1
|
O'Connor J, Clark A, Herrera F, Yang X, Wang X, Zheng X, Hu H, Zhou Z. Direct evidence of frugivory in the Mesozoic bird Longipteryx contradicts morphological proxies for diet. Curr Biol 2024; 34:4559-4566.e1. [PMID: 39260360 DOI: 10.1016/j.cub.2024.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/20/2024] [Accepted: 08/12/2024] [Indexed: 09/13/2024]
Abstract
Diet is one of the most important aspects of an animal's ecology, as it reflects direct interactions with other organisms and shapes morphology, behavior, and other life history traits. Modern birds (Neornithes) have a highly efficient and phenotypically plastic digestive system, allowing them to utilize diverse trophic resources, and digestive function has been put forth as a factor in the selectivity of the end-Cretaceous mass extinction, in which only neornithine dinosaurs survived.1 Although diet is directly documented in several early-diverging avian lineages,2 only a single specimen preserves evidence of diet in Enantiornithes, the dominant group of terrestrial Cretaceous birds.3 Morphology-based predictions suggest enantiornithines were faunivores,4,5,6 although the absence of evidence contrasts with the high preservation potential and relatively longer gut-retention times of these diets. Longipteryx is an unusual Early Cretaceous enantiornithine with an elongate rostrum; distally restricted dentition7; large, recurved, and crenulated teeth8; and tooth enamel much thicker than other paravians.9 Statistical analysis of rostral length, body size, and tooth morphology predicts Longipteryx was primarily insectivorous.4,5 Contrasting with these results, two new specimens of Longipteryx preserve gymnosperm seeds within the abdominal cavity interpreted as ingesta. Like Jeholornis, their unmacerated preservation and the absence of gastroliths indicate frugivory.10 As in Neornithes,11 complex diets driven by the elevated energetic demands imposed by flight, secondary rostral functions, and phylogenetic influence impede the use of morphological proxies to predict diet in early-diverging avian lineages.
Collapse
Affiliation(s)
- Jingmai O'Connor
- Negaunee Integrative Research Center, Field Museum of Natural History, Chicago, IL 60605, USA.
| | - Alexander Clark
- Negaunee Integrative Research Center, Field Museum of Natural History, Chicago, IL 60605, USA; Committee on Evolutionary Biology, University of Chicago, Chicago, IL 60637, USA
| | - Fabiany Herrera
- Negaunee Integrative Research Center, Field Museum of Natural History, Chicago, IL 60605, USA
| | - Xin Yang
- Negaunee Integrative Research Center, Field Museum of Natural History, Chicago, IL 60605, USA; Department of Geophysical Sciences, University of Chicago, Chicago, IL 60637, USA
| | - Xiaoli Wang
- Shandong Tianyu Museum of Nature, Pingyi 273300, P.R. China; Institute of Geology and Paleontology, Linyi University, Linyi 276005, P.R. China; College of Earth Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, P.R. China
| | - Xiaoting Zheng
- Shandong Tianyu Museum of Nature, Pingyi 273300, P.R. China
| | - Han Hu
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, 142 Xizhimenwai Dajie, Beijing 100044, P.R. China
| | - Zhonghe Zhou
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, 142 Xizhimenwai Dajie, Beijing 100044, P.R. China
| |
Collapse
|
2
|
Wang Y, Li Z, Wang CC, Bailleul AM, Wang M, O'Connor J, Li J, Zheng X, Pei R, Teng F, Wang X, Zhou Z. Comparative microstructural study on the teeth of Mesozoic birds and non-avian dinosaurs. ROYAL SOCIETY OPEN SCIENCE 2023; 10:230147. [PMID: 37206961 PMCID: PMC10189602 DOI: 10.1098/rsos.230147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 04/24/2023] [Indexed: 05/21/2023]
Abstract
Although it is commonly considered that, in birds, there is a trend towards reduced dentition, teeth persisted in birds for 90 Ma and numerous macroscopic morphologies are observed. However, the extent to which the microstructure of bird teeth differs from other lineages is poorly understood. To explore the microstructural differences of the teeth of birds in comparison with closely related non-avialan dinosaurs, the enamel and dentine-related features were evaluated in four Mesozoic paravian species from the Yanliao and Jehol biotas. Different patterns of dentinal tubular tissues with mineralized extensions of the odontoblast processes were revealed through the examination of histological sectioning under electron microscopy. Secondary modification of the tubular structures, forming reactive sclerotic dentin of Longipteryx, and the mineralization of peritubular dentin of Sapeornis were observed in the mantle dentin region. The new observed features combined with other dentinal-associated ultrastructure suggest that the developmental mechanisms controlling dentin formation are quite plastic, permitting the evolution of unique morphologies associated with specialized feeding behaviours in the toothed birds. Proportionally greater functional stress placed on the stem bird teeth may have induced reactive dentin mineralization, which was observed more often within tubules of these taxa. This suggests modifications to the dentin to counteract potential failure.
