1
|
Yang P, Yuan Y, Yan C, Jia Y, You Q, Da L, Lou A, Lv B, Zhang Z, Liu Y. AlliumDB: a central portal for comparative and functional genomics in Allium. HORTICULTURE RESEARCH 2024; 11:uhad285. [PMID: 38371639 PMCID: PMC10871970 DOI: 10.1093/hr/uhad285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 12/17/2023] [Indexed: 02/20/2024]
Abstract
The genus Allium belongs to the botanical family Amaryllidaceae and includes economically important crops such as onion, garlic, bunching onion, and leek, used as vegetables, spices, and traditional medicines. The large sizes of Allium genomes hamper the genetic dissection of agronomically important traits and molecular breeding. With the growing accumulation of genomic, resequencing, transcriptome, and phenotypic data, the demand for an integrative Allium database is increasing. Here we present a user-friendly database, AlliumDB (https://allium.qau.edu.cn), as a functional genomics hub integrating public and in-house data. The database contains all currently available nuclear and organelle genomes for Allium species, with genes comprehensively annotated based on Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses, orthology, gene families, protein families (Pfam), and non-coding RNA families (Rfam). Transcriptome and variation profiles are integrated into dynamic visualization tools. We took phenotypic photographs and generated trait records for hundreds of Allium germplasms collected worldwide, which are included in the database. We incorporated JBrowse for the visualization of gene structures, RNA sequencing data, and variation data. Analysis tools such as the basic local alignment search tool (BLAST), sequence fetch, enrichment, and motif analyses are available to explore potential gene functions. This database incorporates comprehensive Allium genotypic and phenotypic datasets. As the community assembles new genomes and generates resequencing data for Allium germplasms, the database will be improved and continuously updated with these multi-omics data and comparative genomic studies. We expect the AlliumDB database to become a key resource for the study of Allium crops.
Collapse
Affiliation(s)
- Pengtao Yang
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
| | - Yu Yuan
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
| | - Chao Yan
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
| | - Yue Jia
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
| | - Qi You
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou 225009, China
| | - Lingling Da
- College of Life Science, Northwest Normal University, Lanzhou 730070, China
| | - Ao Lou
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
| | - Bingsheng Lv
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
| | - Zhonghua Zhang
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
| | - Yue Liu
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
| |
Collapse
|
2
|
Zhang X, Zhang L, Zhang D, Su D, Li W, Wang X, Chen Q, Cai W, Xu L, Cao F, Zhang D, Yu X, Li Y. Comprehensive analysis of metabolome and transcriptome reveals the mechanism of color formation in different leave of Loropetalum Chinense var. Rubrum. BMC PLANT BIOLOGY 2023; 23:133. [PMID: 36882694 PMCID: PMC9993627 DOI: 10.1186/s12870-023-04143-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 02/27/2023] [Indexed: 06/12/2023]
Abstract
BACKGROUND Loropetalum chinense var. rubrum (L. chinense var. rubrum) is a precious, coloured-leaf native ornamental plant in the Hunan Province. We found an L. chinense var. rubrum tree with three different leaf colours: GL (green leaf), ML (mosaic leaf), and PL (purple leaf). The mechanism of leaf coloration in this plant is still unclear. Therefore, this study aimed to identify the metabolites and genes involved in determining the colour composition of L. chinense var. rubrum leaves, using phenotypic/anatomic observations, pigment content detection, and comparative metabolomics and transcriptomics. RESULTS We observed that the mesophyll cells in PL were purple, while those in GL were green and those in ML were a mix of purple-green. The contents of chlorophyll a, b, carotenoids, and total chlorophyll in PL and ML were significantly lower than those in GL. While the anthocyanin content in PL and ML was significantly higher than that in GL. The metabolomics results showed the differences in the content of cyanidin 3-O-glucoside, delphinidin 3-O-glucoside, cyanidin 3,5-O-diglucoside, pelargonidin, and petunidin 3,5-diglucoside in ML, GL, and PL were significant. Considering that the change trend of anthocyanin content change was consistent with the leaf colour difference, we speculated that these compounds might influence the colour of L. chinense var. rubrum leaves. Using transcriptomics, we finally identified nine differentially expressed structural genes (one ANR (ANR1217); four CYP75As (CYP75A1815, CYP75A2846, CYP75A2909, and CYP75A1716); four UFGTs (UFGT1876, UFGT1649, UFGT1839, and UFGT3273) and nine transcription factors (two MYBs (MYB1057 and MYB1211), one MADS-box (MADS1235), two AP2-likes (AP2-like1779 and AP2-like2234), one bZIP (bZIP3720), two WD40s (WD2173 and WD1867) and one bHLH (bHLH1631) that might be related to flavonoid biosynthesis and then impacted the appearance of colour in L. chinense var. rubrum leaves. CONCLUSION This study revealed potential molecular mechanisms associated with leaf coloration in L. chinense var. rubrum by analyzing differential metabolites and genes related to the anthocyanin biosynthesis pathway. It also provided a reference for research on leaf colour variation in other ornamental plants.
