1
|
Boanares D, Cardoso AF, Escobar DFE, Costa KJA, Bitencourt JA, Costa PHO, Ramos S, Gastauer M, Caldeira CF. The Impact of Rhizospheric and Endophytic Bacteria on the Germination of Carajasia cangae: A Threatened Rubiaceae of the Amazon Cangas. Microorganisms 2024; 12:1843. [PMID: 39338517 PMCID: PMC11433783 DOI: 10.3390/microorganisms12091843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/30/2024] Open
Abstract
Carajasia cangae (Rubiaceae) is a narrow endemic species from the canga ecosystems of the Carajás National Forest that is facing extinction due to a limited range and habitat disturbance from hydroclimatological changes and mining activities. This study examines the influence of rhizospheric and endophytic bacteria on C. cangae seed germination to support conservation efforts. Soil samples, both rhizospheric and non-rhizospheric, as well as plant root tissues, were collected. Bacteria from these samples were subsequently isolated, cultured, and identified. DNA sequencing revealed the presence of 16 isolates (9 rhizospheric and 7 endophytic), representing 19 genera and 6 phyla: Proteobacteria, Actinobacteria, Acidobacteria, Firmicutes, Bacteroidetes, and Chloroflexi. The endophytic isolates of Bacillus and the rhizospheric isolates of Planococcus and Lysinibacillus reduced the median germination time and initiation time, while the rhizospheric isolates Serratia and Comamonas increased the germination time and decreased the germination percentage in comparison to the control sample. These findings emphasize the crucial role of endophytic bacteria in the germination of C. cangae and highlight isolates that could have beneficial effects in the following stages of plant growth. Understanding the impact of endophytic and rhizospheric bacterial isolates on seed germination can enhance conservation efforts by shortening the germination period of this species and thereby improving seedling production. Additionally, this knowledge will pave the way for future research on the role of bacteria in the establishment of C. cangae.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Cecilio Frois Caldeira
- Instituto Tecnológico Vale, Belém 66055-090, PA, Brazil; (D.B.); (A.F.C.); (D.F.E.E.); (K.J.A.C.); (J.A.B.); (P.H.O.C.); (S.R.); (M.G.)
| |
Collapse
|
2
|
Shamim A, Sanka Loganathachetti D, Chandran S, Masmoudi K, Mundra S. Salinity of irrigation water selects distinct bacterial communities associated with date palm (Phoenix dactylifera L.) root. Sci Rep 2022; 12:12733. [PMID: 35882908 PMCID: PMC9325759 DOI: 10.1038/s41598-022-16869-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 07/18/2022] [Indexed: 01/18/2023] Open
Abstract
Saline water irrigation has been used in date palm (Phoenix dactylifera L.) agriculture as an alternative to non-saline water due to water scarcity in hyper-arid environments. However, the knowledge pertaining to saline water irrigation impact on the root-associated bacterial communities of arid agroecosystems is scarce. In this study, we investigated the effect of irrigation sources (non-saline freshwater vs saline groundwater) on date palm root-associated bacterial communities using 16S rDNA metabarcoding. The bacterial richness, Shannon diversity and evenness didn't differ significantly between the irrigation sources. Soil electrical conductivity (EC) and irrigation water pH were negatively related to Shannon diversity and evenness respectively, while soil organic matter displayed a positive correlation with Shannon diversity. 40.5% of total Operational Taxonomic Units were unique to non-saline freshwater irrigation, while 26% were unique to saline groundwater irrigation. The multivariate analyses displayed strong structuring of bacterial communities according to irrigation sources, and both soil EC and irrigation water pH were the major factors affecting bacterial communities. The genera Bacillus, Micromonospora and Mycobacterium were dominated while saline water irrigation whereas contrasting pattern was observed for Rhizobium, Streptomyces and Acidibacter. Taken together, we suggest that date-palm roots select specific bacterial taxa under saline groundwater irrigation, which possibly help in alleviating salinity stress and promote growth of the host plant.