Collapse
Affiliation(s)
- Yan Wang
- Institute of Geology and Paleontology, Linyi University, Linyi, Shandong 276000
- Tianyu Natural History Museum of Shandong, Pingyi, Shandong 273300
| | - Zhiheng Li
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, 142 Xi-zhi-men-wai Street, Beijing 100044
| | - Chun-Chieh Wang
- National Synchrotron Radiation Research Center, Hsinchu 30076
- Department of Geosciences, National Taiwan University, Taipei City 10617
| | - Alida M. Bailleul
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, 142 Xi-zhi-men-wai Street, Beijing 100044
| | - Min Wang
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, 142 Xi-zhi-men-wai Street, Beijing 100044
| | - Jingmai O'Connor
- Negaunee Integrative Research Center, Field Museum of Natural History, Chicago, IL 60605
| | - Jinhua Li
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Science, Chinese Academy of Sciences (IGGCAS), Beijing 100029
| | - Xiaoting Zheng
- Tianyu Natural History Museum of Shandong, Pingyi, Shandong 273300
| | - Rui Pei
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, 142 Xi-zhi-men-wai Street, Beijing 100044
| | - Fangfang Teng
- Xinghai Paleontological Museum of Dalian, Dalian, Liaoning 116023
| | - Xiaoli Wang
- Institute of Geology and Paleontology, Linyi University, Linyi, Shandong 276000
- Tianyu Natural History Museum of Shandong, Pingyi, Shandong 273300
| | - Zhonghe Zhou
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, 142 Xi-zhi-men-wai Street, Beijing 100044
| |
Collapse
|
3
|
Clark AD, Hu H, Benson RBJ, O’Connor JK. Reconstructing the dietary habits and trophic positions of the Longipterygidae (Aves: Enantiornithes) using neontological and comparative morphological methods. PeerJ 2023; 11:e15139. [PMID: 37009163 PMCID: PMC10062354 DOI: 10.7717/peerj.15139] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 03/07/2023] [Indexed: 03/29/2023] Open
Abstract
The Longipterygidae are a unique clade among the enantiornithines in that they exhibit elongate rostra (≥60% total skull length) with dentition restricted to the distal tip of the rostrum, and pedal morphologies suited for an arboreal lifestyle (as in other enantiornithines). This suite of features has made interpretations of this group’s diet and ecology difficult to determine due to the lack of analogous taxa that exhibit similar morphologies together. Many extant bird groups exhibit rostral elongation, which is associated with several disparate ecologies and diets (e.g., aerial insectivory, piscivory, terrestrial carnivory). Thus, the presence of rostral elongation in the Longipterygidae only somewhat refines trophic predictions of this clade. Anatomical morphologies do not function singularly but as part of a whole and thus, any dietary or ecological hypothesis regarding this clade must also consider other features such as their unique dentition. The only extant group of dentulous volant tetrapods are the chiropterans, in which tooth morphology and enamel thickness vary depending upon food preference. Drawing inferences from both avian bill proportions and variations in the dental morphology of extinct and extant taxa, we provide quantitative data to support the hypothesis that the Longipterygidae were animalivorous, with greater support for insectivory.