Collapse
Affiliation(s)
- Xia Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 100081, Beijing, China
- College of Horticulture, Hunan Agricultural University, 410128, Changsha, China
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, 410128, Changsha, China
- Hunan Mid-subtropical Quality Plant Breeding and Utilization Engineering Technology Research Center, 410128, Changsha, China
| | - Li Zhang
- College of Horticulture, Hunan Agricultural University, 410128, Changsha, China
- Hunan Horticulture Research Institute, Hunan Academy of Agricultural Sciences, 410125, Changsha, China
| | - Damao Zhang
- College of Horticulture, Hunan Agricultural University, 410128, Changsha, China
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, 410128, Changsha, China
- Hunan Mid-subtropical Quality Plant Breeding and Utilization Engineering Technology Research Center, 410128, Changsha, China
| | - Dingding Su
- Institute of Advanced Agricultural Sciences, Peking University, 262041, Weifang, China
| | - Weidong Li
- Hunan Horticulture Research Institute, Hunan Academy of Agricultural Sciences, 410125, Changsha, China
- Hunan Key Laboratory of Innovation and Comprehensive Utilization, 410128, Changsha, China
| | - Xiangfei Wang
- College of Horticulture, Hunan Agricultural University, 410128, Changsha, China
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, 410128, Changsha, China
- Hunan Mid-subtropical Quality Plant Breeding and Utilization Engineering Technology Research Center, 410128, Changsha, China
| | - Qianru Chen
- College of Horticulture, Hunan Agricultural University, 410128, Changsha, China
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, 410128, Changsha, China
- Hunan Mid-subtropical Quality Plant Breeding and Utilization Engineering Technology Research Center, 410128, Changsha, China
| | - Wenqi Cai
- College of Horticulture, Hunan Agricultural University, 410128, Changsha, China
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, 410128, Changsha, China
- Hunan Mid-subtropical Quality Plant Breeding and Utilization Engineering Technology Research Center, 410128, Changsha, China
| | - Lu Xu
- College of Horticulture, Hunan Agricultural University, 410128, Changsha, China
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, 410128, Changsha, China
- Hunan Mid-subtropical Quality Plant Breeding and Utilization Engineering Technology Research Center, 410128, Changsha, China
| | - Fuxiang Cao
- College of Horticulture, Hunan Agricultural University, 410128, Changsha, China
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, 410128, Changsha, China
- Hunan Mid-subtropical Quality Plant Breeding and Utilization Engineering Technology Research Center, 410128, Changsha, China
| | - Dongling Zhang
- Department of Horticulture, University of Georgia, 30602, Athens, GA, USA.
| | - Xiaoying Yu
- College of Horticulture, Hunan Agricultural University, 410128, Changsha, China.
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, 410128, Changsha, China.
- Hunan Mid-subtropical Quality Plant Breeding and Utilization Engineering Technology Research Center, 410128, Changsha, China.
| | - Yanlin Li
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 100081, Beijing, China.
- College of Horticulture, Hunan Agricultural University, 410128, Changsha, China.
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, 410128, Changsha, China.
- Hunan Mid-subtropical Quality Plant Breeding and Utilization Engineering Technology Research Center, 410128, Changsha, China.
| |
Collapse
|
3
|
Samota MK, Sharma M, Kaur K, Sarita, Yadav DK, Pandey AK, Tak Y, Rawat M, Thakur J, Rani H. Onion anthocyanins: Extraction, stability, bioavailability, dietary effect, and health implications. Front Nutr 2022; 9:917617. [PMID: 35967791 PMCID: PMC9363841 DOI: 10.3389/fnut.2022.917617] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 06/17/2022] [Indexed: 11/13/2022] Open
Abstract
Anthocyanins are high-value compounds, and their use as functional foods and their natural colorant have potential health benefits. Anthocyanins seem to possess antioxidant properties, which help prevent neuronal diseases and thereby exhibit anti-inflammatory, chemotherapeutic, cardioprotective, hepatoprotective, and neuroprotective activities. They also show different therapeutic effects against various chronic diseases. Anthocyanins are present in high concentrations in onion. In recent years, although both conventional and improved methods have been used for extraction of anthocyanins, nowadays, improved methods are of great importance because of their higher yield and stability of anthocyanins. In this review, we compile anthocyanins and their derivatives found in onion and the factors affecting their stability. We also analyze different extraction techniques of anthocyanins. From this point of view, it is very important to be precisely aware of the impact that each parameter has on the stability and subsequently potentiate its bioavailability or beneficial health effects. We present up-to-date information on bioavailability, dietary effects, and health implications of anthocyanins such as antioxidant, antidiabetic, anticancerous, antiobesity, cardioprotective, and hepatoprotective activities.
