1
|
Blomme J, Wichard T, Jacobs TB, De Clerck O. Ulva: An emerging green seaweed model for systems biology. JOURNAL OF PHYCOLOGY 2023. [PMID: 37256696 DOI: 10.1111/jpy.13341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 04/28/2023] [Accepted: 05/02/2023] [Indexed: 06/02/2023]
Abstract
Green seaweeds exhibit a wide range of morphologies and occupy various ecological niches, spanning from freshwater to marine and terrestrial habitats. These organisms, which predominantly belong to the class Ulvophyceae, showcase a remarkable instance of parallel evolution toward complex multicellularity and macroscopic thalli in the Viridiplantae lineage. Within the green seaweeds, several Ulva species ("sea lettuce") are model organisms for studying carbon assimilation, interactions with bacteria, life cycle progression, and morphogenesis. Ulva species are also notorious for their fast growth and capacity to dominate nutrient-rich, anthropogenically disturbed coastal ecosystems during "green tide" blooms. From an economic perspective, Ulva has garnered increasing attention as a promising feedstock for the production of food, feed, and biobased products, also as a means of removing excess nutrients from the environment. We propose that Ulva is poised to further develop as a model in green seaweed research. In this perspective, we focus explicitly on Ulva mutabilis/compressa as a model species and highlight the molecular data and tools that are currently available or in development. We discuss several areas that will benefit from future research or where exciting new developments have been reported in other Ulva species.
Collapse
Affiliation(s)
- Jonas Blomme
- Department of Biology, Phycology Research Group, Ghent University, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB-UGent Center for Plant Systems Biology, Ghent, Belgium
| | - Thomas Wichard
- Institute for Inorganic and Analytical Chemistry, Jena School for Microbial Communication, Friedrich Schiller University Jena, Jena, Germany
| | - Thomas B Jacobs
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB-UGent Center for Plant Systems Biology, Ghent, Belgium
| | - Olivier De Clerck
- Department of Biology, Phycology Research Group, Ghent University, Ghent, Belgium
| |
Collapse
|
2
|
Bi YH, Li Z, Zhou ZG. Karyotype analysis of the brown seaweed Saccharina (or Laminaria) japonica. ALGAL RES 2023. [DOI: 10.1016/j.algal.2023.103081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
3
|
Dual-color fluorescence in situ hybridization with combinatorial labeling probes enables a detailed karyotype analysis of Saccharina japonica. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
4
|
Zhang N, Pazouki L, Nguyen H, Jacobshagen S, Bigge BM, Xia M, Mattoon EM, Klebanovych A, Sorkin M, Nusinow DA, Avasthi P, Czymmek KJ, Zhang R. Comparative Phenotyping of Two Commonly Used Chlamydomonas reinhardtii Background Strains: CC-1690 (21gr) and CC-5325 (The CLiP Mutant Library Background). PLANTS (BASEL, SWITZERLAND) 2022; 11:585. [PMID: 35270055 PMCID: PMC8912731 DOI: 10.3390/plants11050585] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/07/2022] [Accepted: 02/14/2022] [Indexed: 05/02/2023]
Abstract
The unicellular green alga Chlamydomonas reinhardtii is an excellent model organism to investigate many essential cellular processes in photosynthetic eukaryotes. Two commonly used background strains of Chlamydomonas are CC-1690 and CC-5325. CC-1690, also called 21gr, has been used for the Chlamydomonas genome project and several transcriptome analyses. CC-5325 is the background strain for the Chlamydomonas Library Project (CLiP). Photosynthetic performance in CC-5325 has not been evaluated in comparison with CC-1690. Additionally, CC-5325 is often considered to be cell-wall deficient, although detailed analysis is missing. The circadian rhythms in CC-5325 are also unclear. To fill these knowledge gaps and facilitate the use of the CLiP mutant library for various screens, we performed phenotypic comparisons between CC-1690 and CC-5325. Our results showed that CC-5325 grew faster heterotrophically in dark and equally well in mixotrophic liquid medium as compared to CC-1690. CC-5325 had lower photosynthetic efficiency and was more heat-sensitive than CC-1690. Furthermore, CC-5325 had an intact cell wall which had comparable integrity to that in CC-1690 but appeared to have reduced thickness. Additionally, CC-5325 could perform phototaxis, but could not maintain a sustained circadian rhythm of phototaxis as CC1690 did. Finally, in comparison to CC-1690, CC-5325 had longer cilia in the medium with acetate but slower swimming speed in the medium without nitrogen and acetate. Our results will be useful for researchers in the Chlamydomonas community to choose suitable background strains for mutant analysis and employ the CLiP mutant library for genome-wide mutant screens under appropriate conditions, especially in the areas of photosynthesis, thermotolerance, cell wall, and circadian rhythms.
