1
|
Stindt KR, McClean MN. Tuning interdomain conjugation to enable in situ population modification in yeasts. mSystems 2024; 9:e0005024. [PMID: 38747597 PMCID: PMC11326116 DOI: 10.1128/msystems.00050-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 04/15/2024] [Indexed: 05/28/2024] Open
Abstract
The ability to modify and control natural and engineered microbiomes is essential for biotechnology and biomedicine. Fungi are critical members of most microbiomes, yet technology for modifying the fungal members of a microbiome has lagged far behind that for bacteria. Interdomain conjugation (IDC) is a promising approach, as DNA transfer from bacterial cells to yeast enables in situ modification. While such genetic transfers have been known to naturally occur in a wide range of eukaryotes and are thought to contribute to their evolution, IDC has been understudied as a technique to control fungal or fungal-bacterial consortia. One major obstacle to the widespread use of IDC is its limited efficiency. In this work, we manipulated metabolic and physical interactions between genetically tractable Escherichia coli and Saccharomyces cerevisiae to control the incidence of IDC. We test the landscape of population interactions between the bacterial donors and yeast recipients to find that bacterial commensalism leads to maximized IDC, both in culture and in mixed colonies. We demonstrate the capacity of cell-to-cell binding via mannoproteins to assist both IDC incidence and bacterial commensalism in culture and model how these tunable controls can predictably yield a range of IDC outcomes. Furthermore, we demonstrate that these controls can be utilized to irreversibly alter a recipient yeast population, by both "rescuing" a poor-growing recipient population and collapsing a stable population via a novel IDC-mediated CRISPR/Cas9 system.IMPORTANCEFungi are important but often unaddressed members of most natural and synthetic microbial communities. This work highlights opportunities for modifying yeast microbiome populations through bacterial conjugation. While conjugation has been recognized for its capacity to deliver engineerable DNA to a range of cells, its dependence on cell contact has limited its efficiency. Here, we find "knobs" to control DNA transfer, by engineering the metabolic dependence between bacterial donors and yeast recipients and by changing their ability to physically adhere to each other. Importantly, we functionally validate these "knobs" by irreversibly altering yeast populations. We use these controls to "rescue" a failing yeast population, demonstrate the capacity of conjugated CRISPR/Cas9 to depress or collapse populations, and show that conjugation can be easily interrupted by disrupting cell-to-cell binding. These results offer building blocks toward in situ mycobiome editing, with significant implications for clinical treatments of fungal pathogens and other fungal system engineering.
Collapse
Affiliation(s)
- Kevin R Stindt
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Doctoral Program in Biophysics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Megan N McClean
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
- University of Wisconsin Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| |
Collapse
|
2
|
Singh D. Revolutionizing Lung Cancer Treatment: Innovative CRISPR-Cas9 Delivery Strategies. AAPS PharmSciTech 2024; 25:129. [PMID: 38844700 DOI: 10.1208/s12249-024-02834-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 05/08/2024] [Indexed: 06/11/2024] Open
Abstract
Lung carcinoma, including both non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC), remains a significant global health challenge due to its high morbidity and mortality rates. The objsective of this review is to meticulously examine the current advancements and strategies in the delivery of CRISPR-Cas9 gene-editing technology for the treatment of lung carcinoma. This technology heralds a new era in molecular biology, offering unprecedented precision in genomic modifications. However, its therapeutic potential is contingent upon the development of effective delivery mechanisms that ensure the efficient and specific transport of gene-editing tools to tumor cells. We explore a variety of delivery approaches, such as viral vectors, lipid-based nanoparticles, and physical methods, highlighting their respective advantages, limitations, and recent breakthroughs. This review also delves into the translational and clinical significance of these strategies, discussing preclinical and clinical studies that investigate the feasibility, efficacy, and safety of CRISPR-Cas9 delivery for lung carcinoma. By scrutinizing the landscape of ongoing clinical trials and offering translational perspectives, we aim to elucidate the current state and future directions of this rapidly evolving field. The review is structured to first introduce the problem and significance of lung carcinoma, followed by an overview of CRISPR-Cas9 technology, a detailed examination of delivery strategies, and an analysis of clinical applications and regulatory considerations. Our discussion concludes with future perspectives and challenges, such as optimizing delivery strategies, enhancing specificity, mitigating immunogenicity concerns, and addressing regulatory issues. This comprehensive overview seeks to provide insights into the potential of CRISPR-Cas9 as a revolutionary approach for targeted therapies and personalized medicine in lung carcinoma, emphasizing the importance of delivery strategy development in realizing the full potential of this groundbreaking technology.
Collapse
Affiliation(s)
- Dilpreet Singh
- University Institute of Pharma Sciences, Chandigarh University, Gharuan, Mohali, 140413, India.
- University Centre for Research and Development, Chandigarh University, Gharuan, Mohali, 140413, India.
| |
Collapse
|
3
|
Græsholt C, Brembu T, Volpe C, Bartosova Z, Serif M, Winge P, Nymark M. Zeaxanthin epoxidase 3 Knockout Mutants of the Model Diatom Phaeodactylum tricornutum Enable Commercial Production of the Bioactive Carotenoid Diatoxanthin. Mar Drugs 2024; 22:185. [PMID: 38667802 PMCID: PMC11051370 DOI: 10.3390/md22040185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/14/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Carotenoids are pigments that have a range of functions in human health. The carotenoid diatoxanthin is suggested to have antioxidant, anti-inflammatory and chemo-preventive properties. Diatoxanthin is only produced by a few groups of microalgae, where it functions in photoprotection. Its large-scale production in microalgae is currently not feasible. In fact, rapid conversion into the inactive pigment diadinoxanthin is triggered when cells are removed from a high-intensity light source, which is the case during large-scale harvesting of microalgae biomass. Zeaxanthin epoxidase (ZEP) 2 and/or ZEP3 have been suggested to be responsible for the back-conversion of high-light accumulated diatoxanthin to diadinoxanthin in low-light in diatoms. Using CRISPR/Cas9 gene editing technology, we knocked out the ZEP2 and ZEP3 genes in the marine diatom Phaeodactylum tricornutum to investigate their role in the diadinoxanthin-diatoxanthin cycle and determine if one of the mutant strains could function as a diatoxanthin production line. Light-shift experiments proved that ZEP3 encodes the enzyme converting diatoxanthin to diadinoxanthin in low light. Loss of ZEP3 caused the high-light-accumulated diatoxanthin to be stable for several hours after the cultures had been returned to low light, suggesting that zep3 mutant strains could be suitable as commercial production lines of diatoxanthin.
Collapse
Affiliation(s)
- Cecilie Græsholt
- Department of Biology, Norwegian University of Science and Technology, 7491 Trondheim, Norway (T.B.); (Z.B.); (M.S.); (P.W.)
| | - Tore Brembu
- Department of Biology, Norwegian University of Science and Technology, 7491 Trondheim, Norway (T.B.); (Z.B.); (M.S.); (P.W.)
| | - Charlotte Volpe
- Department of Fisheries and New Biomarine Industry, SINTEF Ocean, 7010 Trondheim, Norway;
| | - Zdenka Bartosova
- Department of Biology, Norwegian University of Science and Technology, 7491 Trondheim, Norway (T.B.); (Z.B.); (M.S.); (P.W.)
| | - Manuel Serif
- Department of Biology, Norwegian University of Science and Technology, 7491 Trondheim, Norway (T.B.); (Z.B.); (M.S.); (P.W.)
| | - Per Winge
- Department of Biology, Norwegian University of Science and Technology, 7491 Trondheim, Norway (T.B.); (Z.B.); (M.S.); (P.W.)
| | - Marianne Nymark
- Department of Biology, Norwegian University of Science and Technology, 7491 Trondheim, Norway (T.B.); (Z.B.); (M.S.); (P.W.)
- Department of Fisheries and New Biomarine Industry, SINTEF Ocean, 7010 Trondheim, Norway;
| |
Collapse
|
4
|
Webster LJ, Villa-Gomez D, Brown R, Clarke W, Schenk PM. A synthetic biology approach for the treatment of pollutants with microalgae. Front Bioeng Biotechnol 2024; 12:1379301. [PMID: 38646010 PMCID: PMC11032018 DOI: 10.3389/fbioe.2024.1379301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 03/11/2024] [Indexed: 04/23/2024] Open
Abstract
The increase in global population and industrial development has led to a significant release of organic and inorganic pollutants into water streams, threatening human health and ecosystems. Microalgae, encompassing eukaryotic protists and prokaryotic cyanobacteria, have emerged as a sustainable and cost-effective solution for removing these pollutants and mitigating carbon emissions. Various microalgae species, such as C. vulgaris, P. tricornutum, N. oceanica, A. platensis, and C. reinhardtii, have demonstrated their ability to eliminate heavy metals, salinity, plastics, and pesticides. Synthetic biology holds the potential to enhance microalgae-based technologies by broadening the scope of treatment targets and improving pollutant removal rates. This review provides an overview of the recent advances in the synthetic biology of microalgae, focusing on genetic engineering tools to facilitate the removal of inorganic (heavy metals and salinity) and organic (pesticides and plastics) compounds. The development of these tools is crucial for enhancing pollutant removal mechanisms through gene expression manipulation, DNA introduction into cells, and the generation of mutants with altered phenotypes. Additionally, the review discusses the principles of synthetic biology tools, emphasizing the significance of genetic engineering in targeting specific metabolic pathways and creating phenotypic changes. It also explores the use of precise engineering tools, such as CRISPR/Cas9 and TALENs, to adapt genetic engineering to various microalgae species. The review concludes that there is much potential for synthetic biology based approaches for pollutant removal using microalgae, but there is a need for expansion of the tools involved, including the development of universal cloning toolkits for the efficient and rapid assembly of mutants and transgenic expression strains, and the need for adaptation of genetic engineering tools to a wider range of microalgae species.
