1
|
Gregg ST, Nze RP, Yuan Q, He S, Xie T, Xiao B. UV Light-Driven Nitric Oxide Release from Porous Nitrogen Heterocyclic Polymers. Macromol Rapid Commun 2024; 45:e2400142. [PMID: 38934622 DOI: 10.1002/marc.202400142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/07/2024] [Indexed: 06/28/2024]
Abstract
In this study, porous polymers with nitrogen heterocyclic core structures are synthesized through the condensation of enaminonitrile and terephthalaldehyde monomers. These polymers are used as a platform to store bioactive nitric oxide (NO) and control its release. NO loading is achieved by nitrosating the polymers with acidified nitrite, a process that also imparts photoresponsivity to the polymers. Polymer composition and porosity affect NO storage and release. It is observed that under UV light at 365 nm in a PBS solution, the polymers (NO@DHP-POP) can release NO in a manner fully controlled by UV lighting. Under experimental conditions, these porous polymers release NO at a rate of ≈10.0-50.0 µmol g-1 over 60 min. These findings demonstrate the potential of these polymers for integrating NO delivery into phototherapy applications.
Collapse
Affiliation(s)
- Sharon T Gregg
- School of Chemistry and Chemical Engineering, Queen's University of Belfast, David Keir Building, Stranmillis Road, Belfast, BT9 5AG, UK
| | - René-Ponce Nze
- School of Chemistry and Chemical Engineering, Queen's University of Belfast, David Keir Building, Stranmillis Road, Belfast, BT9 5AG, UK
| | - Qingchun Yuan
- Chemical Engineering and Applied Chemistry, Aston University, Birmingham, B4 7ET, UK
| | - Su He
- School of Chemistry and Chemical Engineering, Queen's University of Belfast, David Keir Building, Stranmillis Road, Belfast, BT9 5AG, UK
| | - Tianchao Xie
- School of Chemistry and Chemical Engineering, Queen's University of Belfast, David Keir Building, Stranmillis Road, Belfast, BT9 5AG, UK
| | - Bo Xiao
- School of Chemistry and Chemical Engineering, Queen's University of Belfast, David Keir Building, Stranmillis Road, Belfast, BT9 5AG, UK
| |
Collapse
|
2
|
Zhou X, Huang F, Zhang X, Zhang B, Cui Y, Wang Z, Yang Q, Ma Z, Liu J. Interface-Targeting Carrier-Catalytic Integrated Design Contributing to Lithium Dihalide-Rich SEI toward High Interface Stability for Long-Life Solid-State Lithium-Metal Batteries. Angew Chem Int Ed Engl 2024; 63:e202401576. [PMID: 38546410 DOI: 10.1002/anie.202401576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Indexed: 04/19/2024]
Abstract
The generation of solid electrolyte interphase (SEI) largely determines the comprehensive performance of all-solid-state batteries. Herein, a novel "carrier-catalytic" integrated design is strategically exploited to in situ construct a stable LiF-LiBr rich SEI by improving the electron transfer kinetics to accelerate the bond-breaking dynamics. Specifically, the high electron transport capacity of Br-TPOM skeleton increases the polarity of C-Br, thus promoting the generation of LiBr. Then, the enhancement of electron transfer kinetics further promotes the fracture of C-F from TFSI- to form LiF. Finally, the stable and homogeneous artificial-SEI with enriched lithium dihalide is constructed through the in situ co-growth mechanism of LiF and LiBr, which facilitatse the Li-ion transport kinetics and regulates the lithium deposition behavior. Impressively, the PEO-Br-TPOM paired with LiFePO4 delivers ultra-long cycling stability over 1000 cycles with 81 % capacity retention at 1 C while the pouch cells possess 88 % superior capacity retention after 550 cycles with initial discharge capacity of 145 mAh g-1at 0.2 C in the absence of external pressure. Even under stringent conditions, the practical pouch cells possess the practical capacity with stable electric quantities plateau in 30 cycles demonstrates its application potential in energy storage field.