Collapse
Affiliation(s)
- Ningning Zhang
- Donald Danforth Plant Science Center, St. Louis, MO 63132, USA; (N.Z.); (L.P.); (H.N.); (M.X.); (E.M.M.); (A.K.); (M.S.); (D.A.N.); (K.J.C.)
| | - Leila Pazouki
- Donald Danforth Plant Science Center, St. Louis, MO 63132, USA; (N.Z.); (L.P.); (H.N.); (M.X.); (E.M.M.); (A.K.); (M.S.); (D.A.N.); (K.J.C.)
| | - Huong Nguyen
- Donald Danforth Plant Science Center, St. Louis, MO 63132, USA; (N.Z.); (L.P.); (H.N.); (M.X.); (E.M.M.); (A.K.); (M.S.); (D.A.N.); (K.J.C.)
| | - Sigrid Jacobshagen
- Department of Biology, Western Kentucky University, Bowling Green, KY 42101, USA;
| | - Brae M. Bigge
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA; (B.M.B.); (P.A.)
| | - Ming Xia
- Donald Danforth Plant Science Center, St. Louis, MO 63132, USA; (N.Z.); (L.P.); (H.N.); (M.X.); (E.M.M.); (A.K.); (M.S.); (D.A.N.); (K.J.C.)
| | - Erin M. Mattoon
- Donald Danforth Plant Science Center, St. Louis, MO 63132, USA; (N.Z.); (L.P.); (H.N.); (M.X.); (E.M.M.); (A.K.); (M.S.); (D.A.N.); (K.J.C.)
- Plant and Microbial Biosciences Program, Division of Biology and Biomedical Sciences, Washington University in Saint Louis, St. Louis, MO 63130, USA
| | - Anastasiya Klebanovych
- Donald Danforth Plant Science Center, St. Louis, MO 63132, USA; (N.Z.); (L.P.); (H.N.); (M.X.); (E.M.M.); (A.K.); (M.S.); (D.A.N.); (K.J.C.)
| | - Maria Sorkin
- Donald Danforth Plant Science Center, St. Louis, MO 63132, USA; (N.Z.); (L.P.); (H.N.); (M.X.); (E.M.M.); (A.K.); (M.S.); (D.A.N.); (K.J.C.)
- Plant and Microbial Biosciences Program, Division of Biology and Biomedical Sciences, Washington University in Saint Louis, St. Louis, MO 63130, USA
| | - Dmitri A. Nusinow
- Donald Danforth Plant Science Center, St. Louis, MO 63132, USA; (N.Z.); (L.P.); (H.N.); (M.X.); (E.M.M.); (A.K.); (M.S.); (D.A.N.); (K.J.C.)
| | - Prachee Avasthi
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA; (B.M.B.); (P.A.)
| | - Kirk J. Czymmek
- Donald Danforth Plant Science Center, St. Louis, MO 63132, USA; (N.Z.); (L.P.); (H.N.); (M.X.); (E.M.M.); (A.K.); (M.S.); (D.A.N.); (K.J.C.)