Collapse
Affiliation(s)
- Luke J. Webster
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| | - Denys Villa-Gomez
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
- School of Civil Engineering, The University of Queensland, Brisbane, QLD, Australia
| | - Reuben Brown
- Algae Biotechnology Laboratory, School of Agriculture and Food Sustainability, The University of Queensland, Brisbane, QLD, Australia
| | - William Clarke
- School of Civil Engineering, The University of Queensland, Brisbane, QLD, Australia
| | - Peer M. Schenk
- Algae Biotechnology Laboratory, School of Agriculture and Food Sustainability, The University of Queensland, Brisbane, QLD, Australia
- Algae Biotechnology, Sustainable Solutions Hub, Global Sustainable Solutions Pty Ltd, Brisbane, QLD, Australia
| |
Collapse
|
5
|
Grypioti E, Richard H, Kryovrysanaki N, Jaubert M, Falciatore A, Verret F, Kalantidis K. Dicer-dependent heterochromatic small RNAs in the model diatom species Phaeodactylum tricornutum. THE NEW PHYTOLOGIST 2024; 241:811-826. [PMID: 38044751 DOI: 10.1111/nph.19429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 10/17/2023] [Indexed: 12/05/2023]
Abstract
Diatoms are eukaryotic microalgae responsible for nearly half of the marine productivity. RNA interference (RNAi) is a mechanism of regulation of gene expression mediated by small RNAs (sRNAs) processed by the endoribonuclease Dicer (DCR). To date, the mechanism and physiological role of RNAi in diatoms are unknown. We mined diatom genomes and transcriptomes for key RNAi effectors and retraced their phylogenetic history. We generated DCR knockout lines in the model diatom species Phaeodactylum tricornutum and analyzed their mRNA and sRNA populations, repression-associated histone marks, and acclimatory response to nitrogen starvation. Diatoms presented a diversification of key RNAi effectors whose distribution across species suggests the presence of distinct RNAi pathways. P. tricornutum DCR was found to process 26-31-nt-long double-stranded sRNAs originating mostly from transposons covered by repression-associated epigenetic marks. In parallel, P. tricornutum DCR was necessary for the maintenance of the repression-associated histone marks H3K9me2/3 and H3K27me3. Finally, PtDCR-KO lines presented a compromised recovery post nitrogen starvation suggesting a role for P. tricornutum DCR in the acclimation to nutrient stress. Our study characterized the molecular function of the single DCR homolog of P. tricornutum suggesting an association between RNAi and heterochromatin maintenance in this model diatom species.
Collapse
Affiliation(s)
- Emilia Grypioti
- Department of Biology, University of Crete, PO Box 2208, 70013, Heraklion, Crete, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 70013, Heraklion, Crete, Greece
- Institute of Marine Biology and Aquaculture, Hellenic Center for Marine Research, 71500, Gournes, Crete, Greece
- Institut de Biologie Paris-Seine, Laboratory of Computational and Quantitative Biology, UMR 7238 Sorbonne Université, 75005, Paris, France
| | - Hugues Richard
- Institut de Biologie Paris-Seine, Laboratory of Computational and Quantitative Biology, UMR 7238 Sorbonne Université, 75005, Paris, France
- Bioinformatics Unit, Genome Competence Center (MF1), Robert Koch Institute, 13353, Berlin, Germany
| | - Nikoleta Kryovrysanaki
- Department of Biology, University of Crete, PO Box 2208, 70013, Heraklion, Crete, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 70013, Heraklion, Crete, Greece
| | - Marianne Jaubert
- Institut de Biologie Paris-Seine, Laboratory of Computational and Quantitative Biology, UMR 7238 Sorbonne Université, 75005, Paris, France
- Institut de Biologie Physico-Chimique, Laboratory of Chloroplast Biology and Light Sensing in Microalgae, UMR7141 Centre National de la Recherche Scientifique (CNRS), Sorbonne Université, 75005, Paris, France
| | - Angela Falciatore
- Institut de Biologie Paris-Seine, Laboratory of Computational and Quantitative Biology, UMR 7238 Sorbonne Université, 75005, Paris, France
- Institut de Biologie Physico-Chimique, Laboratory of Chloroplast Biology and Light Sensing in Microalgae, UMR7141 Centre National de la Recherche Scientifique (CNRS), Sorbonne Université, 75005, Paris, France
| | - Frédéric Verret
- Department of Biology, University of Crete, PO Box 2208, 70013, Heraklion, Crete, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 70013, Heraklion, Crete, Greece
- Institute of Marine Biology and Aquaculture, Hellenic Center for Marine Research, 71500, Gournes, Crete, Greece
| | - Kriton Kalantidis
- Department of Biology, University of Crete, PO Box 2208, 70013, Heraklion, Crete, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 70013, Heraklion, Crete, Greece
| |
Collapse
|
6
|
Garza EA, Bielinski VA, Espinoza JL, Orlandi K, Alfaro JR, Bolt TM, Beeri K, Weyman PD, Dupont CL. Validating a Promoter Library for Application in Plasmid-Based Diatom Genetic Engineering. ACS Synth Biol 2023; 12:3215-3228. [PMID: 37857380 PMCID: PMC10661051 DOI: 10.1021/acssynbio.3c00163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Indexed: 10/21/2023]
Abstract
While diatoms are promising synthetic biology platforms, there currently exists a limited number of validated genetic regulatory parts available for genetic engineering. The standard method for diatom transformation, nonspecific introduction of DNA into chromosomes via biolistic particle bombardment, is low throughput and suffers from clonal variability and epigenetic effects. Recent developments in diatom engineering have demonstrated that autonomously replicating episomal plasmids serve as stable expression platforms for diverse gene expression technologies. These plasmids are delivered via bacterial conjugation and, when combined with modular DNA assembly technologies, provide a flexibility and speed not possible with biolistic-mediated strain generation. In order to expand the current toolbox for plasmid-based engineering in the diatom Phaeodactylum tricornutum, a conjugation-based forward genetics screen for promoter discovery was developed, and application to a diatom genomic DNA library defined 252 P. tricornutum promoter elements. From this library, 40 promoter/terminator pairs were delivered via conjugation on episomal plasmids, characterized in vivo, and ranked across 4 orders of magnitude difference in reporter gene expression levels.
Collapse
Affiliation(s)
- Erin A. Garza
- J. Craig Venter Institute, La Jolla, California 92037, United States
| | | | - Josh L. Espinoza
- J. Craig Venter Institute, La Jolla, California 92037, United States
| | | | | | | | | | | | | |
Collapse
|
7
|
Jiang Y, Cao T, Yang Y, Zhang H, Zhang J, Li X. A chlorophyll c synthase widely co-opted by phytoplankton. Science 2023; 382:92-98. [PMID: 37797009 DOI: 10.1126/science.adg7921] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 08/30/2023] [Indexed: 10/07/2023]
Abstract
Marine and terrestrial photosynthesis exhibit a schism in the accessory chlorophyll (Chl) that complements the function of Chl a: Chl b for green plants versus Chl c for most eukaryotic phytoplankton. The enzymes that mediate Chl c biosynthesis have long remained elusive. In this work, we identified the CHLC dioxygenase (Phatr3_J43737) from the marine diatom Phaeodactylum tricornutum as the Chl c synthase. The chlc mutants lacked Chl c, instead accumulating its precursors, and exhibited growth defects. In vitro, recombinant CHLC protein converted these precursors into Chl c, thereby confirming its identity. Phylogenetic evidence demonstrates conserved use of CHLC across phyla but also the existence of distinct Chl c synthases in different algal groups. Our study addresses a long-outstanding question with implications for both contemporary and ancient marine photosynthesis.
Collapse
Affiliation(s)
- Yanyou Jiang
- Research Center for Industries of the Future, Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
| | - Tianjun Cao
- Research Center for Industries of the Future, Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
| | - Yuqing Yang
- Research Center for Industries of the Future, Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
| | - Huan Zhang
- Research Center for Industries of the Future, Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
| | - Jingyu Zhang
- Research Center for Industries of the Future, Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
| | - Xiaobo Li
- Research Center for Industries of the Future, Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
| |
Collapse
|
8
|
Stindt KR, McClean MN. Tuning Interdomain Conjugation Toward in situ Population Modification in Yeast. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.12.557379. [PMID: 37745509 PMCID: PMC10515866 DOI: 10.1101/2023.09.12.557379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
The ability to modify and control natural and engineered microbiomes is essential for biotechnology and biomedicine. Fungi are critical members of most microbiomes, yet technology for modifying the fungal members of a microbiome has lagged far behind that for bacteria. Interdomain conjugation (IDC) is a promising approach, as DNA transfer from bacterial cells to yeast enables in situ modification. While such genetic transfers have been known to naturally occur in a wide range of eukaryotes, and are thought to contribute to their evolution, IDC has been understudied as a technique to control fungal or fungal-bacterial consortia. One major obstacle to widespread use of IDC is its limited efficiency. In this work, we utilize interactions between genetically tractable Escherichia coli and Saccharomyces cerevisiae to control the incidence of IDC. We test the landscape of population interactions between the bacterial donors and yeast recipients to find that bacterial commensalism leads to maximized IDC, both in culture and in mixed colonies. We demonstrate the capacity of cell-to-cell binding via mannoproteins to assist both IDC incidence and bacterial commensalism in culture, and model how these tunable controls can predictably yield a range of IDC outcomes. Further, we demonstrate that these lessons can be utilized to lastingly alter a recipient yeast population, by both "rescuing" a poor-growing recipient population and collapsing a stable population via a novel IDC-mediated CRISPR/Cas9 system.
