1
|
van Dieën JH, Bruijn SM, Afschrift M. Assessment of stabilizing feedback control of walking: A tutorial. J Electromyogr Kinesiol 2024; 78:102915. [PMID: 38936234 DOI: 10.1016/j.jelekin.2024.102915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 06/12/2024] [Accepted: 06/17/2024] [Indexed: 06/29/2024] Open
Abstract
Walking without falling requires stabilization of the trajectory of the body center of mass relative to the base of support. Model studies suggest that this requires active, feedback control, i.e., the nervous system must process sensory information on the state of the body to generate descending motor commands to the muscles to stabilize walking, especially in the mediolateral direction. Stabilization of bipedal gait is challenging and can be impaired in older and diseased individuals. In this tutorial, we illustrate how gait analysis can be used to assess the stabilizing feedback control of gait. We present methods ranging from those that require limited input data (e.g. position data of markers placed on the feet and pelvis only) to those that require full-body kinematics and electromyography. Analyses range from simple kinematics analyses to inverse dynamics. These methods assess stabilizing feedback control of human walking at three levels: 1) the level of center of mass movement and horizontal ground reaction forces, 2) the level of center of mass movement and foot placement and 3) the level of center of mass movement and the joint moments or muscle activity. We show how these can be calculated and provide a GitHub repository (https://github.com/VU-HMS/Tutorial-stabilizing-walking) which contains open access Matlab and Python code to calculate these. Finally, we discuss what information on feedback control can be learned from each of these.
Collapse
Affiliation(s)
- Jaap H van Dieën
- Department of Human Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, the Netherlands.
| | - Sjoerd M Bruijn
- Department of Human Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, the Netherlands
| | - Maarten Afschrift
- Department of Human Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, the Netherlands
| |
Collapse
|
2
|
Jakubowski KL, Ludvig D, Lee SSM, Perreault EJ. Aging Does Not Alter Ankle, Muscle, and Tendon Stiffness at Low Loads Relevant to Stance. Ann Biomed Eng 2024; 52:2556-2568. [PMID: 38816561 DOI: 10.1007/s10439-024-03547-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 05/10/2024] [Indexed: 06/01/2024]
Abstract
Older adults have difficulty maintaining balance when faced with postural disturbances, a task that is influenced by the stiffness of the triceps surae and Achilles tendon. Age-related changes in Achilles tendon stiffness have been reported at matched levels of effort, but measures typically have not been made at matched loads, which is important due to age-dependent changes in strength. Moreover, there has been limited investigation into age-dependent changes in muscle stiffness. Here, we investigate how age alters muscle and tendon stiffness and their influence on ankle stiffness. We hypothesized that age-related changes in muscle and tendon contribute to reduced ankle stiffness in older adults and evaluated this hypothesis when either load or effort were matched. We used B-mode ultrasound with joint-level perturbations to quantify ankle, muscle, and tendon stiffness across a range of loads and efforts in seventeen healthy younger and older adults. At matched loads relevant to standing and the stance phase of walking, there was no significant difference in ankle, muscle, or tendon stiffness between groups (all p > 0.13). However, at matched effort, older adults exhibited a significant decrease in ankle (27%; p = 0.008), muscle (37%; p = 0.02), and tendon stiffness (22%; p = 0.03) at 30% of maximum effort. This is consistent with our finding that older adults were 36% weaker than younger adults in plantarflexion (p = 0.004). Together, these results indicate that, at the loads tested in this study, there are no age-dependent changes in the mechanical properties of muscle or tendon, only differences in strength that result in altered ankle, muscle, and tendon stiffness at matched levels of effort.
Collapse
Affiliation(s)
- Kristen L Jakubowski
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA.
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Tech, Atlanta, GA, USA.
- Shirley Ryan AbilityLab, Chicago, IL, USA.