Collapse
Affiliation(s)
- Mahesh Kumar Samota
- Horticulture Crop Processing (HCP) Division, ICAR-Central Institute of Post-Harvest Engineering & Technology (CIPHET), Punjab, India
| | - Madhvi Sharma
- Post Graduate Department of Biotechnology, Khalsa College, Amritsar, Punjab, India
| | - Kulwinder Kaur
- Department of Processing and Food Engineering, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Sarita
- College of Agriculture, Agriculture University, Jodhpur, Rajasthan, India
| | - Dinesh Kumar Yadav
- Division of Environmental Soil Science, ICAR-Indian Institute of Soil Science (IISS), Bhopal, MP, India
| | - Abhay K Pandey
- Department of Mycology and Microbiology, Tea Research Association-North Bengal Regional R & D Center, Nagrakata, West Bengal, India
| | - Yamini Tak
- Agricultural Research Station (ARS), Agriculture University, Kota, Rajasthan, India
| | - Mandeep Rawat
- Department of Horticulture, G.B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, India
| | - Julie Thakur
- Department of Botany, Bhaskaracharya College of Applied Sciences, University of Delhi, New Delhi, India
| | - Heena Rani
- Department of Biochemistry, Punjab Agricultural University, Ludhiana, Punjab, India
| |
Collapse
|
4
|
González-de-Peredo AV, Vázquez-Espinosa M, Espada-Bellido E, Ferreiro-González M, Carrera C, Barbero GF, Palma M. Extraction of Antioxidant Compounds from Onion Bulb (Allium cepa L.) Using Individual and Simultaneous Microwave-Assisted Extraction Methods. Antioxidants (Basel) 2022; 11:antiox11050846. [PMID: 35624711 PMCID: PMC9137747 DOI: 10.3390/antiox11050846] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/21/2022] [Accepted: 04/25/2022] [Indexed: 12/23/2022] Open
Abstract
Despite the excellent beneficial properties that anthocyanins and total phenolic compounds give to the red onion bulbs, few articles have investigated modern extraction techniques or experimental designs in this field. For this reason, the present study proposes the development and optimization of alternative methods for the extraction of these compounds based on microwave-assisted extraction and the Box-Behnken experiment design. The optimal values for the extraction of total anthocyanins have been established at 62% methanol composition as a solvent, pH 2, 56 °C temperature, and 0.2:13 g:mL sample-solvent ratio. Regarding the extraction of total phenolic compounds, the optimal conditions have been established at 100% pure methanol as a solvent with pH 2, 57 °C temperature, and 0.2:8.8 g:mL sample-solvent ratio. Short extraction times (min), good recoveries (mg of bioactive compound g−1 of dry onion), and high repeatability and intermediate precision (coefficient of variation (%)) have been confirmed for both methods. Regarding total anthocyanins, the following results have been obtained: 2 min, 2.64 ± 0.093 mg of total anthocyanins g−1 of dry onion, and 2.51% and 3.12% for precision. Regarding phenolic compounds, the following results have been obtained: 15 min, 7.95 ± 0.084 mg of total phenolic compound g−1 of dry onion, and 3.62% and 4.56% for precision. Comparing these results with those of other authors and with those obtained in a previous study of ultrasound-assisted extraction, it can be confirmed that microwave-assisted extraction is a quantitative, repeatable, and very promising method for the extraction of phenolic compounds and anthocyanins, which offers similar and even superior results with little solvent expense, time, and costs.
Collapse
|
5
|
Lee HM, Park JS, Kim SJ, Kim SG, Park YD. Using Transcriptome Analysis to Explore Gray Mold Resistance-Related Genes in Onion (Allium cepa L.). Genes (Basel) 2022; 13:genes13030542. [PMID: 35328095 PMCID: PMC8955018 DOI: 10.3390/genes13030542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 11/29/2022] Open
Abstract
Gray mold disease caused by Botrytis in onions (Allium cepa L.) during growth and storage negatively affects their yield and quality. Exploring the genes related to gray mold resistance in onion and their application to the breeding of resistant onion lines will support effective and ecological control methods of the disease. Here, the genetic relationship of 54 onion lines based on random amplified polymorphic DNA (RAPD) and in vitro-cultured onion lines infected with gray mold were used for screening resistance and susceptibility traits. Two genetically related onion lines were selected, one with a resistant and one with a susceptible phenotype. In vitro gray mold infection was repeated with these two lines, and leaf samples were collected for gene expression studies in time series. Transcript sequences obtained by RNA sequencing were subjected to DEG analysis, variant analysis, and KEGG mapping. Among the KEGG pathways, ‘α-linoleic acid metabolism’ was selected because the comparison of the time series expression pattern of Jasmonate resistant 1 (JAR1), Coronatine-insensitive protein 1 (COI 1), and transcription factor MYC2 (MYC2) genes between the resistant and susceptible lines revealed its significant relationship with gray-mold-resistant phenotypes. Expression pattern and SNP of the selected genes were verified by quantitative real-time PCR and high-resolution melting (HRM) analysis, respectively. The results of this study will be useful for the development of molecular marker and finally breeding of gray-mold-resistant onions.