Collapse
Affiliation(s)
- Xuanyi Zhou
- Guangdong Provincial Key Laboratory of Advanced Energy Storage Materials, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Fenfen Huang
- Key Laboratory of Low Dimensional Materials and Application Technology of Ministry of Education, School of Materials Science and Engineering, Xiangtan University, Xiangtan, 411105, China
| | - Xuedong Zhang
- Key Laboratory of Low Dimensional Materials and Application Technology of Ministry of Education, School of Materials Science and Engineering, Xiangtan University, Xiangtan, 411105, China
| | - Biao Zhang
- Key Laboratory of Low Dimensional Materials and Application Technology of Ministry of Education, School of Materials Science and Engineering, Xiangtan University, Xiangtan, 411105, China
| | - Yingjie Cui
- Key Laboratory of Low Dimensional Materials and Application Technology of Ministry of Education, School of Materials Science and Engineering, Xiangtan University, Xiangtan, 411105, China
| | - Zehua Wang
- Key Laboratory of Low Dimensional Materials and Application Technology of Ministry of Education, School of Materials Science and Engineering, Xiangtan University, Xiangtan, 411105, China
| | - Qiong Yang
- Key Laboratory of Low Dimensional Materials and Application Technology of Ministry of Education, School of Materials Science and Engineering, Xiangtan University, Xiangtan, 411105, China
| | - Zengsheng Ma
- Key Laboratory of Low Dimensional Materials and Application Technology of Ministry of Education, School of Materials Science and Engineering, Xiangtan University, Xiangtan, 411105, China
| | - Jun Liu
- Guangdong Provincial Key Laboratory of Advanced Energy Storage Materials, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, China
| |
Collapse
|
3
|
Rajput SK, Mothika VS. Powders to Thin Films: Advances in Conjugated Microporous Polymer Chemical Sensors. Macromol Rapid Commun 2024; 45:e2300730. [PMID: 38407503 DOI: 10.1002/marc.202300730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/06/2024] [Indexed: 02/27/2024]
Abstract
Chemical sensing of harmful species released either from natural or anthropogenic activities is critical to ensuring human safety and health. Over the last decade, conjugated microporous polymers (CMPs) have been proven to be potential sensor materials with the possibility of realizing sensing devices for practical applications. CMPs found to be unique among other porous materials such as metal-organic frameworks (MOFs) and covalent organic frameworks (COFs) due to their high chemical/thermal stability, high surface area, microporosity, efficient host-guest interactions with the analyte, efficient exciton migration along the π-conjugated chains, and tailorable structure to target specific analytes. Several CMP-based optical, electrochemical, colorimetric, and ratiometric sensors with excellent selectivity and sensing performance were reported. This review comprehensively discusses the advances in CMP chemical sensors (powders and thin films) in the detection of nitroaromatic explosives, chemical warfare agents, anions, metal ions, biomolecules, iodine, and volatile organic compounds (VOCs), with simultaneous delineation of design strategy principles guiding the selectivity and sensitivity of CMP. Preceding this, various photophysical mechanisms responsible for chemical sensing are discussed in detail for convenience. Finally, future challenges to be addressed in the field of CMP chemical sensors are discussed.
Collapse
Affiliation(s)
- Saurabh Kumar Rajput
- Department of Chemistry, Indian Institute of Technology (IIT) Kanpur, Kanpur, 208016, India
| | - Venkata Suresh Mothika
- Department of Chemistry, Indian Institute of Technology (IIT) Kanpur, Kanpur, 208016, India
| |
Collapse
|
4
|
Melero M, Díaz U, Llabrés i Xamena FX. Thiophene-Based Covalent Triazine Frameworks as Visible-Light-Driven Heterogeneous Photocatalysts for the Oxidative Coupling of Amines. Molecules 2024; 29:1637. [PMID: 38611916 PMCID: PMC11013671 DOI: 10.3390/molecules29071637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024] Open
Abstract
This study reports on a metal-free Covalent Triazine Framework (CTF) incorporating bithiophene structural units (TP-CTF) with a semicrystalline structure as an efficient heterogeneous photocatalyst under visible light irradiation. The physico-chemical properties and composition of this material was confirmed via different characterization solid-state techniques, such as XRD, TGA, CO2 adsorption and FT-IR, NMR and UV-Vis spectroscopies. The compound was synthesized through a solvothermal process and was explored as a heterogeneous photocatalyst for the oxidative coupling of amines to imines under visible light irradiation. TP-CTF demonstrated outstanding photocatalytic activity, with high conversion rates and selectivity. Importantly, the material exhibited exceptional stability and recyclability, making it a strong candidate for sustainable and efficient imine synthesis. The low bandgap of TP-CTF enabled the efficient absorption of visible light, which is a notable advantage for visible-light-driven photocatalysis.