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, USA.
| | - Daniel Ludvig
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
- Shirley Ryan AbilityLab, Chicago, IL, USA
| | - Sabrina S M Lee
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, Canada
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, USA
| | - Eric J Perreault
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
- Shirley Ryan AbilityLab, Chicago, IL, USA
- Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, IL, USA
| |
Collapse
|
3
|
Baček T, Sun M, Liu H, Chen Z, Manzie C, Burdet E, Kulić D, Oetomo D, Tan Y. A biomechanics and energetics dataset of neurotypical adults walking with and without kinematic constraints. Sci Data 2024; 11:646. [PMID: 38890343 PMCID: PMC11189391 DOI: 10.1038/s41597-024-03444-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 05/30/2024] [Indexed: 06/20/2024] Open
Abstract
Numerous studies have explored the biomechanics and energetics of human walking, offering valuable insights into how we walk. However, prior studies focused on changing external factors (e.g., walking speed) and examined group averages and trends rather than individual adaptations in the presence of internal constraints (e.g., injury-related muscle weakness). To address this gap, this paper presents an open dataset of human walking biomechanics and energetics collected from 21 neurotypical young adults. To investigate the effects of internal constraints (reduced joint range of motion), the participants are both the control group (free walking) and the intervention group (constrained walking - left knee fully extended using a passive orthosis). Each subject walked on a dual-belt treadmill at three speeds (0.4, 0.8, and 1.1 m/s) and five step frequencies ( - 10% to 20% of their preferred frequency) for a total of 30 test conditions. The dataset includes raw and segmented data featuring ground reaction forces, joint motion, muscle activity, and metabolic data. Additionally, a sample code is provided for basic data manipulation and visualisation.
Collapse
Affiliation(s)
- Tomislav Baček
- The University of Melbourne, Department of Mechanical Engineering, 3010, Melbourne, Australia.
| | - Mingrui Sun
- The University of Melbourne, Department of Mechanical Engineering, 3010, Melbourne, Australia
| | - Hengchang Liu
- The University of Melbourne, Department of Mechanical Engineering, 3010, Melbourne, Australia
| | - Zhongxiang Chen
- Monash University, Faculty of Engineering, 3800, Melbourne, Australia
| | - Chris Manzie
- The University of Melbourne, Department of Electrical and Electronic Engineering, 3010, Melbourne, Australia
| | - Etienne Burdet
- Imperial College London, Department of Bioengineering, London, United Kingdom
| | - Dana Kulić
- Monash University, Faculty of Engineering, 3800, Melbourne, Australia
| | - Denny Oetomo
- The University of Melbourne, Department of Mechanical Engineering, 3010, Melbourne, Australia
| | - Ying Tan
- The University of Melbourne, Department of Mechanical Engineering, 3010, Melbourne, Australia
| |
Collapse
|
4
|
Howard KE, Reimold NK, Knight HL, Embry AE, Knapp HA, Agne AA, Jacobs CJ, Dean JC. Relationships between mediolateral step modulation and clinical balance measures in people with chronic stroke. Gait Posture 2024; 109:9-14. [PMID: 38237508 PMCID: PMC10939767 DOI: 10.1016/j.gaitpost.2024.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 12/18/2023] [Accepted: 01/13/2024] [Indexed: 03/16/2024]
Abstract
BACKGROUND Many people with chronic stroke (PwCS) exhibit walking balance deficits linked to increased fall risk and decreased balance confidence. One potential contributor to these balance deficits is a decreased ability to modulate mediolateral stepping behavior based on pelvis motion. This behavior, hereby termed mediolateral step modulation, is thought to be an important balance strategy but can be disrupted in PwCS. RESEARCH QUESTION Are biomechanical metrics of mediolateral step modulation related to common clinical balance measures among PwCS? METHODS In this cross-sectional study, 93 PwCS walked on a treadmill at their self-selected speed for 3-minutes. We quantified mediolateral step modulation for both paretic and non-paretic steps by calculating partial correlations between mediolateral pelvis displacement at the start of each step and step width (ρSW), mediolateral foot placement relative to the pelvis (ρFP), and final mediolateral location of the pelvis (ρPD) at the end of the step. We also assessed several common clinical balance measures (Functional Gait Assessment [FGA], Activities-specific Balance Confidence scale [ABC], self-reported fear of falling and fall history). We performed Spearman correlations to relate each biomechanical metric of step modulation to FGA and ABC scores. We performed Wilcoxon rank sum tests to compare each biomechanical metric between individuals with and without a fear of falling and a history of falls. RESULTS Only ρFP for paretic steps was significantly related to all four clinical balance measures; higher paretic ρFP values tended to be observed in participants with higher FGA scores, with higher ABC scores, without a fear of falling and without a history of falls. However, the strength of each of these relationships was only weak to moderate. SIGNIFICANCE While the present results do not provide insight into causality, they justify future work investigating whether interventions designed to increase ρFP can improve clinical measures of post-stroke balance in parallel.