Collapse
|
9
|
Nymark M, Finazzi G, Volpe C, Serif M, Fonseca DDM, Sharma A, Sanchez N, Sharma AK, Ashcroft F, Kissen R, Winge P, Bones AM. Loss of CpFTSY Reduces Photosynthetic Performance and Affects Insertion of PsaC of PSI in Diatoms. PLANT & CELL PHYSIOLOGY 2023; 64:583-603. [PMID: 36852859 DOI: 10.1093/pcp/pcad014] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 02/17/2023] [Accepted: 02/23/2023] [Indexed: 06/16/2023]
Abstract
The chloroplast signal recognition particle (CpSRP) receptor (CpFTSY) is a component of the CpSRP pathway that post-translationally targets light-harvesting complex proteins (LHCPs) to the thylakoid membranes in plants and green algae containing chloroplasts derived from primary endosymbiosis. In plants, CpFTSY also plays a major role in the co-translational incorporation of chloroplast-encoded subunits of photosynthetic complexes into the thylakoids. This role has not been demonstrated in green algae. So far, its function in organisms with chloroplasts derived from secondary endosymbiotic events has not been elucidated. Here, we report the generation and characterization of mutants lacking CpFTSY in the diatom Phaeodactylum tricornutum. We found that this protein is not involved in inserting LHCPs into thylakoid membranes, indicating that the post-translational part of the CpSRP pathway is not active in this group of microalgae. The lack of CpFTSY caused an increased level of photoprotection, low electron transport rates, inefficient repair of photosystem II (PSII), reduced growth, a strong decline in the PSI subunit PsaC and upregulation of proteins that might compensate for a non-functional co-translational CpSRP pathway during light stress conditions. The phenotype was highly similar to the one described for diatoms lacking another component of the co-translational CpSRP pathway, the CpSRP54 protein. However, in contrast to cpsrp54 mutants, only one thylakoid membrane protein, PetD of the Cytb6f complex, was downregulated in cpftsy. Our results point to a minor role for CpFTSY in the co-translational CpSRP pathway, suggesting that other mechanisms may partially compensate for the effect of a disrupted CpSRP pathway.
Collapse
Affiliation(s)
- Marianne Nymark
- Department of Biology, Norwegian University of Science and Technology, Trondheim N-7491, Norway
- Department of Fisheries and New Biomarine Industry, SINTEF Ocean, Trondheim 7010, Norway
| | - Giovanni Finazzi
- Cell & Plant Physiology Laboratory, Université Grenoble Alpes, CNRS, CEA, INRAE, IRIG, LPCV, Grenoble 38000, France
| | - Charlotte Volpe
- Department of Biology, Norwegian University of Science and Technology, Trondheim N-7491, Norway
- Department of Fisheries and New Biomarine Industry, SINTEF Ocean, Trondheim 7010, Norway
| | - Manuel Serif
- Department of Biology, Norwegian University of Science and Technology, Trondheim N-7491, Norway
| | - Davi de Miranda Fonseca
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, NTNU, Trondheim N-7491, Norway
- Proteomics and Modomics Experimental Core Facility (PROMEC), NTNU and Central Administration, St. Olavs Hospital, The University Hospital in Trondheim, Trondheim N-7491, Norway
| | - Animesh Sharma
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, NTNU, Trondheim N-7491, Norway
- Proteomics and Modomics Experimental Core Facility (PROMEC), NTNU and Central Administration, St. Olavs Hospital, The University Hospital in Trondheim, Trondheim N-7491, Norway
| | - Nicolas Sanchez
- Department of Chemistry, Norwegian University of Science and Technology, Trondheim N-7491, Norway
| | - Amit Kumar Sharma
- Department of Biology, Norwegian University of Science and Technology, Trondheim N-7491, Norway
| | - Felicity Ashcroft
- Department of Biology, Norwegian University of Science and Technology, Trondheim N-7491, Norway
| | - Ralph Kissen
- Department of Biology, Norwegian University of Science and Technology, Trondheim N-7491, Norway
| | - Per Winge
- Department of Biology, Norwegian University of Science and Technology, Trondheim N-7491, Norway
| | - Atle Magnar Bones
- Department of Biology, Norwegian University of Science and Technology, Trondheim N-7491, Norway
| |
Collapse
|
10
|
Yin W, Hu H. CRISPR/Cas9-Mediated Genome Editing via Homologous Recombination in a Centric Diatom Chaetoceros muelleri. ACS Synth Biol 2023; 12:1287-1296. [PMID: 37031406 DOI: 10.1021/acssynbio.3c00051] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2023]
Abstract
Chaetoceros, the most abundant genus of marine planktonic diatoms, can be used in mariculture. An effective genetic transformation system with a short transformation period was established in Chaetoceros muelleri by electroporation in our previous study. In this study, a sequence-specific clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 vector applicable for C. muelleri was constructed, and the expressions of sgRNA, resistance gene, and Cas9 gene were driven by the endogenous promoters U6, acetyl-CoA acetyltransferase, and fucoxanthin chlorophyll a/c binding protein, respectively, in the vector. Nitrate reductase (NR) and urease (URE) genes were edited in C. muelleri, and the NR knockout and NR/URE double-knockout lines displayed the strict auxotrophic phenotype. In addition, the DNA double-strand break was repaired by homologous recombination when a donor DNA was introduced. CRISPR/Cas9 technology was successfully applied to C. muelleri with an editing efficiency of up to 86%, providing a molecular tool for the study of basic biology in C. muelleri and its synthetic biology applications.
Collapse
Affiliation(s)
- Wenxiu Yin
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hanhua Hu
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| |
Collapse
|
11
|
Diamond A, Diaz-Garza AM, Li J, Slattery SS, Merindol N, Fantino E, Meddeb-Mouelhi F, Karas BJ, Barnabé S, Desgagné-Penix I. Instability of extrachromosomal DNA transformed into the diatom Phaeodactylum tricornutum. ALGAL RES 2023. [DOI: 10.1016/j.algal.2023.102998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
12
|
Patel VK, Das A, Kumari R, Kajla S. Recent progress and challenges in CRISPR-Cas9 engineered algae and cyanobacteria. ALGAL RES 2023. [DOI: 10.1016/j.algal.2023.103068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
13
|
Gilmour DJ. Diversity of algae and their biotechnological potential. Adv Microb Physiol 2023; 82:301-321. [PMID: 36948657 DOI: 10.1016/bs.ampbs.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
This chapter will discuss the diversity of algae and show that the diversity is much greater than just obligately oxygenic photosynthetic algae and that it includes many mixotrophic and heterotrophic organisms that are more similar to the major groups of microorganisms. The photosynthetic groups are seen as part of the plant kingdom, whereas the non-photosynthetic groups are not related to plants at all. The organisation of algal groups has become complex and confusing - The chapter will address the problems within this area of eukaryotic taxonomy. The metabolic diversity of algae and the ability to genetically engineer algae are key components in developing the biotechnology of algae. As more researchers become interested in exploiting algae for a number of industrial products, it is important to understand the relationships between different groups of algae and the relationships of algae with the rest of the living world.
Collapse
|
14
|
Sirohi P, Verma H, Singh SK, Singh VK, Pandey J, Khusharia S, Kumar D, Kaushalendra, Teotia P, Kumar A. Microalgal Carotenoids: Therapeutic Application and Latest Approaches to Enhance the Production. Curr Issues Mol Biol 2022; 44:6257-6279. [PMID: 36547088 PMCID: PMC9777246 DOI: 10.3390/cimb44120427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Microalgae are microscopic photosynthetic organisms frequently found in fresh and marine water ecosystems. Various microalgal species have been considered a reservoir of diverse health-value products, including vitamins, proteins, lipids, and polysaccharides, and are broadly utilized as food and for the treatment of human ailments such as cancer, cardiovascular diseases, allergies, and immunodeficiency. Microalgae-derived carotenoids are the type of accessory pigment that possess light-absorbing potential and play a significant role in metabolic functions. To date, nearly a thousand carotenoids have been reported, but a very less number of microalgae have been used for the commercial production of carotenoids. This review article briefly discussed the carotenoids of microalgal origin and their therapeutic application. In addition, we have briefly compiled the optimization of culture parameters used to enhance microalgal carotenoid production. In addition, the latest biotechnological approaches used to improve the yields of carotenoid has also been discussed.