Collapse
|
6
|
Accumulation of Anthocyanidins Determines Leaf Color of Liquidambar Formosana as Revealed by Transcriptome Sequencing and Metabolism Analysis. Curr Issues Mol Biol 2022; 44:242-256. [PMID: 35723397 PMCID: PMC8928986 DOI: 10.3390/cimb44010018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/26/2021] [Accepted: 12/27/2021] [Indexed: 11/17/2022] Open
Abstract
Liquidambar formosana is important for its ornamental value in China; it is increasingly used for landscaping and gardening trees due to its diverse leaf colors and seasonal changes. Varieties including either a fixed leaf color, the purplish ‘Fuluzifeng’ (ZF), or seasonal changes in leaf color, the reddish ‘Nanlinhong’ (NLH) have been bred and registered as new plant varieties under the International Union for the Protection of New Plant Varieties (UPOV) system. To gain practical insights into the anthocyanin biosynthetic process, transcriptome sequencing (Illumina) was performed to clarify the metabolic pathways present in the three seasonal changes in leaf colors in NLH and in the springtime purple-red color of ZF. qRT-PCR was used to verify the speculation. Based on the differentially expressed genes and flavonoids analyses, the spring, summer, and autumn leaves of NLH were compared to study the seasonal differences. NLH and ZF were compared to study the formation mechanism of the two leaf colors in spring. Transcriptome sequencing produced a total of 121,216 unigenes from all samples, where 48 unigenes were differentially expressed and associated with the anthocyanidin pathway. The expression levels of LfDFR and LfANS genes corresponded to the accumulation of concentrations of cyanidins in spring (NLHC) and autumn leaves (NLHQ), respectively, with different shades of red. Moreover, the LfF3′5′H gene corresponded to the accumulation of flavonols and delphinidins in purple-red leaves (ZFC). Cyanidin and peonidin were the key pigments in red and dark-red leaves, and purple-red leaves were co-pigmented by cyanidins, pelargonidins, and delphinidins.
Collapse
|
7
|
Li X, Cao L, Jiao B, Yang H, Ma C, Liang Y. The bHLH transcription factor AcB2 regulates anthocyanin biosynthesis in onion ( Allium cepa L.). HORTICULTURE RESEARCH 2022; 9:uhac128. [PMID: 36042846 PMCID: PMC9418810 DOI: 10.1093/hr/uhac128] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 05/26/2022] [Indexed: 05/13/2023]
Abstract
Onion bulb color is a key breeding trait. The red bulb color is caused by the presence of anthocyanins, which are products of the flavonoid synthesis pathway. Research on flavonoid regulation in onion is lagging compared with that in other crops. AcB2 encodes a basic helix-loop-helix (bHLH) transcription factor, and its transcription is positively associated with anthocyanin accumulation and correlated with the expression of AcMYB1, which is an activator in the flavonoid biosynthetic pathway in onion. Phylogenetic analysis showed that AcB2 was grouped into the TRANSPARENT TESTA 8 (TT8) clade of the bHLH IIIf subgroup. The AcB2 protein contained an MYB-interacting region and physically interacted with AcMYB1 in yeast and tobacco leaves. AcMYB1 directly bound to the promoters of anthocyanidin synthase (AcANS) and flavonoid 3-hydroxylase 1 (AcF3H1) and activated their expression. The coexpression of AcB2 with AcMYB1 in Arabidopsis thaliana protoplasts dramatically increased the expression of AcANS and AcF3H1 compared with that under the expression of AcMYB1 alone. Transient co-overexpression of AcB2 with AcMYB1 induced anthocyanin accumulation in the epithelial cells of onion bulbs. Complementation of the Arabidopsis tt8-1 mutant with AcB2 restored pigmentation defects in tt8-1. In addition, AcB2 physically interacted with AtTT2 in yeast cells and tobacco leaves, indicating that the functions of AcB2 were similar to those of AtTT8. Together, these results demonstrated that AcB2 enhanced the function of AcMYB1 in upregulating anthocyanin biosynthesis in onion, which provides a theoretical basis for breeding onions with higher anthocyanin contents.