| | - Ru Zhang
- Donald Danforth Plant Science Center, St. Louis, MO 63132, USA; (N.Z.); (L.P.); (H.N.); (M.X.); (E.M.M.); (A.K.); (M.S.); (D.A.N.); (K.J.C.)
| |
Collapse
|
5
|
DeWeese KJ, Osborne MG. Understanding the metabolome and metagenome as extended phenotypes: The next frontier in macroalgae domestication and improvement. JOURNAL OF THE WORLD AQUACULTURE SOCIETY 2021; 52:1009-1030. [PMID: 34732977 PMCID: PMC8562568 DOI: 10.1111/jwas.12782] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 02/25/2021] [Indexed: 06/01/2023]
Abstract
"Omics" techniques (including genomics, transcriptomics, metabolomics, proteomics, and metagenomics) have been employed with huge success in the improvement of agricultural crops. As marine aquaculture of macroalgae expands globally, biologists are working to domesticate species of macroalgae by applying these techniques tested in agriculture to wild macroalgae species. Metabolomics has revealed metabolites and pathways that influence agriculturally relevant traits in crops, allowing for informed crop crossing schemes and genomic improvement strategies that would be pivotal to inform selection on macroalgae for domestication. Advances in metagenomics have improved understanding of host-symbiont interactions and the potential for microbial organisms to improve crop outcomes. There is much room in the field of macroalgal biology for further research toward improvement of macroalgae cultivars in aquaculture using metabolomic and metagenomic analyses. To this end, this review discusses the application and necessary expansion of the omics tool kit for macroalgae domestication as we move to enhance seaweed farming worldwide.
Collapse
Affiliation(s)
- Kelly J DeWeese
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, California, Los Angeles
| | - Melisa G Osborne
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, California, Los Angeles
| |
Collapse
|
6
|
Yang X, Wang X, Yao J, Duan D. Genome-Wide Mapping of Cytosine Methylation Revealed Dynamic DNA Methylation Patterns Associated with Sporophyte Development of Saccharina japonica. Int J Mol Sci 2021; 22:9877. [PMID: 34576045 PMCID: PMC8472486 DOI: 10.3390/ijms22189877] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/27/2021] [Accepted: 09/08/2021] [Indexed: 02/04/2023] Open
Abstract
Cytosine methylation plays vital roles in regulating gene expression and plant development. However, the function of DNA methylation in the development of macroalgae remains unclear. Through the genome-wide bisulfite sequencing of cytosine methylation in holdfast, stipe and blade, we obtained the complete 5-mC methylation landscape of Saccharina japonica sporophyte. Our results revealed that the total DNA methylation level of sporophyte was less than 0.9%, and the content of CHH contexts was dominant. Moreover, the distribution of CHH methylation within the genes exhibited exon-enriched characteristics. Profiling of DNA methylation in three parts revealed the diverse methylation pattern of sporophyte development. These pivotal DMRs were involved in cell motility, cell cycle and cell wall/membrane biogenesis. In comparison with stipe and blade, hypermethylation of mannuronate C5-epimerase in holdfast decreased the transcript abundance, which affected the synthesis of alginate, the key component of cell walls. Additionally, 5-mC modification participated in the regulation of blade and holdfast development by the glutamate content respectively via glutamine synthetase and amidophosphoribosyl transferase, which may act as the epigenetic regulation signal. Overall, our study revealed the global methylation characteristics of the well-defined holdfast, stipe and blade, and provided evidence for epigenetic regulation of sporophyte development in brown macroalgae.
Collapse
Affiliation(s)
- Xiaoqi Yang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (X.Y.); (X.W.); (J.Y.)
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiuliang Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (X.Y.); (X.W.); (J.Y.)
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266071, China
| | - Jianting Yao
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (X.Y.); (X.W.); (J.Y.)
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266071, China
| | - Delin Duan
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (X.Y.); (X.W.); (J.Y.)