Collapse
Affiliation(s)
- Alexander D. Clark
- Cincinnati Museum Center, Geier Collections & Research Center, Cincinnati, Ohio, United States
| | - Han Hu
- Department of Earth Sciences, University of Oxford, Oxford, United Kingdom
| | - Roger BJ Benson
- American Museum of Natural History, New York City, New York, United States
| | | |
Collapse
|
4
|
Pittman M, Bell PR, Miller CV, Enriquez NJ, Wang X, Zheng X, Tsang LR, Tse YT, Landes M, Kaye TG. Exceptional preservation and foot structure reveal ecological transitions and lifestyles of early theropod flyers. Nat Commun 2022; 13:7684. [PMID: 36539437 PMCID: PMC9768147 DOI: 10.1038/s41467-022-35039-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 11/16/2022] [Indexed: 12/24/2022] Open
Abstract
Morphology of keratinised toe pads and foot scales, hinging of foot joints and claw shape and size all inform the grasping ability, cursoriality and feeding mode of living birds. Presented here is morphological evidence from the fossil feet of early theropod flyers. Foot soft tissues and joint articulations are qualitatively assessed using laser-stimulated fluorescence. Pedal claw shape and size are quantitatively analysed using traditional morphometrics. We interpret these foot data among existing evidence to better understand the evolutionary ecology of early theropod flyers. Jurassic flyers like Anchiornis and Archaeopteryx show adaptations suggestive of relatively ground-dwelling lifestyles. Early Cretaceous flyers then diversify into more aerial lifestyles, including generalists like Confuciusornis and specialists like the climbing Fortunguavis. Some early birds, like the Late Jurassic Berlin Archaeopteryx and Early Cretaceous Sapeornis, show complex ecologies seemingly unique among sampled modern birds. As a non-bird flyer, finding affinities of Microraptor to a more specialised raptorial lifestyle is unexpected. Its hawk-like characteristics are rare among known theropod flyers of the time suggesting that some non-bird flyers perform specialised roles filled by birds today. We demonstrate diverse ecological profiles among early theropod flyers, changing as flight developed, and some non-bird flyers have more complex ecological roles.
Collapse
Affiliation(s)
- Michael Pittman
- grid.10784.3a0000 0004 1937 0482School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR China
| | - Phil R. Bell
- grid.1020.30000 0004 1936 7371School of Environmental and Rural Science, University of New England, Armidale, NSW 2351 Australia
| | - Case Vincent Miller
- grid.194645.b0000000121742757Department of Earth Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR China
| | - Nathan J. Enriquez
- grid.1020.30000 0004 1936 7371School of Environmental and Rural Science, University of New England, Armidale, NSW 2351 Australia
| | - Xiaoli Wang
- grid.410747.10000 0004 1763 3680Institute of Geology and Paleontology, Linyi University, Linyi City, Shandong 276005 China ,Shandong Tianyu Museum of Nature, Pingyi, Shandong 273300 China
| | - Xiaoting Zheng
- grid.410747.10000 0004 1763 3680Institute of Geology and Paleontology, Linyi University, Linyi City, Shandong 276005 China ,Shandong Tianyu Museum of Nature, Pingyi, Shandong 273300 China
| | - Leah R. Tsang
- grid.1020.30000 0004 1936 7371School of Environmental and Rural Science, University of New England, Armidale, NSW 2351 Australia ,grid.438303.f0000 0004 0470 8815Ornithology Collection, Australian Museum, William Street, Sydney, NSW 2010 Australia
| | - Yuen Ting Tse
- grid.10784.3a0000 0004 1937 0482School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR China
| | - Michael Landes
- grid.17063.330000 0001 2157 2938Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON L5L 1C6 Canada
| | - Thomas G. Kaye
- Foundation for Scientific Advancement, Sierra Vista, AZ 85650 USA
| |
Collapse
|
5
|
Intestinal preservation in a birdlike dinosaur supports conservatism in digestive canal evolution among theropods. Sci Rep 2022; 12:19965. [PMID: 36402874 PMCID: PMC9675785 DOI: 10.1038/s41598-022-24602-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 11/17/2022] [Indexed: 11/21/2022] Open
Abstract
Dromaeosaurids were bird-like dinosaurs with a predatory ecology known to forage on fish, mammals and other dinosaurs. We describe Daurlong wangi gen. et sp. nov., a dromaeosaurid from the Lower Cretaceous Jehol Biota of Inner Mongolia, China. Exceptional preservation in this specimen includes a large bluish layer in the abdomen which represents one of the few occurrences of intestinal remnants among non-avian dinosaurs. Phylogenetically, Daurlong nests among a lineage of short-armed Jehol Biota species closer to eudromaeosaurs than microraptorines. The topographic correspondence between the exceptionally preserved intestine in the more stem-ward Scipionyx and the remnants in the more birdlike Daurlong provides a phylogenetic framework for inferring intestine tract extent in other theropods lacking fossilized visceral tissues. Gastrointestinal organization results conservative among faunivorous dinosaurs, with the evolution of a bird-like alimentary canal restricted to avialan theropods.