Collapse
Affiliation(s)
| | - Linjiao Cao
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Bangbang Jiao
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Haifeng Yang
- Vegetable Research Center, Lianyungang Academy of Agriculture Sciences, Yingbin Boulevard, Haizhou District, Lianyungang, Jiangsu, 222000, China
| | | | - Yi Liang
- Corresponding authors. E-mail: ; ;
| |
Collapse
|
8
|
González-de-Peredo AV, Vázquez-Espinosa M, Espada-Bellido E, Ferreiro-González M, Carrera C, Barbero GF, Palma M. Development of Optimized Ultrasound-Assisted Extraction Methods for the Recovery of Total Phenolic Compounds and Anthocyanins from Onion Bulbs. Antioxidants (Basel) 2021; 10:antiox10111755. [PMID: 34829626 PMCID: PMC8614850 DOI: 10.3390/antiox10111755] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 10/27/2021] [Accepted: 11/01/2021] [Indexed: 02/02/2023] Open
Abstract
Allium cepa L. is one of the most abundant vegetable crops worldwide. In addition to its versatile culinary uses, onion also exhibits quite interesting medicinal uses. Bulbs have a high content of bioactive compounds that are beneficial for human health. This study intends to develop and optimize two appropriate ultrasound-assisted methods for the extraction of the phenolic compounds and anthocyanins present in red onion. A response surface methodology was employed and, specifically, a Box–Behnken design, for the optimization of the methods. The optimal conditions for the extraction of the phenolic compounds were the follows: 53% MeOH as solvent, pH 2.6, 60 °C temperature, 30.1% amplitude, 0.43 s cycle, and 0.2:11 g sample/mL solvent ratio. On the other hand, the optimal conditions for the anthocyanins were as follows: 57% MeOH as solvent, pH 2, 60 °C temperature, 90% amplitude, 0.64 s cycle, and 0.2:15 g sample/mL solvent ratio. Both methods presented high repeatability and intermediate precision, as well as short extraction times with good recovery yields. These results illustrate that the use of ultrasound-assisted extraction, when properly optimized, is suitable for the extraction and quantification of the compounds of interest to determine and improve the quality of the raw material and its subproducts for consumers.
Collapse
|
9
|
Feng B, Wang X, Chen S, Zhang Y, Su X, Song S. Transcriptome analysis and genetic diversity of Allium victorialis germplasms from the Changbai Mountains. MITOCHONDRIAL DNA PART B-RESOURCES 2021; 6:2915-2923. [PMID: 34553046 PMCID: PMC8451692 DOI: 10.1080/23802359.2021.1972857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
The Changbai Mountains comprise one of the main distribution areas of A. victorialis in China, and this species is endangered owing to habitat changes and overexploitation. However, A. victorialis germplasms have not been systematically collected and studied. The aims of this study were to obtain some detailed genetic information, analyze the genetic diversity, and further promote the protection of A. victorialis germplasms from the Changbai Mountains. Transcriptomic analysis was performed with six A. victorialis samples collected from the Changbai Mountains. At least 146,759 genes for each sample were obtained after performing de novo assembly of the RNA-seq data, and at least 92% of these genes were found to have only one mRNA isoform. These sequences and their functional annotations provided a large-scale genetic resource of this species. Phylogenetic analysis showed that A. victorialis was genetically distant from some related species, e.g. Allium sativum, Allium fistulosum, and Allium cepa, but genetically close to Allium tuberosum. The two A. victorialis var. listera samples were phylogenetically separated from the other four samples, and these two samples should be regarded as Allium listera. In addition, two KASP markers for discriminating the Dongfeng samples from the other four A. victorialis samples were successfully developed. This study lays the foundation for future studies on the genetic diversity and evolution of Allium species, as well as for the conservation of A. victorialis germplasms from the Changbai Mountains and other populations of this species.