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266071, China
| |
Collapse
|
7
|
Graf L, Shin Y, Yang JH, Choi JW, Hwang IK, Nelson W, Bhattacharya D, Viard F, Yoon HS. A genome-wide investigation of the effect of farming and human-mediated introduction on the ubiquitous seaweed Undaria pinnatifida. Nat Ecol Evol 2021; 5:360-368. [PMID: 33495590 PMCID: PMC7929912 DOI: 10.1038/s41559-020-01378-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 12/03/2020] [Indexed: 02/06/2023]
Abstract
Human activity is an important driver of ecological and evolutionary change on our planet. In particular, domestication and biological introductions have important and long-lasting effects on species' genomic architecture and diversity. However, genome-wide analysis of independent domestication and introduction events within a single species has not previously been performed. The Pacific kelp Undaria pinnatifida provides such an opportunity because it has been cultivated in its native range in Northeast Asia but also introduced to four other continents in the past 50 years. Here we present the results of a genome-wide analysis of natural, cultivated and introduced populations of U. pinnatifida to elucidate human-driven evolutionary change. We demonstrate that these three categories of origin can be distinguished at the genome level, reflecting the combined influence of neutral (demography and migration) and non-neutral (selection) processes.
Collapse
Affiliation(s)
- Louis Graf
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Korea
| | - Younhee Shin
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Korea
| | - Ji Hyun Yang
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Korea
| | - Ji Won Choi
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Korea
| | - Il Ki Hwang
- Aquaculture Management Division, National Institute of Fisheries Science, Busan, South Korea
| | - Wendy Nelson
- National Institute of Water & Atmospheric Research, Wellington, New Zealand
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | | | - Frédérique Viard
- Sorbonne Université, CNRS, AD2M, Station Biologique de Roscoff, Roscoff, France
- ISEM, Univ. Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Hwan Su Yoon
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Korea.
| |
Collapse
|
8
|
Guzinski J, Ruggeri P, Ballenghien M, Mauger S, Jacquemin B, Jollivet C, Coudret J, Jaugeon L, Destombe C, Valero M. Seascape Genomics of the Sugar Kelp Saccharina latissima along the North Eastern Atlantic Latitudinal Gradient. Genes (Basel) 2020; 11:E1503. [PMID: 33322137 PMCID: PMC7763533 DOI: 10.3390/genes11121503] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 12/08/2020] [Accepted: 12/09/2020] [Indexed: 12/23/2022] Open
Abstract
Temperature is one of the most important range-limiting factors for many seaweeds. Driven by the recent climatic changes, rapid northward shifts of species' distribution ranges can potentially modify the phylogeographic signature of Last Glacial Maximum. We explored this question in detail in the cold-tolerant kelp species Saccharina latissima, using microsatellites and double digest restriction site-associated DNA sequencing ( ddRAD-seq) derived single nucleotide polymorphisms (SNPs) to analyze the genetic diversity and structure in 11 sites spanning the entire European Atlantic latitudinal range of this species. In addition, we checked for statistical correlation between genetic marker allele frequencies and three environmental proxies (sea surface temperature, salinity, and water turbidity). Our findings revealed that genetic diversity was significantly higher for the northernmost locality (Spitsbergen) compared to the southern ones (Northern Iberia), which we discuss in light of the current state of knowledge on phylogeography of S. latissima and the potential influence of the recent climatic changes on the population structure of this species. Seven SNPs and 12 microsatellite alleles were found to be significantly associated with at least one of the three environmental variables. We speculate on the putative adaptive functions of the genes associated with the outlier markers and the importance of these markers for successful conservation and aquaculture strategies for S. latissima in this age of rapid global change.
Collapse
Affiliation(s)
- Jaromir Guzinski
- UMI EBEA 3614, Evolutionary Biology and Ecology of Algae, CNRS, Sorbonne Université, UC, UACH, Station Biologique de Roscoff, CS 90074, Place Georges Teissier, 29688 Roscoff CEDEX, France; (J.G.); (P.R.); (M.B.); (S.M.); (B.J.); (C.J.); (J.C.); (L.J.); (C.D.)
