hemodynamic changes from aneurysm inception to large sizes. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2021; 37:e3415. [PMID: 33205887 PMCID: PMC8991439 DOI: 10.1002/cnm.3415] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 10/30/2020] [Accepted: 11/15/2020] [Indexed: 06/11/2023]
Abstract
While previous studies have identified many risk factors for the progression and rupture of cerebral aneurysms, the changes in aneurysm flow characteristics during its evolution are not fully understood. This work analyzes the changes in the aneurysm hemodynamic environment from its initial development to later stages when the aneurysm has substantially enlarged. A total of 88 aneurysms at four locations were studied with image based computational fluid dynamics (CFD). Two synthetic sequences representing the aneurysm geometry at three earlier stages were generated by shrinking the aneurysm sac while keeping the neck fixed or shrinking the neck simultaneously. The flow conditions were then quantitatively compared between these two modes of evolution. As aneurysms enlarged, the inflow rate increased in growing neck sequences, but decreased in fixed neck sequences. The inflow jet became more concentrated in both sequences. The mean aneurysm flow velocity and wall shear stress decreased in both sequences, but they decreased faster in enlarging aneurysms if the neck was fixed. Additionally, the intra-aneurysmal flows became more complex and more unstable, wall shear stress distribution became more oscillatory, and the area under low wall shear stress increased for both sequences. The evolution of flow characteristics of aneurysms with fixed and growing necks are different. The observed trends suggest that fixed neck aneurysms may evolve towards a flow environment characteristic of stable aneurysms faster than aneurysms with growing necks, which could also evolve towards a more disfavorable environment.
Collapse
Affiliation(s)
| | - Fernando Mut
- Bioengineering Department, George Mason University, Fairfax, Virginia, USA
| | - Bong Jae Chung
- Department of Mathematical Sciences, Montclair State University, Montclair, New Jersey, USA
| | - Anne M Robertson
- Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Juhana Frösen
- Hemorrhagic Brain Pathology Research Group, Department of Neurosurgery, Kuopio University Hospital, Kuopio, Finland
| | - Juan R Cebral
- Bioengineering Department, George Mason University, Fairfax, Virginia, USA
| |
Collapse
|
10
|
Jadidi M, Razian SA, Habibnezhad M, Anttila E, Kamenskiy A. Mechanical, structural, and physiologic differences in human elastic and muscular arteries of different ages: Comparison of the descending thoracic aorta to the superficial femoral artery. Acta Biomater 2021; 119:268-283. [PMID: 33127484 PMCID: PMC7738395 DOI: 10.1016/j.actbio.2020.10.035] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/28/2020] [Accepted: 10/22/2020] [Indexed: 12/23/2022]
Abstract
Elastic and muscular arteries differ in structure, function, and mechanical properties, and may adapt differently to aging. We compared the descending thoracic aortas (TA) and the superficial femoral arteries (SFA) of 27 tissue donors (average 41±18 years, range 13-73 years) using planar biaxial testing, constitutive modeling, and bidirectional histology. Both TAs and SFAs increased in size with age, with the outer radius increasing more than the inner radius, but the TAs thickened 6-fold and widened 3-fold faster than the SFAs. The circumferential opening angle did not change in the TA, but increased 2.4-fold in the SFA. Young TAs were relatively isotropic, but the anisotropy increased with age due to longitudinal stiffening. SFAs were 51% more compliant longitudinally irrespective of age. Older TAs and SFAs were stiffer, but the SFA stiffened 5.6-fold faster circumferentially than the TA. Physiologic stresses decreased with age in both arteries, with greater changes occurring longitudinally. TAs had larger circumferential, but smaller longitudinal stresses than the SFAs, larger cardiac cycle stretch, 36% lower circumferential stiffness, and 8-fold more elastic energy available for pulsation. TAs contained elastin sheets separated by smooth muscle cells (SMCs), collagen, and glycosaminoglycans, while the SFAs had SMCs, collagen, and longitudinal elastic fibers. With age, densities of elastin and SMCs decreased, collagen remained constant due to medial thickening, and the glycosaminoglycans increased. Elastic and muscular arteries demonstrate different morphological, mechanical, physiologic, and structural characteristics and adapt differently to aging. While the aortas remodel to preserve the Windkessel function, the SFAs maintain higher longitudinal compliance.