Collapse
Affiliation(s)
- Bo Feng
- Jilin Agricultural University, Changchun, Jilin, China.,Jilin Provincial Academy of Forestry Sciences, Changchun, Jilin, China
| | - Xiufeng Wang
- Jilin Academy of Vegetable and Flower Sciences, Changchun, Jilin, China
| | - Shanshan Chen
- Jilin Agricultural University, Changchun, Jilin, China
| | - Yue Zhang
- Jilin Academy of Vegetable and Flower Sciences, Changchun, Jilin, China
| | - Xuejiao Su
- Jilin Agricultural University, Changchun, Jilin, China
| | - Shuyao Song
- Jilin Agricultural University, Changchun, Jilin, China
| |
Collapse
|
10
|
Alamar MC, Anastasiadi M, Lopez-Cobollo R, Bennett MH, Thompson AJ, Turnbull CG, Mohareb F, Terry LA. Transcriptome and phytohormone changes associated with ethylene-induced onion bulb dormancy. POSTHARVEST BIOLOGY AND TECHNOLOGY 2020; 168:111267. [PMID: 33012993 PMCID: PMC7398043 DOI: 10.1016/j.postharvbio.2020.111267] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Control of dormancy and sprouting in onion bulbs is commercially important for postharvest management. Although ethylene application is sometimes used to extend dormancy, the underlying mechanisms regulating dormancy transition remain unclear. Since the sprout leaves emerge from the bulb baseplate, we used this tissue to assess the impact of ethylene treatment and storage time on the hormone profile and the transcriptome. Reads from 30 libraries were assembled and annotated, with 94,840 unigenes retained after filtering. The de novo transcriptome assembly was of high quality and continuity (N50: 1809 bp, GC content: 36.21 %), and was used to analyse differential expression and Gene Onotologies. Across two years, applied ethylene resulted in delayed dormancy break and reduced post-dormancy sprout vigour. Ethylene supplementation enhanced endogenous ethylene production and caused a transient climacteric-like increase in respiration. Significant changes in hormone and associated transcript profiles occurred through storage and in response to ethylene. In particular, abscisic acid (ABA) and its metabolite phaseic acid (PA) increased under ethylene during the longer dormancy period; however, cytokinin increases observed during storage appeared largely independent of ethylene treatment. Several hormone-related transcripts showed differential expression over time and/or in response to ethylene. Expression of ethylene biosynthesis (ACO), receptor (EIN4) and transcription factor (EIL3) genes were modified by ethylene, as were ABA biosynthesis genes such NCED, and cytokinin biosynthesis genes such as LOG and CKX. We conclude that ethylene substantially modifies expression of genes in several phytohormone pathways, and some of these changes may underlie the dormancy-extending effects of exogenous ethylene.
Collapse
Affiliation(s)
| | | | - Rosa Lopez-Cobollo
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Mark H. Bennett
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | | | | | - Fady Mohareb
- Cranfield University, Bedfordshire, MK43 0AL, UK
| | - Leon A. Terry
- Cranfield University, Bedfordshire, MK43 0AL, UK
- Corresponding author.
| |
Collapse
|
11
|
Khandagale K, Krishna R, Roylawar P, Ade AB, Benke A, Shinde B, Singh M, Gawande SJ, Rai A. Omics approaches in Allium research: Progress and way ahead. PeerJ 2020; 8:e9824. [PMID: 32974094 PMCID: PMC7486827 DOI: 10.7717/peerj.9824] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 08/05/2020] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND The genus Allium (Family: Amaryllidaceae) is an economically important group of crops cultivated worldwide for their use as a vegetable and spices. Alliums are also well known for their nutraceutical properties. Among alliums, onion, garlic, leek, and chives cultivated worldwide. Despite their substantial economic and medicinal importance, the genome sequence of any of the Allium is not available, probably due to their large genome sizes. Recently evolved omics technologies are highly efficient and robust in elucidating molecular mechanisms of several complex life processes in plants. Omics technologies, such as genomics, transcriptomics, proteomics, metabolomics, metagenomics, etc. have the potential to open new avenues in research and improvement of allium crops where genome sequence information is limited. A significant amount of data has been generated using these technologies for various Allium species; it will help in understanding the key traits in Allium crops such as flowering, bulb development, flavonoid biosynthesis, male sterility and stress tolerance at molecular and metabolite level. This information will ultimately assist us in speeding up the breeding in Allium crops. METHOD In the present review, major omics approaches, and their progress, as well as potential applications in Allium crops, could be discussed in detail. RESULTS Here, we have discussed the recent progress made in Allium research using omics technologies such as genomics, transcriptomics, micro RNAs, proteomics, metabolomics, and metagenomics. These omics interventions have been used in alliums for marker discovery, the study of the biotic and abiotic stress response, male sterility, organ development, flavonoid and bulb color, micro RNA discovery, and microbiome associated with Allium crops. Further, we also emphasized the integrated use of these omics platforms for a better understanding of the complex molecular mechanisms to speed up the breeding programs for better cultivars. CONCLUSION All the information and literature provided in the present review throws light on the progress and potential of omics platforms in the research of Allium crops. We also mentioned a few research areas in Allium crops that need to be explored using omics technologies to get more insight. Overall, alliums are an under-studied group of plants, and thus, there is tremendous scope and need for research in Allium species.