- Department of Bacteriology, Animal and Plant Health Agency, Addlestone KT15 3NB, Surrey, UK
| | - Paolo Ruggeri
- UMI EBEA 3614, Evolutionary Biology and Ecology of Algae, CNRS, Sorbonne Université, UC, UACH, Station Biologique de Roscoff, CS 90074, Place Georges Teissier, 29688 Roscoff CEDEX, France; (J.G.); (P.R.); (M.B.); (S.M.); (B.J.); (C.J.); (J.C.); (L.J.); (C.D.)
- Xelect ltd, Horizon House, Abbey Walk, St Andrews KY16 9LB, Scotland, UK
| | - Marion Ballenghien
- UMI EBEA 3614, Evolutionary Biology and Ecology of Algae, CNRS, Sorbonne Université, UC, UACH, Station Biologique de Roscoff, CS 90074, Place Georges Teissier, 29688 Roscoff CEDEX, France; (J.G.); (P.R.); (M.B.); (S.M.); (B.J.); (C.J.); (J.C.); (L.J.); (C.D.)
- UMR 7144, Adaptation et Diversité en Milieu Marin, CNRS, Sorbonne Université, Station Biologique de Roscoff, CS 90074, Place Georges Teissier, 29688 Roscoff CEDEX, France
| | - Stephane Mauger
- UMI EBEA 3614, Evolutionary Biology and Ecology of Algae, CNRS, Sorbonne Université, UC, UACH, Station Biologique de Roscoff, CS 90074, Place Georges Teissier, 29688 Roscoff CEDEX, France; (J.G.); (P.R.); (M.B.); (S.M.); (B.J.); (C.J.); (J.C.); (L.J.); (C.D.)
| | - Bertrand Jacquemin
- UMI EBEA 3614, Evolutionary Biology and Ecology of Algae, CNRS, Sorbonne Université, UC, UACH, Station Biologique de Roscoff, CS 90074, Place Georges Teissier, 29688 Roscoff CEDEX, France; (J.G.); (P.R.); (M.B.); (S.M.); (B.J.); (C.J.); (J.C.); (L.J.); (C.D.)
- CEVA, 83 Presqu’île de Pen Lan, 22610 Pleubian, France
| | - Chloe Jollivet
- UMI EBEA 3614, Evolutionary Biology and Ecology of Algae, CNRS, Sorbonne Université, UC, UACH, Station Biologique de Roscoff, CS 90074, Place Georges Teissier, 29688 Roscoff CEDEX, France; (J.G.); (P.R.); (M.B.); (S.M.); (B.J.); (C.J.); (J.C.); (L.J.); (C.D.)
- Ecole polytechnique de Lausanne (EPFL), SV-IBI UPOATES, Route cantonale, CH-1015 Lausanne, Switzerland
| | - Jerome Coudret
- UMI EBEA 3614, Evolutionary Biology and Ecology of Algae, CNRS, Sorbonne Université, UC, UACH, Station Biologique de Roscoff, CS 90074, Place Georges Teissier, 29688 Roscoff CEDEX, France; (J.G.); (P.R.); (M.B.); (S.M.); (B.J.); (C.J.); (J.C.); (L.J.); (C.D.)
| | - Lucie Jaugeon
- UMI EBEA 3614, Evolutionary Biology and Ecology of Algae, CNRS, Sorbonne Université, UC, UACH, Station Biologique de Roscoff, CS 90074, Place Georges Teissier, 29688 Roscoff CEDEX, France; (J.G.); (P.R.); (M.B.); (S.M.); (B.J.); (C.J.); (J.C.); (L.J.); (C.D.)