Collapse
|
6
|
Jiang S, Wang X, Zheng X, Cheng X, Wang X, Wei G, Kellner AWA. Two emetolite-pterosaur associations from the Late Jurassic of China: showing the first evidence for antiperistalsis in pterosaurs. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210043. [PMID: 35125005 PMCID: PMC8819363 DOI: 10.1098/rstb.2021.0043] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Knowledge about the pterosaur diet and digestive system is limited, and there is little direct evidence in the fossil record. Here, we report two specimens of the wukongopterid Kunpengopterus sinensis, a juvenile and an adult, from the Late Jurassic Yanliao Biota of China with associated bromalites. Both of these concentrations are identified as emetolites, fossilized gastric pellets. These pellets contain scales of an unnamed palaeonisciform fish, confirming the pterosaur was a piscivore. It probably vomited the pellets, indicating the presence of two-part stomachs and efficient antiperistalsis in both juveniles and adults. Comparing the ganoid scales found in the pellets with those of complete fishes, it was possible to determine that the prey of the smaller pellet is an average-sized individual, while the prey of the larger pellet represents a large specimen. Kunpengopterus sinensis might have preyed on the same fish during ontogeny, with adults being able to feed on larger individuals. This article is part of the theme issue 'The impact of Chinese palaeontology on evolutionary research'.
Collapse
Affiliation(s)
- Shunxing Jiang
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences (CAS), Beijing 100044, People's Republic of China.,CAS Center for Excellence in Life and Paleoenvironment, Beijing 100044, People's Republic of China
| | - Xiaoli Wang
- Institute of Geology and Paleontology, Linyi University, Linyi 276000, People's Republic of China.,Tianyu Natural History Museum of Shandong, Pingyi 273300, People's Republic of China
| | - Xiaoting Zheng
- Institute of Geology and Paleontology, Linyi University, Linyi 276000, People's Republic of China.,Tianyu Natural History Museum of Shandong, Pingyi 273300, People's Republic of China
| | - Xin Cheng
- College of Earth Sciences, Jilin University, Changchun 130061, People's Republic of China.,Laboratório de Paleontologia, Universidade Regional do Cariri, Crato 63195-000, Brazil
| | - Xiaolin Wang
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences (CAS), Beijing 100044, People's Republic of China.,CAS Center for Excellence in Life and Paleoenvironment, Beijing 100044, People's Republic of China.,College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Guangjin Wei
- Institute of Geology and Paleontology, Linyi University, Linyi 276000, People's Republic of China.,Tianyu Natural History Museum of Shandong, Pingyi 273300, People's Republic of China
| | - Alexander W A Kellner
- Laboratory of Systematics and Taphonomy of Fossil Vertebrates, Department of Geology and Paleontology, Museu Nacional/Universidade Federal do Rio de Janeiro, Rio de Janeiro 20940-040, Brazil
| |
Collapse
|
7
|
Miller CV, Pittman M. The diet of early birds based on modern and fossil evidence and a new framework for its reconstruction. Biol Rev Camb Philos Soc 2021; 96:2058-2112. [PMID: 34240530 PMCID: PMC8519158 DOI: 10.1111/brv.12743] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 05/07/2021] [Accepted: 05/10/2021] [Indexed: 12/14/2022]
Abstract
Birds are some of the most diverse organisms on Earth, with species inhabiting a wide variety of niches across every major biome. As such, birds are vital to our understanding of modern ecosystems. Unfortunately, our understanding of the evolutionary history of modern ecosystems is hampered by knowledge gaps in the origin of modern bird diversity and ecosystem ecology. A crucial part of addressing these shortcomings is improving our understanding of the earliest birds, the non-avian avialans (i.e. non-crown birds), particularly of their diet. The diet of non-avian avialans has been a matter of debate, in large part because of the ambiguous qualitative approaches that have been used to reconstruct it. Here we review methods for determining diet in modern and fossil avians (i.e. crown birds) as well as non-avian theropods, and comment on their usefulness when applied to non-avian avialans. We use this to propose a set of comparable, quantitative approaches to ascertain fossil bird diet and on this basis provide a consensus of what we currently know about fossil bird diet. While no single approach