Collapse
Affiliation(s)
- Kiran Khandagale
- Department of Botany, Savitribai Phule Pune University, Pune, Maharashtra, India
| | - Ram Krishna
- ICAR-Directorate of Onion and Garlic Research, Rajgurunagar, India
| | - Praveen Roylawar
- Department of Botany, S. N. Arts, D. J. M. Commerce and B. N. S. Science College, Sangamner, India
| | - Avinash B. Ade
- Department of Botany, Savitribai Phule Pune University, Pune, Maharashtra, India
| | - Ashwini Benke
- ICAR-Directorate of Onion and Garlic Research, Rajgurunagar, India
| | - Bharat Shinde
- Vidya Pratishthans’s Arts Science and commerce college, Baramati, India
| | - Major Singh
- ICAR-Directorate of Onion and Garlic Research, Rajgurunagar, India
| | | | - Ashutosh Rai
- Crop Improvement, ICAR-Indian Institute of Vegetable Research, Varanasi, India
| |
Collapse
|
12
|
Ghodke P, Khandagale K, Thangasamy A, Kulkarni A, Narwade N, Shirsat D, Randive P, Roylawar P, Singh I, Gawande SJ, Mahajan V, Solanke A, Singh M. Comparative transcriptome analyses in contrasting onion (Allium cepa L.) genotypes for drought stress. PLoS One 2020; 15:e0237457. [PMID: 32780764 PMCID: PMC7418993 DOI: 10.1371/journal.pone.0237457] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 07/27/2020] [Indexed: 01/12/2023] Open
Abstract
Onion (Allium cepa L.) is an important vegetable crop widely grown for diverse culinary and nutraceutical properties. Being a shallow-rooted plant, it is prone to drought. In the present study, transcriptome sequencing of drought-tolerant (1656) and drought-sensitive (1627) onion genotypes was performed to elucidate the molecular basis of differential response to drought stress. A total of 123206 and 139252 transcripts (average transcript length: 690 bases) were generated after assembly for 1656 and 1627, respectively. Differential gene expression analyses revealed upregulation and downregulation of 1189 and 1180 genes, respectively, in 1656, whereas in 1627, upregulation and downregulation of 872 and 1292 genes, respectively, was observed. Genes encoding transcription factors, cytochrome P450, membrane transporters, and flavonoids, and those related to carbohydrate metabolism were found to exhibit a differential expression behavior in the tolerant and susceptible genotypes. The information generated can facilitate a better understanding of molecular mechanisms underlying drought response in onion.
Collapse
Affiliation(s)
- Pranjali Ghodke
- ICAR-Directorate of Onion and Garlic Research, Rajgurunagar, Pune, India
| | - Kiran Khandagale
- ICAR-Directorate of Onion and Garlic Research, Rajgurunagar, Pune, India
| | - A. Thangasamy
- ICAR-Directorate of Onion and Garlic Research, Rajgurunagar, Pune, India
| | - Abhijeet Kulkarni
- Department of Bioinformatics, Savitribai Phule Pune University, Pune, India
| | - Nitin Narwade
- Department of Bioinformatics, Savitribai Phule Pune University, Pune, India
| | - Dhananjay Shirsat
- ICAR-Directorate of Onion and Garlic Research, Rajgurunagar, Pune, India
| | - Pragati Randive
- ICAR-Directorate of Onion and Garlic Research, Rajgurunagar, Pune, India
| | - Praveen Roylawar
- S. N. Arts, D. J. M. Commerce and B. N. S. Science College, Sangamner, India
| | - Isha Singh
- School of Biomolecular Science, University College, Dublin, Ireland
| | - Suresh J. Gawande
- ICAR-Directorate of Onion and Garlic Research, Rajgurunagar, Pune, India
| | - Vijay Mahajan
- ICAR-Directorate of Onion and Garlic Research, Rajgurunagar, Pune, India
| | | | - Major Singh
- ICAR-Directorate of Onion and Garlic Research, Rajgurunagar, Pune, India
| |
Collapse
|
13
|
Atif MJ, Ahanger MA, Amin B, Ghani MI, Ali M, Cheng Z. Mechanism of Allium Crops Bulb Enlargement in Response to Photoperiod: A Review. Int J Mol Sci 2020; 21:E1325. [PMID: 32079095 PMCID: PMC7072895 DOI: 10.3390/ijms21041325] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/07/2020] [Accepted: 02/13/2020] [Indexed: 12/17/2022] Open
Abstract
The photoperiod marks a varied set of behaviors in plants, including bulbing. Bulbing is controlled by inner signals, which can be stimulated or subdued by the ecological environment. It had been broadly stated that phytohormones control the plant development, and they are considered to play a significant part in the bulb formation. The past decade has witnessed significant progress in understanding and advancement about the photoperiodic initiation of bulbing in plants. A noticeable query is to what degree the mechanisms discovered in bulb crops are also shared by other species and what other qualities are also dependent on photoperiod. The FLOWERING LOCUS T (FT) protein has a role in flowering; however, the FT genes were afterward reported to play further functions in other biological developments (e.g., bulbing). This is predominantly applicable in photoperiodic regulation, where the FT genes seem to have experienced significant development at the practical level and play a novel part in the switch of bulb formation in Alliums. The neofunctionalization of FT homologs in the photoperiodic environments detects these proteins as a new class of primary signaling mechanisms that control the growth and organogenesis in these agronomic-related species. In the present review, we report the underlying mechanisms regulating the photoperiodic-mediated bulb enlargement in Allium species. Therefore, the present review aims to systematically review the published literature on the bulbing mechanism of Allium crops in response to photoperiod. We also provide evidence showing that the bulbing transitions are controlled by phytohormones signaling and FT-like paralogues that respond to independent environmental cues (photoperiod), and we also show that an autorelay mechanism involving FT modulates the expression of the bulbing-control gene. Although a large number of studies have been conducted, several limitations and research gaps have been identified that need to be addressed in future studies.