Collapse
Affiliation(s)
- Priyanka Sirohi
- Department of Biotechnology, Noida International University, Greater Noida 203201, India
| | - Hariom Verma
- Department of Botany, B.R.D. Government Degree College Duddhi, Sonbhadra 231216, India
| | - Sandeep Kumar Singh
- Division of Microbiology, Indian Agricultural Research Institute, Pusa, New Delhi 110012, India
| | | | - Jyoti Pandey
- Department of Biochemistry, Singhania University, Pacheri Barı, Jhunjhunu 333515, India
| | - Saksham Khusharia
- Kuwar SatyaVira College of Engineering and Management, Bijnor 246701, India
| | - Dharmendra Kumar
- Department of Zoology, C.M.B. College, Deorh, Ghoghardiha 847402, India
| | - Kaushalendra
- Department of Zoology, Mizoram University (A Central University), Pachhunga University College Campus, Aizawl 796001, India
| | - Pratibha Teotia
- Department of Biotechnology, Noida International University, Greater Noida 203201, India
| | - Ajay Kumar
- Department of Postharvest Science, Agricultural Research Organization (ARO)—Volcani Center, Rishon Lezion 7505101, Israel
| |
Collapse
|
15
|
Bai Y, Cao T, Dautermann O, Buschbeck P, Cantrell MB, Chen Y, Lein CD, Shi X, Ware MA, Yang F, Zhang H, Zhang L, Peers G, Li X, Lohr M. Green diatom mutants reveal an intricate biosynthetic pathway of fucoxanthin. Proc Natl Acad Sci U S A 2022; 119:e2203708119. [PMID: 36095219 PMCID: PMC9499517 DOI: 10.1073/pnas.2203708119] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 08/08/2022] [Indexed: 01/17/2023] Open
Abstract
Fucoxanthin is a major light-harvesting pigment in ecologically important algae such as diatoms, haptophytes, and brown algae (Phaeophyceae). Therefore, it is a major driver of global primary productivity. Species of these algal groups are brown colored because the high amounts of fucoxanthin bound to the proteins of their photosynthetic machineries enable efficient absorption of green light. While the structure of these fucoxanthin-chlorophyll proteins has recently been resolved, the biosynthetic pathway of fucoxanthin is still unknown. Here, we identified two enzymes central to this pathway by generating corresponding knockout mutants of the diatom Phaeodactylum tricornutum that are green due to the lack of fucoxanthin. Complementation of the mutants with the native genes or orthologs from haptophytes restored fucoxanthin biosynthesis. We propose a complete biosynthetic path to fucoxanthin in diatoms and haptophytes based on the carotenoid intermediates identified in the mutants and in vitro biochemical assays. It is substantially more complex than anticipated and reveals diadinoxanthin metabolism as the central regulatory hub connecting the photoprotective xanthophyll cycle and the formation of fucoxanthin. Moreover, our data show that the pathway evolved by repeated duplication and neofunctionalization of genes for the xanthophyll cycle enzymes violaxanthin de-epoxidase and zeaxanthin epoxidase. Brown algae lack diadinoxanthin and the genes described here and instead use an alternative pathway predicted to involve fewer enzymes. Our work represents a major step forward in elucidating the biosynthesis of fucoxanthin and understanding the evolution, biogenesis, and regulation of the photosynthetic machinery in algae.
Collapse
Affiliation(s)
- Yu Bai
- Department of Biology, Colorado State University, Fort Collins, CO 80523-1878
| | - Tianjun Cao
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Oliver Dautermann
- Institut für Molekulare Physiologie, Johannes Gutenberg-Universität, 55099 Mainz, Germany
| | - Paul Buschbeck
- Institut für Molekulare Physiologie, Johannes Gutenberg-Universität, 55099 Mainz, Germany
| | - Michael B. Cantrell
- Department of Biology, Colorado State University, Fort Collins, CO 80523-1878
| | - Yinjuan Chen
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Instrumentation and Service Center for Molecular Sciences, Westlake University, Hangzhou 310024, China
| | - Christopher D. Lein
- Institut für Molekulare Physiologie, Johannes Gutenberg-Universität, 55099 Mainz, Germany
| | - Xiaohuo Shi
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Instrumentation and Service Center for Molecular Sciences, Westlake University, Hangzhou 310024, China
| | - Maxwell A. Ware
- Department of Biology, Colorado State University, Fort Collins, CO 80523-1878
| | - Fenghua Yang
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, China
| | - Huan Zhang
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Lihan Zhang
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, Hangzhou 310024, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Graham Peers
- Department of Biology, Colorado State University, Fort Collins, CO 80523-1878
| | - Xiaobo Li
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Martin Lohr
- Institut für Molekulare Physiologie, Johannes Gutenberg-Universität, 55099 Mainz, Germany
| |
Collapse
|
16
|
Giguere DJ, Bahcheli AT, Slattery SS, Patel RR, Browne TS, Flatley M, Karas BJ, Edgell DR, Gloor GB. Telomere-to-telomere genome assembly of Phaeodactylum tricornutum. PeerJ 2022; 10:e13607. [PMID: 35811822 PMCID: PMC9266582 DOI: 10.7717/peerj.13607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 05/27/2022] [Indexed: 01/17/2023] Open
Abstract
Phaeodactylum tricornutum is a marine diatom with a growing genetic toolbox available and is being used in many synthetic biology applications. While most of the genome has been assembled, the currently available genome assembly is not a completed telomere-to-telomere assembly. Here, we used Oxford Nanopore long reads to build a telomere-to-telomere genome for Phaeodactylum tricornutum. We developed a graph-based approach to extract all unique telomeres, and used this information to manually correct assembly errors. In total, we found 25 nuclear chromosomes that comprise all previously assembled fragments, in addition to the chloroplast and mitochondrial genomes. We found that chromosome 19 has filtered long-read coverage and a quality estimate that suggests significantly less haplotype sequence variation than the other chromosomes. This work improves upon the previous genome assembly and provides new opportunities for genetic engineering of this species, including creating designer synthetic chromosomes.
Collapse
Affiliation(s)
- Daniel J. Giguere
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Alexander T. Bahcheli
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Samuel S. Slattery
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Rushali R. Patel
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Tyler S. Browne
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | | | - Bogumil J. Karas
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - David R. Edgell
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Gregory B. Gloor
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| |
Collapse
|
17
|
Slattery SS, Giguere DJ, Stuckless EE, Shrestha A, Briere LAK, Galbraith A, Reaume S, Boyko X, Say HH, Browne TS, Frederick MI, Lant JT, Heinemann IU, O'Donoghue P, Dsouza L, Martin S, Howard P, Jedeszko C, Ali K, Styba G, Flatley M, Karas BJ, Gloor GB, Edgell DR. Phosphate-regulated expression of the SARS-CoV-2 receptor-binding domain in the diatom Phaeodactylum tricornutum for pandemic diagnostics. Sci Rep 2022; 12:7010. [PMID: 35487958 PMCID: PMC9051505 DOI: 10.1038/s41598-022-11053-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 04/18/2022] [Indexed: 12/22/2022] Open
Abstract
The worldwide COVID-19 pandemic caused by the SARS-CoV-2 betacoronavirus has highlighted the need for a synthetic biology approach to create reliable and scalable sources of viral antigen for uses in diagnostics, therapeutics and basic biomedical research. Here, we adapt plasmid-based systems in the eukaryotic microalgae Phaeodactylum tricornutum to develop an inducible overexpression system for SARS-CoV-2 proteins. Limiting phosphate and iron in growth media induced expression of the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein from the P. tricornutum HASP1 promoter in the wild-type strain and in a histidine auxotrophic strain that alleviates the requirement for antibiotic selection of expression plasmids. The RBD was purified from whole cell extracts (algae-RBD) with yield compromised by the finding that 90-95% of expressed RBD lacked the genetically encoded C-terminal 6X-histidine tag. Constructs that lacked the TEV protease site between the RBD and C-terminal 6X-histidine tag retained the tag, increasing yield. Purified algae-RBD was found to be N-linked glycosylated by treatment with endoglycosidases, was cross-reactive with anti-RBD polyclonal antibodies, and inhibited binding of recombinant RBD purified from mammalian cell lines to the human ACE2 receptor. We also show that the algae-RBD can be used in a lateral flow assay device to detect SARS-CoV-2 specific IgG antibodies from donor serum at sensitivity equivalent to assays performed with RBD made in mammalian cell lines. Our study shows that P. tricornutum is a scalable system with minimal biocontainment requirements for the inducible production of SARS-CoV-2 or other coronavirus antigens for pandemic diagnostics.
Collapse
Affiliation(s)
- Samuel S Slattery
- Department of Biochemistry, Schlich School of Medicine and Dentistry, Western University, London, ON, N6A 5C1, Canada
| | - Daniel J Giguere
- Department of Biochemistry, Schlich School of Medicine and Dentistry, Western University, London, ON, N6A 5C1, Canada
| | - Emily E Stuckless
- Department of Biochemistry, Schlich School of Medicine and Dentistry, Western University, London, ON, N6A 5C1, Canada
| | - Arina Shrestha
- Department of Biochemistry, Schlich School of Medicine and Dentistry, Western University, London, ON, N6A 5C1, Canada
| | - Lee-Ann K Briere
- Department of Biochemistry, Schlich School of Medicine and Dentistry, Western University, London, ON, N6A 5C1, Canada
| | - Alexa Galbraith
- Lambton College, 1457 London Rd, Sarnia, ON, N7S 6K4, Canada
| | - Stephen Reaume
- Lambton College, 1457 London Rd, Sarnia, ON, N7S 6K4, Canada
| | - Xenia Boyko
- Department of Biochemistry, Schlich School of Medicine and Dentistry, Western University, London, ON, N6A 5C1, Canada
| | - Henry H Say
- Department of Biochemistry, Schlich School of Medicine and Dentistry, Western University, London, ON, N6A 5C1, Canada
| | - Tyler S Browne
- Department of Biochemistry, Schlich School of Medicine and Dentistry, Western University, London, ON, N6A 5C1, Canada
| | - Mallory I Frederick
- Department of Biochemistry, Schlich School of Medicine and Dentistry, Western University, London, ON, N6A 5C1, Canada
| | - Jeremy T Lant
- Department of Biochemistry, Schlich School of Medicine and Dentistry, Western University, London, ON, N6A 5C1, Canada
| | - Ilka U Heinemann
- Department of Biochemistry, Schlich School of Medicine and Dentistry, Western University, London, ON, N6A 5C1, Canada
| | - Patrick O'Donoghue
- Department of Biochemistry, Schlich School of Medicine and Dentistry, Western University, London, ON, N6A 5C1, Canada
- Department of Chemistry, Western University, London, ON, N6A 3K7, Canada
| | - Liann Dsouza
- Pond Technologies Inc., Markham, ON, L3R 9W7, Canada
| | - Steven Martin
- Pond Technologies Inc., Markham, ON, L3R 9W7, Canada
| | - Peter Howard
- Pond Technologies Inc., Markham, ON, L3R 9W7, Canada
| | - Christopher Jedeszko
- International Point of Care Inc., 135 The West Mall Unit 9, Toronto, ON, M9C 1C2, Canada
| | - Kinza Ali
- International Point of Care Inc., 135 The West Mall Unit 9, Toronto, ON, M9C 1C2, Canada
| | - Garth Styba
- International Point of Care Inc., 135 The West Mall Unit 9, Toronto, ON, M9C 1C2, Canada
| | - Martin Flatley
- Suncor Energy Inc., Sarnia Refinery, 1900 River Road, Sarnia, ON, N7T 7J3, Canada
| | - Bogumil J Karas
- Department of Biochemistry, Schlich School of Medicine and Dentistry, Western University, London, ON, N6A 5C1, Canada
| | - Gregory B Gloor
- Department of Biochemistry, Schlich School of Medicine and Dentistry, Western University, London, ON, N6A 5C1, Canada.