Collapse
Affiliation(s)
| | - Urbano Díaz
- Instituto de Tecnología Química, Universitat Politècnica de València, Agencia Estatal Consejo Superior de Investigaciones Científicas, 46022 Valencia, Spain;
| | - Francesc X. Llabrés i Xamena
- Instituto de Tecnología Química, Universitat Politècnica de València, Agencia Estatal Consejo Superior de Investigaciones Científicas, 46022 Valencia, Spain;
| |
Collapse
|
5
|
Guo Y, Liu C, Liao J, Liu Y, Qian H, Xu J, Wang H, Nie K, Wang J. Growth mechanism study and band structure modulation of a manganese doped two-dimensional BlueP-Au network. RSC Adv 2023; 13:12685-12694. [PMID: 37101530 PMCID: PMC10123488 DOI: 10.1039/d3ra00751k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 04/15/2023] [Indexed: 04/28/2023] Open
Abstract
Two-dimensional (2D) materials are a very promising material family. The two-dimensional inorganic metal network called BlueP-Au network is rapidly attracting the attention of researchers due to its customizable architecture, adjustable chemical functions and electronic properties. Herein, manganese (Mn) was successfully doped on a BlueP-Au network for the first time, then the doping mechanism and electronic structure evolution was studied by in situ X-ray photoelectron spectroscopy (XPS) based on synchrotron radiation, X-ray absorption spectroscopy (XAS), Scanning Tunneling Microscopy (STM), Density functional theory (DFT), Low-energy electron diffraction (LEED), Angle resolved photoemission spectroscopy (ARPES), etc. Mn atoms tend to be stably adsorbed on two sites of the BlueP-Au network. It was the first observation that atoms can absorb on the two sites stably simultaneously. It is different from the previous adsorption models of BlueP-Au networks. The band structure was also successfully modulated, and overall down about 0.25 eV relative to the Fermi edge. It provided a new strategy for customizing the functional structure of the BlueP-Au network, which has provided new insights into monatomic catalysis, energy storage and nano electronic devices.
Collapse
Affiliation(s)
- Yuxuan Guo
- Institute of High Energy Physics, Chinese Academy of Sciences Beijing 100049 China +86-010-88235992
- University of Chinese Academy of Sciences, Chinese Academy of Sciences Beijing 100049 China
| | - Chen Liu
- Institute of High Energy Physics, Chinese Academy of Sciences Beijing 100049 China +86-010-88235992
| | - Jiangwen Liao
- Institute of High Energy Physics, Chinese Academy of Sciences Beijing 100049 China +86-010-88235992
- University of Chinese Academy of Sciences, Chinese Academy of Sciences Beijing 100049 China
| | - Yunpeng Liu
- Institute of High Energy Physics, Chinese Academy of Sciences Beijing 100049 China +86-010-88235992
| | - Haijie Qian
- Institute of High Energy Physics, Chinese Academy of Sciences Beijing 100049 China +86-010-88235992
| | - Jinfeng Xu
- Institute of High Energy Physics, Chinese Academy of Sciences Beijing 100049 China +86-010-88235992
- University of Chinese Academy of Sciences, Chinese Academy of Sciences Beijing 100049 China
| | - Hao Wang
- Institute of High Energy Physics, Chinese Academy of Sciences Beijing 100049 China +86-010-88235992
- University of Chinese Academy of Sciences, Chinese Academy of Sciences Beijing 100049 China
| | - Kaiqi Nie
- Institute of High Energy Physics, Chinese Academy of Sciences Beijing 100049 China +86-010-88235992
| | - Jiaou Wang
- Institute of High Energy Physics, Chinese Academy of Sciences Beijing 100049 China +86-010-88235992
| |
Collapse
|
6
|
Synthesis and Iodine Adsorption Properties of Organometallic Copolymers with Propeller-Shaped Fe(II) Clathrochelates Bridged by Different Diaryl Thioether and Their Oxidized Sulfone Derivatives. Polymers (Basel) 2022; 14:polym14224818. [PMID: 36432945 PMCID: PMC9697507 DOI: 10.3390/polym14224818] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 11/12/2022] Open
Abstract
Three organometallic copolymers, ICP1-3, containing iron(II) clathrochelate units with cyclohexyl lateral groups and interconnected by various thioether derivatives were synthesized. The reaction of the latter into their corresponding OICP1-3 sulfone derivatives was achieved quantitatively using mild oxidation reaction conditions. The target copolymers, ICP1-3 and OICP1-3, were characterized by various instrumental analysis techniques, and their iodine uptake studies disclosed excellent iodine properties, reaching a maximum of 360 wt.% (qe = 3600 mg g-1). The adsorption mechanisms of the copolymers were explored using pseudo-first-order and pseudo-second-order kinetic models. Furthermore, regeneration tests confirmed the efficiency of the target copolymers for their iodine adsorption even after several adsorption-desorption cycles.