can precisely predict diet in birds, each can exclude some diets and narrow the dietary possibilities. We recommend combining (i) dental microwear, (ii) landmark-based muscular reconstruction, (iii) stable isotope geochemistry, (iv) body mass estimations, (v) traditional and/or geometric morphometric analysis, (vi) lever modelling, and (vii) finite element analysis to reconstruct fossil bird diet accurately. Our review provides specific methodologies to implement each approach and discusses complications future researchers should keep in mind. We note that current forms of assessment of dental mesowear, skull traditional morphometrics, geometric morphometrics, and certain stable isotope systems have yet to be proven effective at discerning fossil bird diet. On this basis we report the current state of knowledge of non-avian avialan diet which remains very incomplete. The ancestral dietary condition in non-avian avialans remains unclear due to scarce data and contradictory evidence in Archaeopteryx. Among early non-avian pygostylians, Confuciusornis has finite element analysis and mechanical advantage evidence pointing to herbivory, whilst Sapeornis only has mechanical advantage evidence indicating granivory, agreeing with fossilised ingested material known for this taxon. The enantiornithine ornithothoracine Shenqiornis has mechanical advantage and pedal morphometric evidence pointing to carnivory. In the hongshanornithid ornithuromorph Hongshanornis only mechanical advantage evidence indicates granivory, but this agrees with evidence of gastrolith ingestion in this taxon. Mechanical advantage and ingested fish support carnivory in the songlingornithid ornithuromorph Yanornis. Due to the sparsity of robust dietary assignments, no clear trends in non-avian avialan dietary evolution have yet emerged. Dietary diversity seems to increase through time, but this is a preservational bias associated with a predominance of data from the Early Cretaceous Jehol Lagerstätte. With this new framework and our synthesis of the current knowledge of non-avian avialan diet, we expect dietary knowledge and evolutionary trends to become much clearer in the coming years, especially as fossils from other locations and climates are found. This will allow for a deeper and more robust understanding of the role birds played in Mesozoic ecosystems and how this developed into their pivotal role in modern ecosystems.
Collapse
Affiliation(s)
- Case Vincent Miller
- Vertebrate Palaeontology Laboratory, Research Division for Earth and Planetary ScienceThe University of Hong KongPokfulamHong Kong SARChina
| | - Michael Pittman
- Vertebrate Palaeontology Laboratory, Research Division for Earth and Planetary ScienceThe University of Hong KongPokfulamHong Kong SARChina
| |
Collapse
|
8
|
Li Z, Wang CC, Wang M, Chiang CC, Wang Y, Zheng X, Huang EW, Hsiao K, Zhou Z. Ultramicrostructural reductions in teeth: implications for dietary transition from non-avian dinosaurs to birds. BMC Evol Biol 2020; 20:46. [PMID: 32316913 PMCID: PMC7171806 DOI: 10.1186/s12862-020-01611-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 04/06/2020] [Indexed: 12/31/2022] Open
Abstract
Background Tooth morphology within theropod dinosaurs has been extensively investigated and shows high disparity throughout the Cretaceous. Changes or diversification in feeding ecology, i.e., adoption of an herbivorous diet (e.g., granivorous), is proposed as a major driver of tooth evolution in Paraves (e.g., Microraptor, troodontids and avialans). Here, we studied the microscopic features of paravian non-avian theropod and avialan teeth using high-spatial-resolution synchrotron transmission X-ray microscopy and scanning electron microscopy. Results We show that avialan teeth are characterized by the presence of simple enamel structures and a lack of porous mantle dentin between the enamel and orthodentin. Reduced internal structures of teeth took place independently in Early Cretaceous birds and a Microraptor specimen, implying that shifts in diet in avialans from that of closely related dinosaurs may correlate with a shift in feeding ecology during the transition from non-avian dinosaurs to birds. Conclusion Different lines of evidence all suggest a large reduction in biting force affecting the evolution of teeth in the dinosaur-bird transition. Changes in teeth microstructure and associated dietary shift may have contributed to the early evolutionary success of stemward birds in the shadow of other non-avian theropods.