Collapse
Affiliation(s)
- Muhammad Jawaad Atif
- Department of Vegetable Science, College of Horticulture, Northwest A&F University, Yangling 712100, China; (M.J.A.); (B.A.); (M.I.G.); (M.A.)
- Vegetable Crops Program, National Agricultural Research Centre, Islamabad 44000, Pakistan
| | | | - Bakht Amin
- Department of Vegetable Science, College of Horticulture, Northwest A&F University, Yangling 712100, China; (M.J.A.); (B.A.); (M.I.G.); (M.A.)
| | - Muhammad Imran Ghani
- Department of Vegetable Science, College of Horticulture, Northwest A&F University, Yangling 712100, China; (M.J.A.); (B.A.); (M.I.G.); (M.A.)
- College of Natural Resource and Environment, Northwest A&F University, Yangling 712100, China
| | - Muhammad Ali
- Department of Vegetable Science, College of Horticulture, Northwest A&F University, Yangling 712100, China; (M.J.A.); (B.A.); (M.I.G.); (M.A.)
| | - Zhihui Cheng
- Department of Vegetable Science, College of Horticulture, Northwest A&F University, Yangling 712100, China; (M.J.A.); (B.A.); (M.I.G.); (M.A.)
| |
Collapse
|
14
|
Li Z, Vickrey TL, McNally MG, Sato SJ, Clemente TE, Mower JP. Assessing Anthocyanin Biosynthesis in Solanaceae as a Model Pathway for Secondary Metabolism. Genes (Basel) 2019; 10:genes10080559. [PMID: 31349565 PMCID: PMC6723469 DOI: 10.3390/genes10080559] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/19/2019] [Accepted: 07/23/2019] [Indexed: 01/25/2023] Open
Abstract
Solanaceae have played an important role in elucidating how flower color is specified by the flavonoid biosynthesis pathway (FBP), which produces anthocyanins and other secondary metabolites. With well-established reverse genetics tools and rich genomic resources, Solanaceae provide a robust framework to examine the diversification of this well-studied pathway over short evolutionary timescales and to evaluate the predictability of genetic perturbation on pathway flux. Genomes of eight Solanaceae species, nine related asterids, and four rosids were mined to evaluate variation in copy number of the suite of FBP enzymes involved in anthocyanin biosynthesis. Comparison of annotation sources indicated that the NCBI annotation pipeline generated more and longer FBP annotations on average than genome-specific annotation pipelines. The pattern of diversification of each enzyme among asterids was assessed by phylogenetic analysis, showing that the CHS superfamily encompasses a large paralogous family of ancient and recent duplicates, whereas other FBP enzymes have diversified via recent duplications in particular lineages. Heterologous expression of a pansy F3′5′H gene in tobacco changed flower color from pink to dark purple, demonstrating that anthocyanin production can be predictably modified using reverse genetics. These results suggest that the Solanaceae FBP could be an ideal system to model genotype-to-phenotype interactions for secondary metabolism.
Collapse
Affiliation(s)
- Zuo Li
- Center for Plant Science Innovation, University of Nebraska, Lincoln, NE 68588, USA
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Trisha L Vickrey
- Center for Plant Science Innovation, University of Nebraska, Lincoln, NE 68588, USA
- Department of Chemistry, University of Nebraska, Lincoln, NE 68588, USA
| | - Moira G McNally
- Center for Plant Science Innovation, University of Nebraska, Lincoln, NE 68588, USA
- Biology Department, University of Jamestown, Jamestown, ND 58405, USA
| | - Shirley J Sato
- Center for Plant Science Innovation, University of Nebraska, Lincoln, NE 68588, USA
- Center for Biotechnology, University of Nebraska, Lincoln, NE 68588, USA
| | - Tom Elmo Clemente
- Center for Plant Science Innovation, University of Nebraska, Lincoln, NE 68588, USA
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE 68583, USA
| | - Jeffrey P Mower
- Center for Plant Science Innovation, University of Nebraska, Lincoln, NE 68588, USA.
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE 68583, USA.
| |
Collapse
|