Collapse
|
7
|
Synthesis of Metalorganic Copolymers Containing Various Contorted Units and Iron(II) Clathrochelates with Lateral Butyl Chains: Conspicuous Adsorbents of Lithium Ions and Methylene Blue. Polymers (Basel) 2022; 14:polym14163394. [PMID: 36015650 PMCID: PMC9412635 DOI: 10.3390/polym14163394] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 12/12/2022] Open
Abstract
We report the synthesis of three highly soluble metalorganic copolymers, TCP1-3, that were made from a one-pot complexation of iron(II) clathrochelate units that are interconnected by various thioether-containing contorted groups. TCP1-3 were converted into their poly(vinyl sulfone) derivatives OTCP1-3 quantitatively via the selective oxidation of the thioether moieties into their respective sulfones. All of the copolymers, TCP1-3 and OTCP1-3, underwent structural analysis by various techniques; namely, 1H- and 13C-nuclear magnetic resonance (NMR), Fourier transform infrared (FTIR), X-ray photoelectron spectroscopy (XPS), and gel permeation chromatography (GPC). The copolymers were tested as potent lithium ions adsorbents revealing a maximum adsorption (qm) value of 2.31 mg g-1 for OTCP2. Furthermore, this same copolymer was found to be a promising adsorbent of methylene blue (MEB); an isothermal adsorption study divulged that OTCP2's uptake of MEB from an aqueous solution (following the Langmuir model) was, at maximum adsorption capacity, (qm) of 480.77 mg g-1; whereas the kinetic study divulged that the adsorption follows pseudo second-order kinetics with an equilibrium adsorption capacity (qe,cal) of 45.40 mg g-1.
Collapse
|
8
|
Shetty S, Baig N, Al‐Mousawi S, Alameddine B. Removal of anionic and cationic dyes using porous copolymer networks made from a
S
onogashira cross‐coupling reaction of diethynyl iron (
II
) clathrochelate with various arylamines. J Appl Polym Sci 2022. [DOI: 10.1002/app.52966] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Suchetha Shetty
- Department of Mathematics and Natural Sciences Gulf University for Science and Technology Mubarak Al‐Abdullah Kuwait
- Functional Materials Group Gulf University for Science and Technology Mubarak Al‐Abdullah Kuwait
| | - Noorullah Baig
- Department of Mathematics and Natural Sciences Gulf University for Science and Technology Mubarak Al‐Abdullah Kuwait
- Functional Materials Group Gulf University for Science and Technology Mubarak Al‐Abdullah Kuwait
| | | | - Bassam Alameddine
- Department of Mathematics and Natural Sciences Gulf University for Science and Technology Mubarak Al‐Abdullah Kuwait
- Functional Materials Group Gulf University for Science and Technology Mubarak Al‐Abdullah Kuwait
| |
Collapse
|
9
|
Wang M, Li HS, Ding X, Jiang L, Wu P, Zheng R, Bao G, Liu G, Wang J. Triphenylamine-containing imine-linked porous organic network for luminescent detection and adsorption of Cr(VI) in water. Dalton Trans 2022; 51:10351-10356. [PMID: 35762382 DOI: 10.1039/d2dt01046a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this study, an imine-linked luminescent porous organic network (PON) has been successfully synthesized by the Schiff-base condensation reaction between 1,2-diphenylethylenediamine and tris(4-formylphenyl)amine. It exhibits strong fluorescence in an aqueous dispersion and can be applied as a luminescent probe for Cr(VI) (CrO42- and Cr2O72-) with high selectivity and sensitivity (LOD for Cr2O72- and CrO42- were below 0.35 μM and 0.4 μM, respectively) in a turn-off manner. The possible luminescence sensing mechanism and the adsorption capacity of Cr(VI) are also discussed in detail.