Collapse
Affiliation(s)
- Azra Shamim
- Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain, Abu-Dhabi, UAE
| | | | - Subha Chandran
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain, Abu-Dhabi, UAE
| | - Khaled Masmoudi
- Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain, Abu-Dhabi, UAE.
| | - Sunil Mundra
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain, Abu-Dhabi, UAE.
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al-Ain, United Arab Emirates.
| |
Collapse
|
3
|
González D, Robas M, Fernández V, Bárcena M, Probanza A, Jiménez PA. Comparative Metagenomic Study of Rhizospheric and Bulk Mercury-Contaminated Soils in the Mining District of Almadén. Front Microbiol 2022; 13:797444. [PMID: 35330761 PMCID: PMC8940170 DOI: 10.3389/fmicb.2022.797444] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 01/17/2022] [Indexed: 12/22/2022] Open
Abstract
Soil contamination by heavy metals, particularly mercury (Hg), is a problem that can seriously affect the environment, animals, and human health. Hg has the capacity to biomagnify in the food chain. That fact can lead to pathologies, of those which affect the central nervous system being the most severe. It is convenient to know the biological environmental indicators that alert of the effects of Hg contamination as well as the biological mechanisms that can help in its remediation. To contribute to this knowledge, this study conducted comparative analysis by the use of Shotgun metagenomics of the microbial communities in rhizospheric soils and bulk soil of the mining region of Almadén (Ciudad Real, Spain), one of the most affected areas by Hg in the world The sequences obtained was analyzed with MetaPhlAn2 tool and SUPER-FOCUS. The most abundant taxa in the taxonomic analysis in bulk soil were those of Actinobateria and Alphaproteobacteria. On the contrary, in the rhizospheric soil microorganisms belonging to the phylum Proteobacteria were abundant, evidencing that roots have a selective effect on the rhizospheric communities. In order to analyze possible indicators of biological contamination, a functional potential analysis was performed. The results point to a co-selection of the mechanisms of resistance to Hg and the mechanisms of resistance to antibiotics or other toxic compounds in environments contaminated by Hg. Likewise, the finding of antibiotic resistance mechanisms typical of the human clinic, such as resistance to beta-lactams and glycopeptics (vancomycin), suggests that these environments can behave as reservoirs. The sequences involved in Hg resistance (operon mer and efflux pumps) have a similar abundance in both soil types. However, the response to abiotic stress (salinity, desiccation, and contaminants) is more prevalent in rhizospheric soil. Finally, sequences involved in nitrogen fixation and metabolism and plant growth promotion (PGP genes) were identified, with higher relative abundances in rhizospheric soils. These findings can be the starting point for the targeted search for microorganisms suitable for further use in bioremediation processes in Hg-contaminated environments.
Collapse
Affiliation(s)
- Daniel González
- Department of Pharmaceutical Science and Health, CEU Universities, Boadilla del Monte, Spain
| | - Marina Robas
- Department of Pharmaceutical Science and Health, CEU Universities, Boadilla del Monte, Spain
| | - Vanesa Fernández
- Department of Pharmaceutical Science and Health, CEU Universities, Boadilla del Monte, Spain
| | - Marta Bárcena
- Department of Pharmaceutical Science and Health, CEU Universities, Boadilla del Monte, Spain
| | - Agustín Probanza
- Department of Pharmaceutical Science and Health, CEU Universities, Boadilla del Monte, Spain
| | - Pedro A Jiménez
- Department of Pharmaceutical Science and Health, CEU Universities, Boadilla del Monte, Spain
| |
Collapse
|
4
|
Saikia J, Mazumdar R, Thakur D. Phylogenetic affiliation of endophytic actinobacteria associated with selected orchid species and their role in growth promotion and suppression of phytopathogens. FRONTIERS IN PLANT SCIENCE 2022; 13:1058867. [PMID: 36570961 PMCID: PMC9769409 DOI: 10.3389/fpls.2022.1058867] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/03/2022] [Indexed: 05/22/2023]
Abstract