| | - David R Edgell
- Department of Biochemistry, Schlich School of Medicine and Dentistry, Western University, London, ON, N6A 5C1, Canada.
| |
Collapse
|
18
|
Sreenikethanam A, Raj S, J RB, Gugulothu P, Bajhaiya AK. Genetic Engineering of Microalgae for Secondary Metabolite Production: Recent Developments, Challenges, and Future Prospects. Front Bioeng Biotechnol 2022; 10:836056. [PMID: 35402414 PMCID: PMC8984019 DOI: 10.3389/fbioe.2022.836056] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/03/2022] [Indexed: 12/19/2022] Open
Abstract
Microalgae are highly diverse photosynthetic organisms with higher growth rate and simple nutritional requirements. They are evolved with an efficiency to adapt to a wide range of environmental conditions, resulting in a variety of genetic diversity. Algae accounts for nearly half of global photosynthesis, which makes them a crucial player for CO2 sequestration. In addition, they have metabolic capacities to produce novel secondary metabolites of pharmaceutical, nutraceutical and industrial applications. Studies have explored the inherent metabolic capacities of microalgae with altered growth conditions for the production of primary and secondary metabolites. However, the production of the targeted metabolites at higher rates is not guaranteed just with the inherent genetic potentials. The strain improvement using genetic engineering is possible hope to overcome the conventional methods of culture condition improvements for metabolite synthesis. Although the advanced gene editing tools are available, the gene manipulation of microalgae remains relatively unexplored. Among the performed gene manipulations studies, most of them focus on primary metabolites with limited focus on secondary metabolite production. The targeted genes can be overexpressed to enhance the production of the desired metabolite or redesigning them using the synthetic biology. A mutant (KOR1) rich in carotenoid and lipid content was developed in a recent study employing mutational breeding in microalgae (Kato, Commun. Biol, 2021, 4, 450). There are lot of challenges in genetic engineering associated with large algal diversity but the numerous applications of secondary metabolites make this field of research very vital for the biotech industries. This review, summarise all the genetic engineering studies and their significance with respect to secondary metabolite production from microalgae. Further, current genetic engineering strategies, their limitations and future strategies are also discussed.
Collapse
Affiliation(s)
- Arathi Sreenikethanam
- Algal Biotechnology Lab, Department of Microbiology, School of Life Sciences, Central University of Tamil Nadu, Thirvarur, India
| | - Subhisha Raj
- Algal Biotechnology Lab, Department of Microbiology, School of Life Sciences, Central University of Tamil Nadu, Thirvarur, India
| | - Rajesh Banu J
- Department of Biotechnology, Central University of Tamil Nadu, Thirvarur, India
| | | | - Amit K Bajhaiya
- Algal Biotechnology Lab, Department of Microbiology, School of Life Sciences, Central University of Tamil Nadu, Thirvarur, India
| |
Collapse
|
19
|
Kassaw TK, Paton AJ, Peers G. Episome-Based Gene Expression Modulation Platform in the Model Diatom Phaeodactylum tricornutum. ACS Synth Biol 2022; 11:191-204. [PMID: 35015507 DOI: 10.1021/acssynbio.1c00367] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Chemically inducible gene expression systems have been an integral part of the advanced synthetic genetic circuit design and are employed for precise dynamic control over genetically engineered traits. However, the current systems for controlling transgene expression in most algae are limited to endogenous promoters that respond to different environmental factors. We developed a highly efficient, tunable, and reversible episome-based transcriptional control system in the model diatom alga, Phaeodactylum tricornutum. We assessed the time- and dose-response dynamics of each expression system using a reporter protein (eYFP) as a readout. Using our circuit configuration, we found two inducible expression systems with a high dynamic range and confirmed the suitability of an episome expression platform for synthetic biological applications in diatoms. These systems are controlled by the presence of β-estradiol and digoxin. Addition of either chemical to transgenic strains activates transcription with a dynamic range of up to ∼180-fold and ∼90-fold, respectively. We demonstrated that our episome-based transcriptional control systems are tunable and reversible in a dose- and time-dependent manner. Using droplet digital polymerase chain reaction (PCR), we also confirmed that inducer-dependent transcriptional activation starts within minutes of inducer application without any detectable transcript in the uninduced controls. The system described here expands the molecular and synthetic biology toolkits in algae and will facilitate future gene discovery and metabolic engineering efforts.
Collapse
Affiliation(s)
- Tessema K. Kassaw
- Department of Biology, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Andrew J. Paton
- Department of Biology, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Graham Peers
- Department of Biology, Colorado State University, Fort Collins, Colorado 80523, United States
| |
Collapse
|
20
|
Scarsini M, Thiriet-Rupert S, Veidl B, Mondeguer F, Hu H, Marchand J, Schoefs B. The Transition Toward Nitrogen Deprivation in Diatoms Requires Chloroplast Stand-By and Deep Metabolic Reshuffling. FRONTIERS IN PLANT SCIENCE 2022; 12:760516. [PMID: 35126407 PMCID: PMC8811913 DOI: 10.3389/fpls.2021.760516] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 11/19/2021] [Indexed: 06/14/2023]
Abstract
Microalgae have adapted to face abiotic stresses by accumulating energy storage molecules such as lipids, which are also of interest to industries. Unfortunately, the impairment in cell division during the accumulation of these molecules constitutes a major bottleneck for the development of efficient microalgae-based biotechnology processes. To address the bottleneck, a multidisciplinary approach was used to study the mechanisms involved in the transition from nitrogen repletion to nitrogen starvation conditions in the marine diatom Phaeodactylum tricornutum that was cultured in a turbidostat. Combining data demonstrate that the different steps of nitrogen deficiency clustered together in a single state in which cells are in equilibrium with their environment. The switch between the nitrogen-replete and the nitrogen-deficient equilibrium is driven by intracellular nitrogen availability. The switch induces a major gene expression change, which is reflected in the reorientation of the carbon metabolism toward an energy storage mode while still operating as a metabolic flywheel. Although the photosynthetic activity is reduced, the chloroplast is kept in a stand-by mode allowing a fast resuming upon nitrogen repletion. Altogether, these results contribute to the understanding of the intricate response of diatoms under stress.
Collapse
Affiliation(s)
- Matteo Scarsini
- Metabolism, Bio-Engineering of Microalgal Molecules and Applications (MIMMA), Mer Molécules Santé, IUML—FR 3473 CNRS, Le Mans University, Le Mans, France
| | - Stanislas Thiriet-Rupert
- Metabolism, Bio-Engineering of Microalgal Molecules and Applications (MIMMA), Mer Molécules Santé, IUML—FR 3473 CNRS, Le Mans University, Le Mans, France
- Institut Pasteur, Genetics of Biofilms Laboratory, Paris, France
| | - Brigitte Veidl
- Metabolism, Bio-Engineering of Microalgal Molecules and Applications (MIMMA), Mer Molécules Santé, IUML—FR 3473 CNRS, Le Mans University, Le Mans, France
| | - Florence Mondeguer
- Phycotoxins Laboratory, Institut Français de Recherche pour l'Exploitation de la Mer, Nantes, France
| | - Hanhua Hu
- Key Laboratory of Algal Biology, Chinese Academy of Sciences, Wuhan, China
| | - Justine Marchand
- Metabolism, Bio-Engineering of Microalgal Molecules and Applications (MIMMA), Mer Molécules Santé, IUML—FR 3473 CNRS, Le Mans University, Le Mans, France
| | - Benoît Schoefs
- Metabolism, Bio-Engineering of Microalgal Molecules and Applications (MIMMA), Mer Molécules Santé, IUML—FR 3473 CNRS, Le Mans University, Le Mans, France
| |
Collapse
|
21
|
Taparia Y, Dolui AK, Boussiba S, Khozin-Goldberg I. Multiplexed Genome Editing via an RNA Polymerase II Promoter-Driven sgRNA Array in the Diatom Phaeodactylum tricornutum: Insights Into the Role of StLDP. FRONTIERS IN PLANT SCIENCE 2022; 12:784780. [PMID: 35058949 PMCID: PMC8763850 DOI: 10.3389/fpls.2021.784780] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 11/29/2021] [Indexed: 06/14/2023]
Abstract
CRISPR/Cas9-mediated genome editing has been demonstrated in the model diatom P. tricornutum, yet the currently available genetic tools do not combine the various advantageous features into a single, easy-to-assemble, modular construct that would allow the multiplexed targeting and creation of marker-free genome-edited lines. In this report, we describe the construction of the first modular two-component transcriptional unit system expressing SpCas9 from a diatom episome, assembled using the Universal Loop plasmid kit for Golden Gate assembly. We compared the editing efficiency of two constructs with orthogonal promoter-terminator combinations targeting the StLDP gene, encoding the major lipid droplet protein of P. tricornutum. Multiplexed targeting of the StLDP gene was confirmed via PCR screening, and lines with homozygous deletions were isolated from primary exconjugants. An editing efficiency ranging from 6.7 to 13.8% was observed in the better performing construct. Selected gene-edited lines displayed growth impairment, altered morphology, and the formation of lipid droplets during nutrient-replete growth. Under nitrogen deprivation, oversized lipid droplets were observed; the recovery of cell proliferation and degradation of lipid droplets were impaired after nitrogen replenishment. The results are consistent with the key role played by StLDP in the regulation of lipid droplet size and lipid homeostasis.