Collapse
Affiliation(s)
- Keith E Howard
- College of Health Professions; Medical University of South Carolina, USA
| | - Nicholas K Reimold
- College of Health Professions; Medical University of South Carolina, USA
| | - Heather L Knight
- College of Health Professions; Medical University of South Carolina, USA
| | - Aaron E Embry
- College of Health Professions; Medical University of South Carolina, USA; Ralph H. Johnson Veterans Affairs Health Care System, Charleston, SC, USA
| | - Holly A Knapp
- College of Health Professions; Medical University of South Carolina, USA
| | - Alexa A Agne
- College of Health Professions; Medical University of South Carolina, USA
| | - Camden J Jacobs
- College of Health Professions; Medical University of South Carolina, USA
| | - Jesse C Dean
- College of Health Professions; Medical University of South Carolina, USA; Ralph H. Johnson Veterans Affairs Health Care System, Charleston, SC, USA.
| |
Collapse
|
5
|
Park J, Nam K, Yun J, Moon J, Ryu J, Park S, Yang S, Nasirzadeh A, Nam W, Ramadurai S, Kim M, Lee G. Effect of hip abduction assistance on metabolic cost and balance during human walking. Sci Robot 2023; 8:eade0876. [PMID: 37878687 DOI: 10.1126/scirobotics.ade0876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 09/27/2023] [Indexed: 10/27/2023]
Abstract
The use of wearable robots to provide walking assistance has rapidly grown over the past decade, with notable advances made in robot design and control methods toward reducing physical effort while performing an activity. The reduction in walking effort has mainly been achieved by assisting forward progression in the sagittal plane. Human gait, however, is a complex movement that combines motions in three planes, not only the sagittal but also the transverse and frontal planes. In the frontal plane, the hip joint plays a key role in gait, including balance. However, wearable robots targeting this motion have rarely been investigated. In this study, we developed a hip abduction assistance wearable robot by formulating the hypothesis that assistance that mimics the biological hip abduction moment or power could reduce the metabolic cost of walking and affect the dynamic balance. We found that hip abduction assistance with a biological moment second peak mimic profile reduced the metabolic cost of walking by 11.6% compared with the normal walking condition. The assistance also influenced balance-related parameters, including the margin of stability. Hip abduction assistance influenced the center-of-mass movement in the mediolateral direction. When the robot assistance was applied as the center of mass moved toward the opposite leg, the assistance replaced some of the efforts that would have otherwise been provided by the human. This indicates that hip abduction assistance can reduce physical effort during human walking while influencing balance.
Collapse
Affiliation(s)
- Juneil Park
- School of Mechanical Engineering, Chung-Ang University, 06974 Seoul, South Korea
| | - Kimoon Nam
- School of Mechanical Engineering, Chung-Ang University, 06974 Seoul, South Korea
| | - Juseok Yun
- School of Mechanical Engineering, Chung-Ang University, 06974 Seoul, South Korea
- HUROTICS Inc., 06974 Seoul, South Korea
| | - JunYoung Moon
- School of Mechanical Engineering, Chung-Ang University, 06974 Seoul, South Korea
| | - JaeWook Ryu
- School of Mechanical Engineering, Chung-Ang University, 06974 Seoul, South Korea
| | - Sungjin Park
- School of Mechanical Engineering, Chung-Ang University, 06974 Seoul, South Korea
| | - Seungtae Yang
- School of Mechanical Engineering, Chung-Ang University, 06974 Seoul, South Korea
- HUROTICS Inc., 06974 Seoul, South Korea
| | - Alireza Nasirzadeh
- School of Mechanical Engineering, Chung-Ang University, 06974 Seoul, South Korea
| | - Woochul Nam
- School of Mechanical Engineering, Chung-Ang University, 06974 Seoul, South Korea
| | - Sruthi Ramadurai
- Mechanical and Industrial Engineering, University of Illinois Chicago, Chicago, IL, USA
| | - Myunghee Kim
- Mechanical and Industrial Engineering, University of Illinois Chicago, Chicago, IL, USA
| | - Giuk Lee
- School of Mechanical Engineering, Chung-Ang University, 06974 Seoul, South Korea
| |
Collapse
|
6
|