Endophytic actinobacteria aid in plant development and disease resistance by boosting nutrient uptake or producing secondary metabolites. For the first time, we investigated the culturable endophytic actinobacteria associated with ten epiphytic orchid species of Assam, India. 51 morphologically distinct actinobacteria were recovered from surface sterilized roots and leaves of orchids and characterized based on different PGP and antifungal traits. According to the 16S rRNA gene sequence, these isolates were divided into six families and eight genera, where Streptomyces was most abundant (n=29, 56.86%), followed by Actinomadura, Nocardia, Nocardiopsis, Nocardioides, Pseudonocardia, Microbacterium, and Mycolicibacterium. Regarding PGP characteristics, 25 (49.01%) isolates demonstrated phosphate solubilization in the range of 61.1±4.4 - 289.7±11.9 µg/ml, whereas 27 (52.94%) isolates biosynthesized IAA in the range of 4.0 ± 0.08 - 43.8 ± 0.2 µg/ml, and 35 (68.62%) isolates generated ammonia in the range of 0.9 ± 0.1 - 5.9 ± 0.2 µmol/ml. These isolates also produced extracellular enzymes, viz. protease (43.13%), cellulase (23.52%), pectinase (21.56%), ACC deaminase (27.45%), and chitinase (37.25%). Out of 51 isolates, 27 (52.94%) showed antagonism against at least one test phytopathogen. In molecular screening, most isolates with antifungal and chitinase producing traits revealed the presence of 18 family chitinase genes. Two actinobacterial endophytes, Streptomyces sp. VCLA3 and Streptomyces sp. RVRA7 were ranked as the best strains based on PGP and antifungal activity on bonitur scale. GC-MS examination of ethyl acetate extract of these potent strains displayed antimicrobial compound phenol, 2,4-bis-(1,1-dimethylethyl) as the major metabolite along with other antifungal and plant growth beneficial bioactive chemicals. SEM analysis of fungal pathogen F. oxysporum (MTCC 4633) affected by Streptomyces sp. VCLA3 revealed significant destruction in the spore structure. An in vivo plant growth promotion experiment with VCLA3 and RVRA7 on chili plants exhibited statistically significant (p<0.05) improvements in all of the evaluated vegetative parameters compared to the control. Our research thus gives insight into the diversity, composition, and functional significance of endophytic actinobacteria associated with orchids. This research demonstrates that isolates with multiple plant development and broad-spectrum antifungal properties are beneficial for plant growth. They may provide a viable alternative to chemical fertilizers and pesticides and a sustainable solution for chemical inputs in agriculture.
Collapse
Affiliation(s)
- Juri Saikia
- Microbial Biotechnology Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology (IASST), Guwahati, India
- Department of Biotechnology, Gauhati University, Guwahati, India
| | - Rajkumari Mazumdar
- Microbial Biotechnology Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology (IASST), Guwahati, India
- Department of Molecular Biology & Biotechnology, Cotton University, Guwahati, India
| | - Debajit Thakur
- Microbial Biotechnology Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology (IASST), Guwahati, India
- *Correspondence: Debajit Thakur,
| |
Collapse
|
5
|
Ali M, Walait S, Farhan Ul Haque M, Mukhtar S. Antimicrobial activity of bacteria associated with the rhizosphere and phyllosphere of Avena fatua and Brachiaria reptans. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:68846-68861. [PMID: 34282546 DOI: 10.1007/s11356-021-15436-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 07/09/2021] [Indexed: 06/13/2023]
Abstract
Environmental pollution especially heavy metal-contaminated soils adversely affects the microbial communities associated with the rhizosphere and phyllosphere of plants growing in these areas. In the current study, we identified and characterized the rhizospheric and phyllospheric bacterial strains from Avena fatua and Brachiaria reptans with the potential for antimicrobial activity and heavy metal resistance. A total of 18 bacterial strains from the rhizosphere and phyllosphere of A. fatua and 19 bacterial strains from the rhizosphere and phyllosphere of B. reptans were identified based on 16S rRNA sequence analysis. Bacterial genera, including Bacillus, Staphylococcus, Pseudomonas, and Enterobacter were dominant in the rhizosphere and phyllosphere of A. fatua and Bacillus, Marinobacter, Pseudomonas, Enterobacter, and Kocuria, were the dominating bacterial genera from the rhizosphere and phyllosphere of B. reptans. Most of the bacterial strains were resistant to heavy metals (Cd, Pb, and Cr) and showed antimicrobial activity against different pathogenic bacterial strains. The whole-genome sequence analysis of Pseudomonas putida BR-PH17, a strain isolated from the phyllosphere of B. reptans, was performed by using the Illumina sequencing approach. The BR-PH17 genome contained a chromosome with a size of 5774330 bp and a plasmid DNA with 80360 bp. In this genome, about 5368 predicted protein-coding sequences with 5539 total genes, 22 rRNAs, and 75 tRNA genes were identified. Functional analysis of chromosomal and plasmid DNA revealed a variety of enzymes and proteins involved in antibiotic resistance and biodegradation of complex organic pollutants. These results indicated that bacterial strains identified in this study could be utilized for bioremediation of heavy metal-contaminated soils and as a novel source of antimicrobial drugs.