Collapse
Affiliation(s)
| | | | | | - Inna Khozin-Goldberg
- Microalgal Biotechnology Laboratory, French Associates Institute for Agriculture and Biotechnology of Drylands, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Sede Boqer, Israel
| |
Collapse
|
22
|
Buck JM, Wünsch M, Schober AF, Kroth PG, Lepetit B. Impact of Lhcx2 on Acclimation to Low Iron Conditions in the Diatom Phaeodactylum tricornutum. FRONTIERS IN PLANT SCIENCE 2022; 13:841058. [PMID: 35371185 PMCID: PMC8967352 DOI: 10.3389/fpls.2022.841058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 01/24/2022] [Indexed: 05/09/2023]
Abstract
Iron is a cofactor of photosystems and electron carriers in the photosynthetic electron transport chain. Low concentrations of dissolved iron are, therefore, the predominant factor that limits the growth of phototrophs in large parts of the open sea like the Southern Ocean and the North Pacific, resulting in "high nutrient-low chlorophyll" (HNLC) areas. Diatoms are among the most abundant microalgae in HNLC zones. Besides efficient iron uptake mechanisms, efficient photoprotection might be one of the key traits enabling them to outcompete other algae in HNLC regions. In diatoms, Lhcx proteins play a crucial role in one of the main photoprotective mechanisms, the energy-dependent fluorescence quenching (qE). The expression of Lhcx proteins is strongly influenced by various environmental triggers. We show that Lhcx2 responds specifically and in a very sensitive manner to iron limitation in the diatom Phaeodactylum tricornutum on the same timescale as the known iron-regulated genes ISIP1 and CCHH11. By comparing Lhcx2 knockout lines with wild type cells, we reveal that a strongly increased qE under iron limitation is based on the upregulation of Lhcx2. Other observed iron acclimation phenotypes in P. tricornutum include a massively reduced chlorophyll a content/cell, a changed ratio of light harvesting and photoprotective pigments per chlorophyll a, a decreased amount of photosystem II and photosystem I cores, an increased functional photosystem II absorption cross section, and decoupled antenna complexes. H2O2 formation at photosystem I induced by high light is lowered in iron-limited cells, while the amount of total reactive oxygen species is rather increased. Our data indicate a possible reduction in singlet oxygen by Lhcx2-based qE, while the other iron acclimation phenotype parameters monitored are not affected by the amount of Lhcx2 and qE.
Collapse
|
23
|
Defrel G, Marsaud N, Rifa E, Martins F, Daboussi F. Identification of Loci Enabling Stable and High-Level Heterologous Gene Expression. Front Bioeng Biotechnol 2021; 9:734902. [PMID: 34660556 PMCID: PMC8517075 DOI: 10.3389/fbioe.2021.734902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/08/2021] [Indexed: 11/17/2022] Open
Abstract
Efficient and reliable genome engineering technologies have yet to be developed for diatoms. The delivery of DNA in diatoms results in the random integration of multiple copies, quite often leading to heterogeneous gene activity, as well as host instability. Transgenic diatoms are generally selected on the basis of transgene expression or high enzyme activity, without consideration of the copy number or the integration locus. Here, we propose an integrated pipeline for the diatom, Phaeodactylum tricornutum, that accurately quantifies transgene activity using a β-glucuronidase assay and the number of transgene copies integrated into the genome through Droplet Digital PCR (ddPCR). An exhaustive and systematic analysis performed on 93 strains indicated that 42% of them exhibited high β-glucuronidase activity. Though most were attributed to high transgene copy numbers, we succeeded in isolating single-copy clones, as well as sequencing the integration loci. In addition to demonstrating the impact of the genomic integration site on gene activity, this study identifies integration sites for stable transgene expression in Phaeodactylum tricornutum.
Collapse
Affiliation(s)
- Gilles Defrel
- Toulouse Biotechnology Institute (TBI), Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| | - Nathalie Marsaud
- Toulouse Biotechnology Institute (TBI), Plateforme Genome et Transcriptome (GeT-Biopuces) Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| | - Etienne Rifa
- Toulouse Biotechnology Institute (TBI), Plateforme Genome et Transcriptome (GeT-Biopuces) Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| | - Frédéric Martins
- Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), UMR1297, INSERM, UPS, Toulouse, France
- Plateforme Genome et Transcriptome (GeT), Genopole Toulouse, Toulouse, France
| | - Fayza Daboussi
- Toulouse Biotechnology Institute (TBI), Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
- Toulouse White Biotechnology (TWB), INSA, Toulouse, France
| |
Collapse
|
24
|
Maréchal E. Grand Challenges in Microalgae Domestication. FRONTIERS IN PLANT SCIENCE 2021; 12:764573. [PMID: 34630500 PMCID: PMC8495258 DOI: 10.3389/fpls.2021.764573] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 08/31/2021] [Indexed: 06/13/2023]
|
25
|
Rau EM, Ertesvåg H. Method Development Progress in Genetic Engineering of Thraustochytrids. Mar Drugs 2021; 19:515. [PMID: 34564177 PMCID: PMC8467673 DOI: 10.3390/md19090515] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/03/2021] [Accepted: 09/09/2021] [Indexed: 01/29/2023] Open
Abstract
Thraustochytrids are unicellular, heterotrophic marine eukaryotes. Some species are known to store surplus carbon as intracellular lipids, and these also contain the long-chain polyunsaturated fatty acid docosahexaenoic acid (DHA). Most vertebrates are unable to synthesize sufficient amounts of DHA, and this fatty acid is essential for, e.g., marine fish, domesticated animals, and humans. Thraustochytrids may also produce other commercially valuable fatty acids and isoprenoids. Due to the great potential of thraustochytrids as producers of DHA and other lipid-related molecules, a need for more knowledge on this group of organisms is needed. This necessitates the ability to do genetic manipulation of the different strains. Thus far, this has been obtained for a few strains, while it has failed for other strains. Here, we systematically review the genetic transformation methods used for different thraustochytrid strains, with the aim of aiding studies on strains not yet successfully transformed. The designs of transformation cassettes are also described and compared. Moreover, the potential problems when trying to establish transformation protocols in new thraustochytrid species/strains are discussed, along with suggestions utilized in other organisms to overcome similar challenges. The approaches discussed in this review could be a starting point when designing protocols for other non-model organisms.
Collapse
Affiliation(s)
| | - Helga Ertesvåg
- Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, N7491 Trondheim, Norway;
| |
Collapse
|
26
|
Sharma AK, Nymark M, Flo S, Sparstad T, Bones AM, Winge P. Simultaneous knockout of multiple LHCF genes using single sgRNAs and engineering of a high-fidelity Cas9 for precise genome editing in marine algae. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:1658-1669. [PMID: 33759354 PMCID: PMC8384595 DOI: 10.1111/pbi.13582] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/05/2021] [Accepted: 03/10/2021] [Indexed: 05/25/2023]
Abstract
The CRISPR/Cas9 system is an RNA-guided sequence-specific genome editing tool, which has been adopted for single or multiple gene editing in a wide range of organisms. When working with gene families with functional redundancy, knocking out multiple genes within the same family may be required to generate a phenotype. In this study, we tested the possibility of exploiting the known tolerance of Cas9 for mismatches between the single-guide RNA (sgRNA) and target site to simultaneously introduce indels in multiple homologous genes in the marine diatom Phaeodactylum tricornutum. As a proof of concept, we designed two sgRNAs that could potentially target the same six light-harvesting complex (LHC) genes belonging to the LHCF subgroup. Mutations in up to five genes were achieved simultaneously using a previously established CRISPR/Cas9 system for P. tricornutum. A visible colour change was observed in knockout mutants with multiple LHCF lesions. A combination of pigment, LHCF protein and growth analyses was used to further investigate the phenotypic differences between the multiple LHCF mutants and WT. Furthermore, we used the two same sgRNAs in combination with a variant of the existing Cas9 where four amino acids substitutions had been introduced that previously have been shown to increase Cas9 specificity. A significant reduction of off-target editing events was observed, indicating that the altered Cas9 functioned as a high-fidelity (HiFi) Cas9 nuclease.