Collapse
Affiliation(s)
- Majid Jadidi
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA
| | | | - Mahmoud Habibnezhad
- Department of Computer Science, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Eric Anttila
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Alexey Kamenskiy
- Department of Biomechanics, University of Nebraska Omaha, Omaha, NE, USA.
| |
Collapse
|
11
|
Bergersen AW, Kjeldsberg HA, Valen-Sendstad K. A framework for automated and objective modification of tubular structures: Application to the internal carotid artery. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2020; 36:e3330. [PMID: 32125768 DOI: 10.1002/cnm.3330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 02/26/2020] [Accepted: 02/27/2020] [Indexed: 06/10/2023]
Abstract
Patient-specific medical image-based computational fluid dynamics has been widely used to reveal fundamental insight into mechanisms of cardiovascular disease, for instance, correlating morphology to adverse vascular remodeling. However, segmentation of medical images is laborious, error-prone, and a bottleneck in the development of large databases that are needed to capture the natural variability in morphology. Instead, idealized models, where morphological features are parameterized, have been used to investigate the correlation with flow features, but at the cost of limited understanding of the complexity of cardiovascular flows. To combine the advantages of both approaches, we developed a tool that preserves the patient-specificness inherent in medical images while allowing for parametric alteration of the morphology. In our open-source framework morphMan we convert the segmented surface to a Voronoi diagram, modify the diagram to change the morphological features of interest, and then convert back to a new surface. In this paper, we present algorithms for modifying bifurcation angles, location of branches, cross-sectional area, vessel curvature, shape of bends, and surface roughness. We show qualitative and quantitative validation of the algorithms, performing with an accuracy exceeding 97% in general, and proof-of-concept on combining the tool with computational fluid dynamics. By combining morphMan with appropriate clinical measurements, one could explore the morphological parameter space and resulting hemodynamic response using only a handful of segmented surfaces, effectively minimizing the main bottleneck in image-based computational fluid dynamics.
Collapse
Affiliation(s)
- Aslak W Bergersen
- Department of Computational Physiology, Simula Research Laboratory, Fornebu, Akershus, Norway
| | - Henrik A Kjeldsberg
- Department of Computational Physiology, Simula Research Laboratory, Fornebu, Akershus, Norway
| | - Kristian Valen-Sendstad
- Department of Computational Physiology, Simula Research Laboratory, Fornebu, Akershus, Norway
| |
Collapse
|
12
|
Parker LP, Powell JT, Kelsey LJ, Venermo M, Koncar I, Norman PE, Doyle BJ. Morphology and Computational Fluid Dynamics Support a Novel Classification of Common Iliac Aneurysms. Eur J Vasc Endovasc Surg 2020; 59:786-793. [PMID: 31982309 DOI: 10.1016/j.ejvs.2019.11.035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 10/30/2019] [Accepted: 11/21/2019] [Indexed: 10/25/2022]
Abstract
OBJECTIVE Isolated common iliac artery aneurysms (CIAAs) are uncommon, and evidence concerning their development, progression, and management is weak. The objective was to describe the morphology and haemodynamics of isolated CIAAs in a retrospective study. METHODS Initially, a series of 25 isolated CIAAs (15 intact, 10 ruptured) in 23 patients were gathered from multiple centres, reconstructed from computed tomography, and then morphologically classified and analysed with computational fluid dynamics. The morphological classification was applied in a separate, consecutive cohort of 162 patients assessed for elective aorto-iliac intervention, in which 55 patients had intact CIAAs. RESULTS In the isolated CIAA cohort, three distinct morphologies were identified: complex (involving a bifurcation); fusiform; and kinked (distal to a sharp bend in the CIA), with mean diameters of 90.3, 48.3, and 31.7 mm, and mean time averaged wall shear stresses of 0.16, 0.31, and 0.71 Pa, respectively (both analysis of variance p values < .001). Kinked cases vs. fusiform cases had less thrombus and favourable haemodynamics similar to the non-aneurysmal contralateral common iliac artery (CIA). Ruptured isolated CIAAs were large (mean diameter 87.5 mm, range 55.5-138.0 mm) and predominantly complex. The mean CIA length for aneurysmal arteries was greatest in kinked cases followed by complex and fusiform (100.8 mm, 91.1 mm, and 80.6 mm, respectively). The morphological classification was readily applicable to a separate elective patient cohort. CONCLUSION A new morphological categorisation of CIAAs is proposed. Potentially this is associated with both haemodynamics and clinical course. Further research is required to determine whether the kinked CIAA is protected haemodynamically from aneurysm progression and to establish the wider applicability of the categorisation presented.