Collapse
Affiliation(s)
- Muskan Ali
- Lahore College for Women University, Near Wapda Flats, Jail Rd, Jubilee Town, Lahore, Punjab, 54000, Pakistan
| | - Sadia Walait
- Riphah International University, Faisalabad, Adjacent Fish Farm, Satayana Rd, Faisalabad, Punjab, 44000, Pakistan
| | | | - Salma Mukhtar
- School of Biological Sciences, University of the Punjab, Lahore, 54590, Pakistan.
| |
Collapse
|
6
|
Liu X, Wang W, Li J, Li Y, Zhang J, Tan H. A widespread response of Gram-negative bacterial acyl-homoserine lactone receptors to Gram-positive Streptomyces γ-butyrolactone signaling molecules. SCIENCE CHINA-LIFE SCIENCES 2021; 64:1575-1589. [PMID: 34319534 DOI: 10.1007/s11427-021-1956-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 05/25/2021] [Indexed: 11/26/2022]
Abstract
Cell-cell communication is critical for bacterial survival in natural habitats, in which miscellaneous regulatory networks are encompassed. However, elucidating the interaction networks of a microbial community has been hindered by the population complexity. This study reveals that γ-butyrolactone (GBL) molecules from Streptomyces species, the major antibiotic producers, can directly bind to the acyl-homoserine lactone (AHL) receptor of Chromobacterium violaceum and influence violacein production controlled by the quorum sensing (QS) system. Subsequently, the widespread responses of more Gram-negative bacterial AHL receptors to Gram-positive Streptomyces signaling molecules are unveiled. Based on the cross-talk between GBL and AHL signaling systems, combinatorial regulatory circuits (CRC) are designed and proved to be workable in Escherichia coli (E. coli). It is significant that the QS systems of Gram-positive and Gram-negative bacteria can be bridged via native Streptomyces signaling molecules. These findings pave a new path for unlocking the comprehensive cell-cell communications in microbial communities and facilitate the exploitation of innovative regulatory elements for synthetic biology.