Collapse
Affiliation(s)
- Amit K. Sharma
- Cell, Molecular Biology and Genomics GroupDepartment of BiologyNorwegian University of Science and TechnologyNTNUTrondheimNorway
- Present address:
The University Centre in SvalbardUNISLongyearbyenNorway
| | - Marianne Nymark
- Cell, Molecular Biology and Genomics GroupDepartment of BiologyNorwegian University of Science and TechnologyNTNUTrondheimNorway
| | - Snorre Flo
- Cell, Molecular Biology and Genomics GroupDepartment of BiologyNorwegian University of Science and TechnologyNTNUTrondheimNorway
| | - Torfinn Sparstad
- Cell, Molecular Biology and Genomics GroupDepartment of BiologyNorwegian University of Science and TechnologyNTNUTrondheimNorway
| | - Atle M. Bones
- Cell, Molecular Biology and Genomics GroupDepartment of BiologyNorwegian University of Science and TechnologyNTNUTrondheimNorway
| | - Per Winge
- Cell, Molecular Biology and Genomics GroupDepartment of BiologyNorwegian University of Science and TechnologyNTNUTrondheimNorway
| |
Collapse
|
27
|
Kandasamy S, Narayanan M, He Z, Liu G, Ramakrishnan M, Thangavel P, Pugazhendhi A, Raja R, Carvalho IS. Current strategies and prospects in algae for remediation and biofuels: An overview. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102045] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
28
|
Zhang K, Zhou Z, Li J, Wang J, Yu L, Lin S. SPX-related genes regulate phosphorus homeostasis in the marine phytoplankton, Phaeodactylum tricornutum. Commun Biol 2021; 4:797. [PMID: 34172821 PMCID: PMC8233357 DOI: 10.1038/s42003-021-02284-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 06/01/2021] [Indexed: 11/18/2022] Open
Abstract
Phosphorus (P) is an essential nutrient for marine phytoplankton. Maintaining intracellular P homeostasis against environmental P variability is critical for phytoplankton, but how they achieve this is poorly understood. Here we identify a SPX gene and investigate its role in Phaeodactylum tricornutum. SPX knockout led to significant increases in the expression of phosphate transporters, alkaline phosphatases (the P acquisition machinery) and phospholipid hydrolases (a mechanism to reduce P demand). These demonstrate that SPX is a negative regulator of both P uptake and P-stress responses. Furthermore, we show that SPX regulation of P uptake and metabolism involves a phosphate starvation response regulator (PHR) as an intermediate. Additionally, we find the SPX related genes exist and operate across the phytoplankton phylogenetic spectrum and in the global oceans, indicating its universal importance in marine phytoplankton. This study lays a foundation for better understanding phytoplankton adaptation to P variability in the future changing oceans.
Collapse
Affiliation(s)
- Kaidian Zhang
- State Key Laboratory of Marine Environmental Science and College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, China
- Department of Marine Sciences, University of Connecticut, Groton, CT, USA
| | - Zhi Zhou
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, Hainan, China
| | - Jiashun Li
- State Key Laboratory of Marine Environmental Science and College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, China
| | - Jingtian Wang
- State Key Laboratory of Marine Environmental Science and College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, China
| | - Liying Yu
- State Key Laboratory of Marine Environmental Science and College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, China
| | - Senjie Lin
- State Key Laboratory of Marine Environmental Science and College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, China.
- Department of Marine Sciences, University of Connecticut, Groton, CT, USA.
- Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory of Marine Science and Technology, Qingdao, China.
| |
Collapse
|
29
|
Microalgae with a truncated light-harvesting antenna to maximize photosynthetic efficiency and biomass productivity: Recent advances and current challenges. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.03.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
30
|
Gutiérrez S, Lauersen KJ. Gene Delivery Technologies with Applications in Microalgal Genetic Engineering. BIOLOGY 2021; 10:265. [PMID: 33810286 PMCID: PMC8067306 DOI: 10.3390/biology10040265] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/18/2021] [Accepted: 03/24/2021] [Indexed: 12/28/2022]
Abstract
Microalgae and cyanobacteria are photosynthetic microbes that can be grown with the simple inputs of water, carbon dioxide, (sun)light, and trace elements. Their engineering holds the promise of tailored bio-molecule production using sustainable, environmentally friendly waste carbon inputs. Although algal engineering examples are beginning to show maturity, severe limitations remain in the transformation of multigene expression cassettes into model species and DNA delivery into non-model hosts. This review highlights common and emerging DNA delivery methods used for other organisms that may find future applications in algal engineering.
Collapse
Affiliation(s)
| | - Kyle J. Lauersen
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia;
| |
Collapse
|
31
|
Transforming traditional nutrition paradigms with synthetic biology driven microbial production platforms. CURRENT RESEARCH IN BIOTECHNOLOGY 2021. [DOI: 10.1016/j.crbiot.2021.07.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
|
32
|
Kumar G, Shekh A, Jakhu S, Sharma Y, Kapoor R, Sharma TR. Bioengineering of Microalgae: Recent Advances, Perspectives, and Regulatory Challenges for Industrial Application. Front Bioeng Biotechnol 2020; 8:914. [PMID: 33014997 PMCID: PMC7494788 DOI: 10.3389/fbioe.2020.00914] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 07/15/2020] [Indexed: 01/14/2023] Open
Abstract
Microalgae, due to their complex metabolic capacity, are being continuously explored for nutraceuticals, pharmaceuticals, and other industrially important bioactives. However, suboptimal yield and productivity of the bioactive of interest in local and robust wild-type strains are of perennial concerns for their industrial applications. To overcome such limitations, strain improvement through genetic engineering could play a decisive role. Though the advanced tools for genetic engineering have emerged at a greater pace, they still remain underused for microalgae as compared to other microorganisms. Pertaining to this, we reviewed the progress made so far in the development of molecular tools and techniques, and their deployment for microalgae strain improvement through genetic engineering. The recent availability of genome sequences and other omics datasets form diverse microalgae species have remarkable potential to guide strategic momentum in microalgae strain improvement program. This review focuses on the recent and significant improvements in the omics resources, mutant libraries, and high throughput screening methodologies helpful to augment research in the model and non-model microalgae. Authors have also summarized the case studies on genetically engineered microalgae and highlight the opportunities and challenges that are emerging from the current progress in the application of genome-editing to facilitate microalgal strain improvement. Toward the end, the regulatory and biosafety issues in the use of genetically engineered microalgae in commercial applications are described.
Collapse
Affiliation(s)
- Gulshan Kumar
- Agricultural Biotechnology Division, National Agri-Food Biotechnology Institute (NABI), Sahibzada Ajit Singh Nagar, India
| | - Ajam Shekh
- Plant Cell Biotechnology Department, CSIR-Central Food Technological Research Institute (CFTRI), Mysuru, India
| | - Sunaina Jakhu
- Agricultural Biotechnology Division, National Agri-Food Biotechnology Institute (NABI), Sahibzada Ajit Singh Nagar, India
| | - Yogesh Sharma
- Agricultural Biotechnology Division, National Agri-Food Biotechnology Institute (NABI), Sahibzada Ajit Singh Nagar, India
| | - Ritu Kapoor
- Agricultural Biotechnology Division, National Agri-Food Biotechnology Institute (NABI), Sahibzada Ajit Singh Nagar, India
| | - Tilak Raj Sharma
- Division of Crop Science, Indian Council of Agricultural Research, New Delhi, India
| |
Collapse
|
33
|
Slattery SS, Wang H, Giguere DJ, Kocsis C, Urquhart BL, Karas BJ, Edgell DR. Plasmid-based complementation of large deletions in Phaeodactylum tricornutum biosynthetic genes generated by Cas9 editing. Sci Rep 2020; 10:13879. [PMID: 32807825 PMCID: PMC7431573 DOI: 10.1038/s41598-020-70769-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 07/27/2020] [Indexed: 11/09/2022] Open
Abstract
The model diatom Phaeodactylum tricornutum is an attractive candidate for synthetic biology applications. Development of auxotrophic strains of P. tricornutum would provide alternative selective markers to commonly used antibiotic resistance genes. Here, using CRISPR/Cas9, we show successful editing of genes in the uracil, histidine, and tryptophan biosynthetic pathways. Nanopore long-read sequencing indicates that editing events are characterized by the occurrence of large deletions of up to ~ 2.7 kb centered on the editing site. The uracil and histidine-requiring phenotypes can be complemented by plasmid-based copies of the intact genes after curing of the Cas9-editing plasmid. Growth of uracil auxotrophs on media supplemented with 5-fluoroorotic acid and uracil results in loss of the complementing plasmid, providing a facile method for plasmid curing with potential applications in strain engineering and CRISPR editing. Metabolomic characterization of uracil auxotrophs revealed changes in cellular orotate concentrations consistent with partial or complete loss of orotate phosphoribosyltransferase activity. Our results expand the range of P. tricornutum auxotrophic strains and demonstrate that auxotrophic complementation markers provide a viable alternative to traditionally used antibiotic selection markers. Plasmid-based auxotrophic markers should expand the range of genome engineering applications and provide a means for biocontainment of engineered P. tricornutum strains.
Collapse
Affiliation(s)
- Samuel S Slattery
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Canada
| | - Helen Wang
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Canada
| | - Daniel J Giguere
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Canada
| | - Csanad Kocsis
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Canada
| | - Bradley L Urquhart
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Canada
| | - Bogumil J Karas
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Canada
| | - David R Edgell
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Canada.
| |
Collapse
|
34
|
George J, Kahlke T, Abbriano RM, Kuzhiumparambil U, Ralph PJ, Fabris M. Metabolic Engineering Strategies in Diatoms Reveal Unique Phenotypes and Genetic Configurations With Implications for Algal Genetics and Synthetic Biology. Front Bioeng Biotechnol 2020; 8:513. [PMID: 32582656 PMCID: PMC7290003 DOI: 10.3389/fbioe.2020.00513] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 04/30/2020] [Indexed: 12/23/2022] Open
Abstract
Diatoms are photosynthetic microeukaryotes that dominate phytoplankton populations and have increasing applicability in biotechnology. Uncovering their complex biology and elevating strains to commercial standards depends heavily on robust genetic engineering tools. However, engineering microalgal genomes predominantly relies on random integration of transgenes into nuclear DNA, often resulting in detrimental “position-effects” such as transgene silencing, integration into transcriptionally-inactive regions, and endogenous sequence disruption. With the recent development of extrachromosomal transgene expression via independent episomes, it is timely to investigate both strategies at the phenotypic and genomic level. Here, we engineered the model diatom Phaeodactylum tricornutum to produce the high-value heterologous monoterpenoid geraniol, which, besides applications as fragrance and insect repellent, is a key intermediate of high-value pharmaceuticals. Using high-throughput phenotyping we confirmed the suitability of episomes for synthetic biology applications and identified superior geraniol-yielding strains following random integration. We used third generation long-read sequencing technology to generate a complete analysis of all transgene integration events including their genomic locations and arrangements associated with high-performing strains at a genome-wide scale with subchromosomal detail, never before reported in any microalga. This revealed very large, highly concatenated insertion islands, offering profound implications on diatom functional genetics and next generation genome editing technologies, and is key for developing more precise genome engineering approaches in diatoms, including possible genomic safe harbour locations to support high transgene expression for targeted integration approaches. Furthermore, we have demonstrated that exogenous DNA is not integrated inadvertently into the nuclear genome of extrachromosomal-expression clones, an important characterisation of this novel engineering approach that paves the road to synthetic biology applications.