Collapse
Affiliation(s)
- Louis P Parker
- Vascular Engineering Laboratory, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and Centre for Medical Research, The University of Western Australia, Perth, Australia; School of Engineering, The University of Western Australia, Perth, Australia
| | - Janet T Powell
- Vascular Surgery Research Group, Imperial College London, London, UK
| | - Lachlan J Kelsey
- Vascular Engineering Laboratory, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and Centre for Medical Research, The University of Western Australia, Perth, Australia; School of Engineering, The University of Western Australia, Perth, Australia
| | - Maarit Venermo
- Division of Vascular Surgery, Helsinki University Central Hospital, Helsinki, Finland
| | - Igor Koncar
- Clinic for Vascular and Endovascular Surgery, Belgrade, Serbia
| | - Paul E Norman
- Vascular Engineering Laboratory, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and Centre for Medical Research, The University of Western Australia, Perth, Australia; Medical School, The University of Western Australia, Perth, Australia
| | - Barry J Doyle
- Vascular Engineering Laboratory, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and Centre for Medical Research, The University of Western Australia, Perth, Australia; School of Engineering, The University of Western Australia, Perth, Australia; Australian Research Council Centre for Personalised Therapeutics Technologies, Australia; BHF Centre for Cardiovascular Science, The University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
13
|
Legerer C, Almsherqi ZA, Dokos S, McLachlan CS. Computational evaluation of an extra-aortic elastic-wrap applied to simulated aging anisotropic human aorta models. Sci Rep 2019; 9:20109. [PMID: 31882866 PMCID: PMC6934706 DOI: 10.1038/s41598-019-56609-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 12/11/2019] [Indexed: 01/12/2023] Open
Abstract
Structural changes occurring to the aortic wall can result in vascular stiffening. This is represented by a loss of vascular compliance during pulsatile flow, resulting in increased systolic and pulse blood pressure, particularly in populations aged 50 and over. Aortic stiffness is thought to be permanent and an active de-stiffening strategy is yet to be developed. Extra aortic elastic wrapping has been proposed as a surgical technique to boost aortic distensibility and treat hypertension in the elderly. Previously, in-vivo and in-vitro testing have suggested a pulse-pressure reduction potential of elastic wrapping in the stiffened aortas. Herein, we explore the feasibility of elastic aortic wrapping to improve simulated aortic compliance across the age span. Detailed computational studies of the anisotropic aortic wall mechanics, using data from human subjects, were performed, evaluating key performance properties for the interaction between the aortic wall and elastic aortic wrap procedure. Main determinants of the procedure’s efficiency are identified using a pre-defined aortic stiffness and wrap elasticity. Finite element analysis predicts that segmental aortic distensibility can be increased if elastic wrapping is applied to a simulated stiff aorta. Elastic aortic wrapping is calculated to have little impact on the compliance of an initially distensible aorta.
Collapse
Affiliation(s)
- Christian Legerer
- Rural Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, 2052, Australia.
| | - Zakaria A Almsherqi
- Rural Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, 2052, Australia.,Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Socrates Dokos
- Graduate School of Biomedical Engineering, Faculty of Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Craig S McLachlan
- Rural Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, 2052, Australia.,Faculty of Health, Centre for Healthy Aging, Torrens University, Sydney, NSW, 2009, Australia
| |
Collapse
|
14
|
Analysis of morphological and hemodynamical indexes in abdominal aortic aneurysms as preliminary indicators of intraluminal thrombus deposition. Biomech Model Mechanobiol 2019; 19:1035-1053. [PMID: 31820279 DOI: 10.1007/s10237-019-01269-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 11/22/2019] [Indexed: 10/25/2022]
Abstract
In this paper, we study the correlation between the wall shear stress, a hemodynamical index derived from numerical simulations, and an new index MFA-ILT for the characterization of intraluminal thrombus (ILT) in the presence of abdominal aortic aneurysms. Based on the processing of medical images, we define our index MFA-ILT by projecting onto lumen surface a measure of the ILT thickness. From the physical point of view, hemodynamical indexes describe the mechanical stimuli at which the luminal surface of the vessel wall is subject to, due to blood flow. Specifically, we consider the time-averaged wall shear stress and the oscillatory shear index. The first index provides a measurement of the averaged magnitude of the shear stress; the second index measures the rate of change of shear stress. To reconstruct the hemodynamical indexes, we build in silico three-dimensional models. We use the same physical parameters and boundary conditions for all the aneurysms in the sample. The computer simulations do not require any additional invasive patient examination. We consider eleven cases of abdominal aortic aneurysms spanning a wide range of different morphological features. All the cases are characterized by a thin intraluminal thrombus. We can, therefore, assume that the lumen we currently observe does not significantly differ from the one before the thrombus deposition. Our results suggest that the value of wall shear stresses and intraluminal thrombus deposition are correlated. Moreover, we conclude that in six cases time-averaged wall shear stress provides a preliminary indication of the area at risk of thrombus deposition.
Collapse
|
15
|
Simka M, Hobot J, Skuła M. Intraluminal thrombus in abdominal aortic aneurysm: a friend or a foe? INT ANGIOL 2019; 38:508-509. [PMID: 31782282 DOI: 10.23736/s0392-9590.19.04244-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Marian Simka
- Department of Anatomy, Institute of Medicine, University of Opole, Opole, Poland -
| | - Jacek Hobot
- Department of Anatomy, Institute of Medicine, University of Opole, Opole, Poland
| | - Marcin Skuła
- Department of Anatomy, Institute of Medicine, University of Opole, Opole, Poland
| |
Collapse
|
16
|
Joly F, Soulez G, Lessard S, Kauffmann C, Vignon-Clementel I. A Cohort Longitudinal Study Identifies Morphology and Hemodynamics Predictors of Abdominal Aortic Aneurysm Growth. Ann Biomed Eng 2019; 48:606-623. [DOI: 10.1007/s10439-019-02375-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 09/24/2019] [Indexed: 12/19/2022]
|