Collapse
Affiliation(s)
- Xiang Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenxi Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Junyue Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yue Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jihui Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Huarong Tan
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
7
|
Fei X, Lina W, Jiayang C, Meng F, Guodong W, Yaping Y, Langjun C. Variations of microbial community in Aconitum carmichaeli Debx. rhizosphere soilin a short-term continuous cropping system. J Microbiol 2021; 59:481-490. [PMID: 33779961 DOI: 10.1007/s12275-021-0515-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 01/27/2021] [Accepted: 02/01/2021] [Indexed: 12/31/2022]
Abstract
Aconitum carmichaeli Debx. (Ranunculaceae) is a potential source of an important herbal drug named "Fuzi", which is derived from the lateral root of the plant. Increased therapeutic usage resulted in the great demand for artificial cultivation of A. carmichaeli, however, the obstacles caused by continuous cropping is a serious problem. Continuous cropping has shown to affect the soil biological and non-biological factors. The current study attempted to discover the variations of microbial communities and soil properties in short-term continuous cropping of A. carmichaeli. An experimental procedure with A. carmichaeli planted two years continuously was established. The variation of the soil microbial community, disease incidence, soil properties, and the correlation between soil microbe and disease incidence were investigated. The disease incidence increased during the continuous cropping of A. carmichaeli. The PCoA and LefSe results indicated that fungal communities in rhizosphere soil were altered during the short-term continuous croppingand the bacterial community was disturbed by the cultivation of A. carmichaeli, however, in the following two years of continuous cropping period, the soil bacterial community has not changed obviously. Proportions of some fungal and bacterial genera were varied significantly (p < 0.05), and some genera of microflora showed a significant correlation with adisease incidence of A. carmichaeli. Microorganisms contributing to community composition discrepancy were also elucidated. Continuous cropping of A. carmichaeli disturbed the rhizosphere soil microbial community and altered the soil chemical parameters and soil pH. These variations in soil may be related to the occurrence of plant diseases. The current study will not only provide theoretical and experimental evidence for the A. carmichaeli continuous cropping obstacles but will also contribute to A. carmichaeli agricultural production and soil improvement.
Collapse
Affiliation(s)
- Xia Fei
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'An, 710021, China
| | - Wang Lina
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China
| | - Chen Jiayang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China
| | - Fu Meng
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China
| | - Wang Guodong
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China
| | - Yan Yaping
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China
| | - Cui Langjun
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China.
| |
Collapse
|
8
|
Zhang S, Zhang L, Zhu J, Chen H, Chen Z, Si T, Liu T. Genomic and Metabolomic Investigation of a Rhizosphere Isolate Streptomyces netropsis WLXQSS-4 Associated with a Traditional Chinese Medicine. Molecules 2021; 26:molecules26082147. [PMID: 33917975 PMCID: PMC8068340 DOI: 10.3390/molecules26082147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/01/2021] [Accepted: 04/04/2021] [Indexed: 11/21/2022] Open
Abstract
Rhizosphere microorganisms play important ecological roles in promoting herb growth and producing abundant secondary metabolites. Studies on the rhizosphere microbes of traditional Chinese medicines (TCMs) are limited, especially on the genomic and metabolic levels. In this study, we reported the isolation and characterization of a Steptomyces netropsis WLXQSS-4 strain from the rhizospheric soil of Clematis manshurica Rupr. Genomic sequencing revealed an impressive total of 40 predicted biosynthetic gene clusters (BGCs), whereas metabolomic profiling revealed 13 secondary metabolites under current laboratory conditions. Particularly, medium screening activated the production of alloaureothin, whereas brominated and chlorinated pimprinine derivatives were identified through precursor-directed feeding. Moreover, antiproliferative activities against Hela and A549 cancer cell lines were observed for five compounds, of which two also elicited potent growth inhibition in Enterococcus faecalis and Staphylococcus aureus, respectively. Our results demonstrated the robust secondary metabolism of S. netropsis WLXQSS-4, which may serve as a biocontrol agent upon further investigation.
Collapse
Affiliation(s)
- Songya Zhang
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (S.Z.); (J.Z.); (Z.C.)
| | - Lingxiao Zhang
- Department of Natural Products Chemistry, School of Pharmacy, China Medical University, Shenyang 110122, China; (L.Z.); (H.C.)
| | - Jing Zhu
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (S.Z.); (J.Z.); (Z.C.)
| | - Hong Chen
- Department of Natural Products Chemistry, School of Pharmacy, China Medical University, Shenyang 110122, China; (L.Z.); (H.C.)
| | - Zhicong Chen
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (S.Z.); (J.Z.); (Z.C.)
| | - Tong Si
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (S.Z.); (J.Z.); (Z.C.)
- Correspondence: (T.S.); (T.L.)
| | - Tao Liu
- Department of Natural Products Chemistry, School of Pharmacy, China Medical University, Shenyang 110122, China; (L.Z.); (H.C.)