Collapse
Affiliation(s)
- Man Wang
- School of Chemistry and Materials Science & Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, China.
| | - Han-Shu Li
- School of Chemistry and Materials Science & Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, China.
| | - Xin Ding
- School of Chemistry and Materials Science & Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, China.
| | - Lizan Jiang
- School of Chemistry and Materials Science & Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, China.
| | - Pengyan Wu
- School of Chemistry and Materials Science & Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, China.
| | - Ruiting Zheng
- School of Chemistry and Materials Science & Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, China.
| | - Guoyue Bao
- School of Chemistry and Materials Science & Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, China.
| | - Guoliang Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Jian Wang
- School of Chemistry and Materials Science & Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, China.
| |
Collapse
|
10
|
Superior removal of iodine via cyclophosphazene-based conjugation-enriched cross-linking hybrid polymers. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
11
|
|
12
|
Shetty S, Baig N, Hassan A, Al-Mousawi S, Das N, Alameddine B. Fluorinated Iron(ii) clathrochelate units in metalorganic based copolymers: improved porosity, iodine uptake, and dye adsorption properties. RSC Adv 2021; 11:14986-14995. [PMID: 35424059 PMCID: PMC8697800 DOI: 10.1039/d1ra02357h] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 04/16/2021] [Indexed: 01/15/2023] Open
Abstract
We report the synthesis of metalorganic copolymers made from the palladium catalyzed Sonogashira cross-coupling reaction between various iron(ii) clathrochelate building blocks with diethynyl-triptycene and fluorene derivatives. The target copolymers CCP1-5 were isolated in excellent yield and characterized by various instrumental analysis techniques. Interestingly, investigation of the copolymers' porosity properties discloses BET surface areas up to 337 m2 g-1 for the target compounds bearing fluorinated iron(ii) clathrochelate units CCP2,5. Moreover, the fluorinated copolymers display an outstanding uptake capacity of iodine with a maximum adsorption of 200 wt%. The target metalorganic copolymers CCP1-5 reveal very good adsorption of organic dyes, namely, methyl blue and methylene blue, from aqueous media.
Collapse
Affiliation(s)
- Suchetha Shetty
- Department of Mathematics and Natural Sciences, Gulf University for Science and Technology Kuwait
- Functional Materials Group - CAMB, GUST Kuwait
| | - Noorullah Baig
- Department of Mathematics and Natural Sciences, Gulf University for Science and Technology Kuwait
- Functional Materials Group - CAMB, GUST Kuwait
| | - Atikur Hassan
- Department of Chemistry, Indian Institute of Technology Patna Patna 801106 Bihar India
| | | | - Neeladri Das
- Department of Chemistry, Indian Institute of Technology Patna Patna 801106 Bihar India
| | - Bassam Alameddine
- Department of Mathematics and Natural Sciences, Gulf University for Science and Technology Kuwait
- Functional Materials Group - CAMB, GUST Kuwait
| |
Collapse
|
13
|
Niu T, Yao C, Xie W, Zhang S, Xu Y. A red luminescent Eu 3+ doped conjugated microporous polymer for highly sensitive and selective detection of aluminum ions. Polym Chem 2021. [DOI: 10.1039/d0py01482f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A Eu3+ doped-CMP composite can be used as a chemosensor for highly sensitive and selective detection of Al3+.