Collapse
Affiliation(s)
- Zhiheng Li
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, 142 Xizhimenwai Street, Beijing, 100044, China. .,CAS Center for Excellence in Life and Paleoenvironment, Beijing, 100044, China.
| | - Chun-Chieh Wang
- National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan.
| | - Min Wang
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, 142 Xizhimenwai Street, Beijing, 100044, China.,CAS Center for Excellence in Life and Paleoenvironment, Beijing, 100044, China
| | | | - Yan Wang
- Institute of Geology and Paleontology, Linyi University, Linyi, 276000, Shandong, China
| | - Xiaoting Zheng
- Tianyu Natural History Museum of Shandong, Pingyi, 273300, Shandong, China
| | - E-Wen Huang
- Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu, 30010, Taiwan
| | - Kiko Hsiao
- Mr. Fossil Institute, New Taipei City, 23673, Taiwan
| | - Zhonghe Zhou
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, 142 Xizhimenwai Street, Beijing, 100044, China.,CAS Center for Excellence in Life and Paleoenvironment, Beijing, 100044, China
| |
Collapse
|
9
|
O'Connor J, Zheng X, Dong L, Wang X, Wang Y, Zhang X, Zhou Z. Microraptor with Ingested Lizard Suggests Non-specialized Digestive Function. Curr Biol 2019; 29:2423-2429.e2. [PMID: 31303494 DOI: 10.1016/j.cub.2019.06.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 05/20/2019] [Accepted: 06/07/2019] [Indexed: 11/19/2022]
Abstract
Direct indicators of diet and predator-prey relationships are exceedingly rare in the fossil record [1, 2]. However, it is through such traces that we can best understand trophic interactions in ancient ecosystems [3], confirm dietary inferences derived from skeletal morphologies [4], and clarify behavioral and ecological interpretations [5]. Here, we identify a previously unrecognized lizard species in the abdomen of a specimen of Microraptor zhaoianus, a small, volant dromaeosaurid (Paraves) with asymmetrical flight feathers on both its forelimbs and hindlimbs from the Early Cretaceous Jehol Biota [6-8]. The lizard is largely complete and articulated, confirming the current perception of Microraptor as an agile opportunistic predator that, like extant reptiles, including raptorial birds, ingested small prey whole and head first [9]. The lizard can be readily distinguished from previously recognized Early Cretaceous species based on its unusual widely spaced and brachydont dentition. Phylogenetic analysis suggests Indrasaurus wangi gen. et sp. nov. is a basal scleroglossan closely related to the slightly older Liushusaurus [10]. Comparison of ingested remains preserved across Paraves suggests that dromaeosaurids retained the plesiomorphic condition in which ingested prey were fully digested, rather than egested, as has been demonstrated was the case in the probable troodontid Anchiornis [11]. This supports a closer relationship between Aves and Anchiornis [12, 13] and suggests that flight did not precipitate the evolution of pellet egestion in Paraves and that the evolution of the "modern avian" digestive system in paravians was highly homoplastic [14]. A preliminary Jehol food web is reconstructed from current data.
Collapse
Affiliation(s)
- Jingmai O'Connor
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 10010, China; CAS Center for Excellence in Life and Paleoenvironment, Beijing 10010, China.
| | - Xiaoting Zheng
- Institute of Geology and Paleontology, Linyi University, Linyi, 276000 Shandong, China; Shandong Tianyu Museum of Nature, Pingyi, 273300 Shandong, China
| | - Liping Dong
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 10010, China; CAS Center for Excellence in Life and Paleoenvironment, Beijing 10010, China
| | - Xiaoli Wang
- Institute of Geology and Paleontology, Linyi University, Linyi, 276000 Shandong, China; Shandong Tianyu Museum of Nature, Pingyi, 273300 Shandong, China; College of Earth Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China.
| | - Yan Wang
- Institute of Geology and Paleontology, Linyi University, Linyi, 276000 Shandong, China; Shandong Tianyu Museum of Nature, Pingyi, 273300 Shandong, China
| | - Xiaomei Zhang
- Shandong Tianyu Museum of Nature, Pingyi, 273300 Shandong, China
| | - Zhonghe Zhou
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 10010, China; CAS Center for Excellence in Life and Paleoenvironment, Beijing 10010, China
| |
Collapse
|