- Correspondence: (T.S.); (T.L.)
| |
Collapse
|
9
|
Borah A, Thakur D. Phylogenetic and Functional Characterization of Culturable Endophytic Actinobacteria Associated With Camellia spp. for Growth Promotion in Commercial Tea Cultivars. Front Microbiol 2020; 11:318. [PMID: 32180767 PMCID: PMC7059647 DOI: 10.3389/fmicb.2020.00318] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 02/13/2020] [Indexed: 12/18/2022] Open
Abstract
Plant associated endophytic actinobacteria may contribute to plant growth and defense by direct or indirect methods. Our aim was to evaluate the plant growth promoting and antifungal activities of endophytic actinobacteria associated with Camellia spp. and related genera, Eurya to find potent plant growth promoting strains that could be applied in future microbe based bioformulations. We isolated 46 endophytic actinobacteria based on morphological characteristics of the isolates. 16S rRNA gene sequence analysis showed that the strains represented nine actinobacterial genera, Nocardia, Amycolatopsis, Streptomyces, Pseudonocardia, Kribbella, Actinomadura, Microbispora, Rothia and Saccharomonospora. In vitro functional characterization of the isolates for plant growth promoting (PGP) traits revealed many potent PGP isolates such as, SA1 and S43 which showed all the tested PGP traits, i.e., phosphate solubilization, indole-3-acetic acid (IAA), ammonia, siderophore and chitinase production. Out of the 46 endophytic actinobacteria isolates, 21 showed inhibition against atleast one test fungal phytopathogen and, isolates SA25 and SA29 exhibited broad spectrum antifungal activity against all the tested phytopathogens. Most of the endophytic actinobacteria isolates having antifungal activity were positive for the presence of chitinase, NRPS (Non-ribosomal peptides synthetase) or PKS-1 (Polyketide Synthase) gene, suggesting the presence of distinctive mechanisms to inhibit the growth of pathogenic plant fungi. ARDRA (Amplified Ribosomal DNA Restriction analysis) and BOX-PCR fingerprinting analysis of the potent isolates with antagonistic activity grouped the isolates into 5 and 4 separate clusters, respectively. In addition, an assessment using bonitur scale revealed the top ranked isolates based on their PGP and biocontrol traits. Further detection of IAA production by the top ranked actinobacterial isolates namely, SA1, T1LA3 and S85 by using thin-layer chromatography (TLC), high-performance liquid chromatography (HPLC) and liquid chromatography-mass spectrometry (LC-MS) was done. Endophytic actinobacteria isolates, namely, SA1, T1LA3, and SA14 were further tested for their efficacy in promoting the growth of commercial tea clones, namely, TV1, TV9, TV18, and TV22 in nursery conditions. All the endophytic isolates tested showed significant differences (P ≤ 0.05) in terms of plant growth promoting parameters in the treated plants compared to untreated control and may, thus be, deemed as potential candidates for application in bioformulations for tea growth.