| | - Christophe Destombe
- UMI EBEA 3614, Evolutionary Biology and Ecology of Algae, CNRS, Sorbonne Université, UC, UACH, Station Biologique de Roscoff, CS 90074, Place Georges Teissier, 29688 Roscoff CEDEX, France; (J.G.); (P.R.); (M.B.); (S.M.); (B.J.); (C.J.); (J.C.); (L.J.); (C.D.)
| | - Myriam Valero
- UMI EBEA 3614, Evolutionary Biology and Ecology of Algae, CNRS, Sorbonne Université, UC, UACH, Station Biologique de Roscoff, CS 90074, Place Georges Teissier, 29688 Roscoff CEDEX, France; (J.G.); (P.R.); (M.B.); (S.M.); (B.J.); (C.J.); (J.C.); (L.J.); (C.D.)
| |
Collapse
|
9
|
Shan T, Pang S, Wang X, Li J, Li Q, Su L, Li X. A method to establish an "immortalized F 2 " sporophyte population in the economic brown alga Undaria pinnatifida (Laminariales: Alariaceae). JOURNAL OF PHYCOLOGY 2020; 56:1748-1753. [PMID: 32888200 DOI: 10.1111/jpy.13066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/20/2020] [Accepted: 08/11/2020] [Indexed: 06/11/2023]
Abstract
Studies of quantitative trait loci based on genetic linkage maps require the establishment of a mapping population. Permanent mapping populations are more ideal than temporary ones because they can be used repeatedly. However, there has been no reported permanent sporophyte population of economically important kelp species. Based on the characteristics of the kelp life cycle, we proposed a method to establish, and then constructed experimentally, an "immortalized F2 " (IF2 ) population of Undaria pinnatifida. Doubled-haploid "female" and "male" sporophytes were obtained through the parthenogenesis of a female gametophyte clone and the selfing of a "monoicous" gametophyte clone (originally male), respectively, and they were used as the parents. The F1 hybrid line was generated by crossing the female and male gametophytes derived from the respective female and male parents. Full-sibling F2 gametophyte clones, consisting of 260 females and 260 males, were established from an F1 hybrid sporophyte. Thirty-five females and 35 males were randomly selected and paired to give rise to an IF2 population containing 35 crossing lines. A parentage analysis using 10 microsatellite markers confirmed the accuracy of the IF2 population and indicated the feasibility of this method. This proposed method may be adapted for use in other kelp species, and thus, it will be useful for genetic studies of kelp.
Collapse
Affiliation(s)
- Tifeng Shan
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Rd., Qingdao, 266071, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, 7 Nanhai Rd, Qingdao, 266071, China
| | - Shaojun Pang
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Rd., Qingdao, 266071, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, 7 Nanhai Rd, Qingdao, 266071, China
| | - Xuemei Wang
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Rd., Qingdao, 266071, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, 7 Nanhai Rd, Qingdao, 266071, China
| | - Jing Li
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Rd., Qingdao, 266071, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, 7 Nanhai Rd, Qingdao, 266071, China
| | - Qianxi Li
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Rd., Qingdao, 266071, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, 7 Nanhai Rd, Qingdao, 266071, China
| | - Li Su
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Rd., Qingdao, 266071, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, 7 Nanhai Rd, Qingdao, 266071, China
| | - Xiaodong Li
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Rd., Qingdao, 266071, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, 7 Nanhai Rd, Qingdao, 266071, China
| |
Collapse
|
10
|
Abstract
Model organisms are extensively used in research as accessible and convenient systems for studying a particular area or question in biology. Traditionally, only a limited number of organisms have been studied in detail, but modern genomic tools are enabling researchers to extend beyond the set of classical model organisms to include novel species from less-studied phylogenetic groups. This review focuses on model species for an important group of multicellular organisms, the brown algae. The development of genetic and genomic tools for the filamentous brown alga Ectocarpus has led to it emerging as a general model system for this group, but additional models, such as Fucus or Dictyota dichotoma, remain of interest for specific biological questions. In addition, Saccharina japonica has emerged as a model system to directly address applied questions related to algal aquaculture. We discuss the past, present, and future of brown algal model organisms in relation to the opportunities and challenges in brown algal research.