Collapse
Affiliation(s)
- Jestin George
- University of Technology Sydney, Climate Change Cluster, Faculty of Science, Ultimo, NSW, Australia
| | - Tim Kahlke
- University of Technology Sydney, Climate Change Cluster, Faculty of Science, Ultimo, NSW, Australia
| | - Raffaela M Abbriano
- University of Technology Sydney, Climate Change Cluster, Faculty of Science, Ultimo, NSW, Australia
| | | | - Peter J Ralph
- University of Technology Sydney, Climate Change Cluster, Faculty of Science, Ultimo, NSW, Australia
| | - Michele Fabris
- University of Technology Sydney, Climate Change Cluster, Faculty of Science, Ultimo, NSW, Australia.,CSIRO Synthetic Biology Future Science Platform, Brisbane, QLD, Australia
| |
Collapse
|
35
|
Nawaly H, Tsuji Y, Matsuda Y. Rapid and precise genome editing in a marine diatom, Thalassiosira pseudonana by Cas9 nickase (D10A). ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.101855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
36
|
Ng I, Keskin BB, Tan S. A Critical Review of Genome Editing and Synthetic Biology Applications in Metabolic Engineering of Microalgae and Cyanobacteria. Biotechnol J 2020; 15:e1900228. [DOI: 10.1002/biot.201900228] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 02/07/2020] [Indexed: 12/13/2022]
Affiliation(s)
- I‐Son Ng
- Department of Chemical EngineeringNational Cheng Kung University Tainan 701 Taiwan
| | - Batuhan Birol Keskin
- Department of Chemical EngineeringNational Cheng Kung University Tainan 701 Taiwan
| | - Shih‐I Tan
- Department of Chemical EngineeringNational Cheng Kung University Tainan 701 Taiwan
| |
Collapse
|
37
|
Kumar Sharma A, Mühlroth A, Jouhet J, Maréchal E, Alipanah L, Kissen R, Brembu T, Bones AM, Winge P. The Myb-like transcription factor phosphorus starvation response (PtPSR) controls conditional P acquisition and remodelling in marine microalgae. THE NEW PHYTOLOGIST 2020; 225:2380-2395. [PMID: 31598973 DOI: 10.1111/nph.16248] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 09/29/2019] [Indexed: 05/10/2023]
Abstract
Phosphorus (P) is one of the limiting macronutrients for algal growth in marine environments. Microalgae have developed adaptation mechanisms to P limitation that involve remodelling of internal phosphate resources and accumulation of lipids. Here, we used in silico analyses to identify the P-stress regulator PtPSR (Phaeodactylum tricornutum phosphorus starvation response) in the diatom P. tricornutum. ptpsr mutant lines were generated using gene editing and characterised by various molecular, genetics and biochemical tools. PtPSR belongs to a clade of Myb transcription factors that are conserved in stramenopiles and distantly related to plant P-stress regulators. PtPSR bound specifically to a conserved cis-regulatory element found in the regulatory region of P-stress-induced genes. ptpsr knockout mutants showed reduction in cell growth under P limitation. P-stress responses were impaired in ptpsr mutants compared with wild-type, including reduced induction of P-stress response genes, near to complete loss of alkaline phosphatase activity and reduced phospholipid degradation. We conclude that PtPSR is a key transcription factor influencing P scavenging, phospholipid remodelling and cell growth in adaptation to P stress in diatoms.
Collapse
Affiliation(s)
- Amit Kumar Sharma
- Cell, Molecular Biology and Genomics Group, Department of Biology, Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | - Alice Mühlroth
- Cell, Molecular Biology and Genomics Group, Department of Biology, Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | - Juliette Jouhet
- Laboratoire de Physiologie Cellulaire Végétale, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Institut National de la Recherche Agronomique, Université Grenoble Alpes, 38000, Grenoble, France
| | - Eric Maréchal
- Laboratoire de Physiologie Cellulaire Végétale, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Institut National de la Recherche Agronomique, Université Grenoble Alpes, 38000, Grenoble, France
| | - Leila Alipanah
- Cell, Molecular Biology and Genomics Group, Department of Biology, Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | - Ralph Kissen
- Cell, Molecular Biology and Genomics Group, Department of Biology, Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | - Tore Brembu
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | - Atle M Bones
- Cell, Molecular Biology and Genomics Group, Department of Biology, Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | - Per Winge
- Cell, Molecular Biology and Genomics Group, Department of Biology, Norwegian University of Science and Technology, 7491, Trondheim, Norway
| |
Collapse
|
38
|
Li Q, Zhao P, Li L, Zhao H, Shi L, Tian P. Engineering a CRISPR Interference System To Repress a Class 1 Integron in Escherichia coli. Antimicrob Agents Chemother 2020; 64:e01789-19. [PMID: 31871091 PMCID: PMC7038292 DOI: 10.1128/aac.01789-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 12/19/2019] [Indexed: 12/20/2022] Open
Abstract
Microbial multidrug resistance (MDR) poses a huge threat to human health. Bacterial acquisition of MDR relies primarily on class 1 integron-involved horizontal gene transfer (HGT) of antibiotic resistance genes (ARGs). To date, no strategies other than the use of antibiotics can efficiently cope with MDR. Here, we report that an engineered CRISPR interference (CRISPRi) system can markedly reduce MDR by blocking a class 1 integron in Escherichia coli Using CRISPRi to block plasmid R388 class 1 integron, E. coli recombinants showed halted growth upon exposure to relevant antibiotics. A microplate alamarBlue assay showed that both subgenomic RNAs (sgRNAs) R3 and R6 led to 8- and 32-fold decreases in half-maximal inhibitory concentrations (IC50) for trimethoprim and sulfamethoxazole, respectively. Reverse transcription and quantitative PCR (RT-qPCR) revealed that the strain employing sgRNA R6 exhibited 97% and 84% decreases in the transcriptional levels of the dfrB2 cassette and sul1, two typical ARGs, respectively. RT-qPCR analysis also demonstrated that the strain recruiting sgRNA R3 showed a 96% decrease in the transcriptional level of intI1, and a conjugation assay revealed a 1,000-fold decrease in HGT rates of ARGs. Overall, the sgRNA R3 targeting the 31 bp downstream of the Pc promoter on the intI1 nontemplate strand outperformed other sgRNAs in reducing integron activity. Furthermore, this CRISPRi system is reversible, genetically stable, and titratable by varying the concentration of the inducer. To our knowledge, this is the first report on exploiting a CRISPRi system to reduce the class 1 integron in E. coli This study provides valuable insights for future development of CRISPRi-based antimicrobial agents and cellular therapy to suppress MDR.
Collapse
Affiliation(s)
- Qingyang Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Peng Zhao
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Lili Li
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou, China
| | - Haifeng Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Lei Shi
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou, China
| | - Pingfang Tian
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| |
Collapse
|
39
|
Moosburner MA, Gholami P, McCarthy JK, Tan M, Bielinski VA, Allen AE. Multiplexed Knockouts in the Model Diatom Phaeodactylum by Episomal Delivery of a Selectable Cas9. Front Microbiol 2020; 11:5. [PMID: 32047486 PMCID: PMC6997545 DOI: 10.3389/fmicb.2020.00005] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 01/03/2020] [Indexed: 11/13/2022] Open
Abstract
Marine diatoms are eukaryotic microalgae that play significant ecological and biogeochemical roles in oceans. They also have significant potential as organismal platforms for exploitation to address biotechnological and industrial goals. In order to address both modes of research, sophisticated molecular and genetic tools are required. We presented here new and improved methodologies for introducing CRISPR-Cas9 to the model diatom Phaeodactylum tricornutum cells and a streamlined protocol for genotyping mutant cell lines with previously unknown phenotypes. First, bacterial-conjugation was optimized for the delivery of Cas9 by transcriptionally fusing Cas9 to a selectable marker by the 2A peptide. An episome cloning strategy using both negative and positive selection was developed to streamline CRISPR-episome assembly. Next, cell line picking and genotyping strategies, that utilize manual sequencing curation, TIDE sequencing analysis, and a T7 endonuclease assay, were developed to shorten the time required to generate mutants. Following this new experimental pipeline, both single-gene and two-gene knockout cell lines were generated at mutagenesis efficiencies of 48% and 25%, respectively. Lastly, a protocol for precise gene insertions via CRISPR-Cas9 targeting was developed using particle-bombardment transformation methods. Overall, the novel Cas9 episome design and improved genotyping methods presented here allow for quick and easy genotyping and isolation of Phaeodactylum mutant cell lines (less than 3 weeks) without relying on a known phenotype to screen for mutants.
Collapse
Affiliation(s)
- Mark Andrew Moosburner
- Integrative Oceanography Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, United States.,J. Craig Venter Institute, La Jolla, CA, United States
| | | | | | - Maxine Tan
- Integrative Oceanography Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, United States.,J. Craig Venter Institute, La Jolla, CA, United States
| | | | - Andrew E Allen
- Integrative Oceanography Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, United States.,J. Craig Venter Institute, La Jolla, CA, United States
| |
Collapse
|
40
|
|