Collapse
Affiliation(s)
| | - Debajit Thakur
- Microbial Biotechnology Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology, Guwahati, India
| |
Collapse
|
10
|
Chen P, Zhang C, Ju X, Xiong Y, Xing K, Qin S. Community Composition and Metabolic Potential of Endophytic Actinobacteria From Coastal Salt Marsh Plants in Jiangsu, China. Front Microbiol 2019; 10:1063. [PMID: 31139174 PMCID: PMC6527748 DOI: 10.3389/fmicb.2019.01063] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 04/26/2019] [Indexed: 12/31/2022] Open
Abstract
The diversity and functional roles of the plant associated endophytic actinobacteria in unique habitats remain poorly understood. In this paper, we examined the phylogenetic diversity and community composition of endophytic actinobacteria associated with native coastal salt marsh plants in Jiangsu, China using a combination of cultivation and 16S rRNA gene-based high-throughput sequencing (HTS) methods. Further, we evaluated the antifungal, fibrinolytic activities and the secondary metabolite biosynthesis potential of isolates via gene screening. A total of 278 actinobacterial isolates were isolated from 19 plant samples. 16S rRNA gene sequencing revealed that the isolates were highly diverse and belonged to 23 genera within the Actinomycetales order, with Streptomyces, Saccharopolyspora, and Pseudonocardia comprising the most abundant genera. In addition, more than 10 of the isolates were novel actinobacterial taxa distributed across eight genera. HTS analyses of seven representative plant root samples revealed that Actinobacteria phylum constituted 0.04–28.66% of root endophytic bacterial communities. A total of four actinobacterial classes, 14 orders, 35 families, and 63 known genera were detected via HTS, and these communities were found to be dominated by the members of the order Actinomycetales including the genera Streptomyces, Mycobacterium, Arthrobacter, Nocardioides, and Micromonospora. In addition, 30.4% of the representative isolates exhibited antifungal activities, 40.5% of them showed fibrinolytic activities, while 43.0% of the strains harbored secondary metabolite biosynthesis genes. These results demonstrated that coastal salt marsh plants in the Jiangsu Province represented an underexplored new reservoir of diverse and novel endophytic actinobacteria that may be of potential interest in the discovery of bioactive compounds with potential as biocontrol agents and for fibrinolytic enzyme production.
Collapse
Affiliation(s)
- Pan Chen
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Chunmei Zhang
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Xiuyun Ju
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Youwei Xiong
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Ke Xing
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Sheng Qin
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| |
Collapse
|
11
|
Ek-Ramos MJ, Gomez-Flores R, Orozco-Flores AA, Rodríguez-Padilla C, González-Ochoa G, Tamez-Guerra P. Bioactive Products From Plant-Endophytic Gram-Positive Bacteria. Front Microbiol 2019; 10:463. [PMID: 30984118 PMCID: PMC6449470 DOI: 10.3389/fmicb.2019.00463] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 02/21/2019] [Indexed: 11/13/2022] Open
Abstract
Endophytes constitute plant-colonizing microorganisms in a mutualistic symbiosis relationship. They are found in most ecosystems reducing plant crops' biotic and abiotic stressors by stimulating immune responses, excluding plant pathogens by niche competition, and participating in antioxidant activities and phenylpropanoid metabolism, whose activation produces plant defense, structural support, and survival molecules. In fact, metabolomic studies have demonstrated that endophyte genes associated to specific metabolites are involved in plant growth promotion (PGP) by stimulating plant hormones production such as auxins and gibberellins or as plant protective agents against microbial pathogens, cancer, and insect pests, but eco-friendly and eco-safe. A number of metabolites of Gram-positive endophytes isolated from agriculture, forest, mangrove, and medicinal plants, mainly related to the Firmicutes phyla, possess distinctive biocontrol and plant growth-promoting activities. In general, Actinobacteria and Bacillus endophytes produce aromatic compounds, lipopeptides, plant hormones, polysaccharides, and several enzymes linked to phenylpropanoid metabolism, thus representing high potential for PGP and crop management strategies. Furthermore, Actinobacteria have been shown to produce metabolites with antimicrobial and antitumor activities, useful in agriculture, medicine, and veterinary areas. The great endophytes diversity, their metabolites production, and their adaptation to stress conditions make them a suitable and unlimited source of novel metabolites, whose application could reduce agrochemicals usage in food and drugs production.
Collapse
Affiliation(s)
- María J. Ek-Ramos
- Departamento de Microbiología e Inmunología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico
| | - Ricardo Gomez-Flores
- Departamento de Microbiología e Inmunología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico
| | - Alonso A. Orozco-Flores
- Departamento de Microbiología e Inmunología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico
| | - Cristina Rodríguez-Padilla
- Departamento de Microbiología e Inmunología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico
| | - Guadalupe González-Ochoa
- Departamento de Ciencias Químico Biológicas, División de Ciencias e Ingeniería, Universidad de Sonora, Navojoa, Mexico
| | - Patricia Tamez-Guerra
- Departamento de Microbiología e Inmunología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico
| |
Collapse
|