Collapse
Affiliation(s)
- Tianhui Niu
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education (Jilin Normal University)
- Ministry of Education
- Changchun
- China
| | - Chan Yao
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education (Jilin Normal University)
- Ministry of Education
- Changchun
- China
| | - Wei Xie
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education (Jilin Normal University)
- Ministry of Education
- Changchun
- China
| | - Shuran Zhang
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education (Jilin Normal University)
- Ministry of Education
- Changchun
- China
| | - Yanhong Xu
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education (Jilin Normal University)
- Ministry of Education
- Changchun
- China
| |
Collapse
|
14
|
Fluorescent aminal linked porous organic polymer for reversible iodine capture and sensing. Sci Rep 2020; 10:15943. [PMID: 32994515 PMCID: PMC7525493 DOI: 10.1038/s41598-020-72697-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 09/04/2020] [Indexed: 11/08/2022] Open
Abstract
A novel triazene-anthracene-based fluorescent aminal linked porous organic polymer (TALPOP) was prepared via metal free-Schiff base polycondensation reaction of 9,10-bis-(4,6-diamino-S-triazin-2-yl)anthracene and 2-furaldehyde. The polymer has exceptional chemical and thermal stabilities and exhibit good porosity with Brunauer–Emmett–Teller surface area of 401 m2g−1. The combination of such porosity along with the highly conjugated heteroatom-rich framework enabled the polymer to exhibit exceptional iodine vapor uptake of up to 314 wt % and reversible iodine adsorption in solution. Because of the inclusion of the anthracene moieties, the TALPOP exhibited excellent detection sensitivity towards iodine via florescence quenching with Ksv value of 2.9 × 103 L mol−1. The cost effective TALPOP along with its high uptake and sensing of iodine, make it an ideal material for environmental remediation.
Collapse
|
15
|
Liu C, Xia M, Zhang M, Yuan K, Hu F, Yu G, Jian X. One-pot synthesis of nitrogen-rich aminal- and triazine-based hierarchical porous organic polymers with highly efficient iodine adsorption. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122401] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
16
|
An WK, Zheng SJ, Du YN, Ding SY, Li ZJ, Jiang S, Qin Y, Liu X, Wei PF, Cao ZQ, Song M, Pan Z. Thiophene-embedded conjugated microporous polymers for photocatalysis. Catal Sci Technol 2020. [DOI: 10.1039/d0cy01164a] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
“Bottom-up” embedding of thiophene derivatives into CMPs for highly efficient heterogeneous photocatalysis is reported.
Collapse
|
17
|
Taylor D, Dalgarno SJ, Xu Z, Vilela F. Conjugated porous polymers: incredibly versatile materials with far-reaching applications. Chem Soc Rev 2020; 49:3981-4042. [DOI: 10.1039/c9cs00315k] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This review discusses conjugated porous polymers and focuses on relating design principles and synthetic methods to key properties and applications such as (photo)catalysis, gas storage, chemical sensing, energy storage and environmental remediation.
Collapse
Affiliation(s)
- Dominic Taylor
- School of Engineering and Physical Science
- Heriot-Watt University
- Riccarton
- UK
| | - Scott J. Dalgarno
- School of Engineering and Physical Science
- Heriot-Watt University
- Riccarton
- UK
| | - Zhengtao Xu
- Department of Chemistry
- City University of Hong Kong
- Kowloon
- Hong Kong
| | - Filipe Vilela
- School of Engineering and Physical Science
- Heriot-Watt University
- Riccarton
- UK
| |
Collapse
|
18
|
Baig N, Shetty S, Al-Mousawi S, Alameddine B. Synthesis of conjugated polymers via cyclopentannulation reaction: promising materials for iodine adsorption. Polym Chem 2020. [DOI: 10.1039/d0py00286k] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A new class of conjugated polymers is prepared by means of a versatile palladium-catalyzed cyclopentannulation reaction using a series of specially designed diethynyl aryl synthons with the commercially available 9,10-dibromoanthracene DBA monomer.
Collapse
Affiliation(s)
- Noorullah Baig
- Department of Mathematics and Natural Sciences
- Gulf University for Science and Technology (GUST)
- Kuwait
- Functional Materials Group – CAMB
- GUST
| | - Suchetha Shetty
- Department of Mathematics and Natural Sciences
- Gulf University for Science and Technology (GUST)
- Kuwait
- Functional Materials Group – CAMB
- GUST
| | | | - Bassam Alameddine
- Department of Mathematics and Natural Sciences
- Gulf University for Science and Technology (GUST)
- Kuwait
- Functional Materials Group – CAMB
- GUST
| |
Collapse
|
19
|
Li X, Chen G, Xu H, Jia Q. Task-specific synthesis of cost-effective electron-rich thiophene-based hypercrosslinked polymer with perylene for efficient iodine capture. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2019.115739] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|