Collapse
Affiliation(s)
- Susana M Coelho
- Laboratory of Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), CNRS, Sorbonne Université, 29680 Roscoff, France;
- Current affiliation: Department of Algal Development and Evolution, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany;
| | - J Mark Cock
- Laboratory of Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), CNRS, Sorbonne Université, 29680 Roscoff, France;
| |
Collapse
|
11
|
Chen Z, Wang X, Li S, Yao J, Shao Z, Duan D. Verification of the Saccharina japonica Translocon Tic20 and its Localization in the Chloroplast Membrane in Diatoms. Int J Mol Sci 2019; 20:E4000. [PMID: 31426420 PMCID: PMC6720183 DOI: 10.3390/ijms20164000] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/01/2019] [Accepted: 08/15/2019] [Indexed: 12/21/2022] Open
Abstract
Tic20 is an important translocon protein that plays a role in protein transport in the chloroplast. The sequence of Tic20 was determined in the lower brown alga Saccharina japonica. Structural analysis of SjTic20 revealed a noncanonical structure consisting of an N-terminal non-cyanobacterium-originated EF-hand domain (a helix-loop-helix structural domain) and a C-terminal cyanobacterium-originated Tic20 domain. Subcellular localization and transmembrane analysis indicated that SjTic20 featured an "M"-type Nin-Cin-terminal orientation, with four transmembrane domains in the innermost membrane of the chloroplast in the microalga Phaeodactylum tricornutum, and the EF-hand domain was entirely extruded into the chloroplast stroma. Our study provides information on the structure, localization, and topological features of SjTic20, and further functional analysis of SjTic20 in S. japonica is needed.
Collapse
Affiliation(s)
- Zhihang Chen
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
- University of Chinese Academy of Sciences, Beijing 100093, China
| | - Xiuliang Wang
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China.
| | - Shuang Li
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
- University of Chinese Academy of Sciences, Beijing 100093, China
| | - Jianting Yao
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Zhanru Shao
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Delin Duan
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China.
| |
Collapse
|
12
|
Demes KW, Pruitt JN. Individuality in seaweeds and why we need to care. JOURNAL OF PHYCOLOGY 2019; 55:247-256. [PMID: 30802959 DOI: 10.1111/jpy.12845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 02/18/2019] [Indexed: 06/09/2023]
Abstract
Documenting the causes and consequences of intraspecific variation forms the foundation of much of evolutionary ecology. In this Perspectives piece, we review the importance of individual variation in ecology and evolution, argue that contemporary phycology often overlooks this foundational biological unit, and highlight how this lack of attention has potentially constrained our understanding of seaweeds. We then provide some suggestions of promising but underrepresented approaches, for instance: conducting more studies and analyses at the level of the individual; designing studies to evaluate heritability and genetic regulation of traits; and measuring associations between individual variation in functional traits and ecological outcomes. We close by highlighting areas of phycological research (e.g., population biology, ecology, aquaculture, climate change management) that could benefit immediately from including a focus on individual variation. Algae, for their part, provide us with a powerful and diverse set of ecological and evolutionary traits to explore these topics. There is much to be discovered.
Collapse
Affiliation(s)
- Kyle W Demes
- Department of Institutional Strategic Awards, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, Canada, V5A 1S6
- Department of Zoology, The University of British Columbia, 2329 West Mall, Vancouver, British Columbia, Canada, V6T 1Z4
| | - Jonathan N Pruitt
- Department of Psychology, Neurobiology and Behaviour, McMaster University, Hamilton, Ontario, Canada, L8S 4K1
- Marine Science Institute, University of California Santa Barbara, Santa Barbara, California, 93117, USA
| |
Collapse
|