Zhu Y, Huang J, Ma X, Chen WM. A neuromusculoskeletal modelling approach to bilateral hip mechanics due to unexpected lateral perturbations during overground walking. BMC Musculoskelet Disord 2023; 24:775. [PMID: 37784076 PMCID: PMC10544490 DOI: 10.1186/s12891-023-06897-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 09/19/2023] [Indexed: 10/04/2023] Open
Abstract
BACKGROUND Current studies on how external perturbations impact gait dynamics have primarily focused on the changes in the body's center of mass (CoM) during treadmill walking. The biomechanical responses, in particular to the multi-planar hip joint coordination, following perturbations in overground walking conditions are not completely known. METHODS In this study, a customized gait-perturbing device was designed to impose controlled lateral forces onto the subject's pelvis during overground walking. The biomechanical responses of bilateral hips were simulated by subject-specific neuromusculoskeletal models (NMS) driven by in-vivo motion data, which were further evaluated by statistical parameter mapping (SPM) and muscle coactivation index (CI) analysis. The validity of the subject-specific NMS was confirmed through comparison with measured surface electromyographic signals. RESULTS Following perturbations, the sagittal-plane hip motions were reduced for the leading leg by 18.39° and for the trailing leg by 8.23°, while motions in the frontal and transverse plane were increased, with increased hip abduction for the leading leg by 10.71° and external rotation by 9.06°, respectively. For the hip kinetics, both the bilateral hip joints showed increased abductor moments during midstance (20%-30% gait cycle) and decreased values during terminal stance (38%-48%). Muscle CI in both sagittal and frontal planes was significantly decreased for perturbed walking (p < 0.05), except for the leading leg in the sagittal plane. CONCLUSION The distinctive phase-dependent biomechanical response of the hip demonstrated its coordinated control strategy for balance recovery due to gait perturbations. And the changes in muscle CI suggested a potential mechanism for rapid and precise control of foot placement through modulation of joint stiffness properties. These findings obtained during actual overground perturbation conditions could have implications for the improved design of wearable robotic devices for balance assistance.
Collapse
Affiliation(s)
- Yunchao Zhu
- Academy for Engineering and Technology, Fudan University, 220 Handan Rd., Shanghai, 200433, China
| | - Ji Huang
- Academy for Engineering and Technology, Fudan University, 220 Handan Rd., Shanghai, 200433, China
| | - Xin Ma
- National Clinical Research Center for Geriatric Diseases (NCRCGD), Huashan Hospital Affiliated to Fudan University, No.12, Wulumuqi Middle Rd., Shanghai, 200040, China
| | - Wen-Ming Chen
- Academy for Engineering and Technology, Fudan University, 220 Handan Rd., Shanghai, 200433, China.
| |
Collapse
|
7
|
van Mierlo M, Abma M, Vlutters M, van Asseldonk EHF, van der Kooij H. Effect of perturbation timing on recovering whole-body angular momentum during very slow walking. Hum Mov Sci 2023; 91:103138. [PMID: 37573800 DOI: 10.1016/j.humov.2023.103138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/29/2023] [Accepted: 08/04/2023] [Indexed: 08/15/2023]
Abstract
Humans prioritize regulation of the whole-body angular momentum (WBAM) during walking. When perturbed, modulations of the moment arm of the ground reaction force (GRF) with respect to the centre of mass (CoM) assist in recovering WBAM. For sagittal-plane perturbations of the WBAM given at toe off right (TOR), horizontal GRF modulations and not centre of pressure (COP) modulations were mainly responsible for these moment arm modulations. In this study, we aimed to find whether the instant of perturbations affects the contributions of the GRF and/or CoP modulations to the moment arm changes, in balance recovery during very slow walking. Perturbations of the WBAM were applied at three different instants of the gait cycle, namely at TOR, mid-swing (MS), and heel strike right (HSR). Forces equal to 16% of the participant's body weight were applied simultaneously to the pelvis and upper body in opposite directions for a duration of 150 ms. The results showed that the perturbation onset did not significantly affect the GRF moment arm modulation. However, the contribution of both the CoP and GRF modulation to the moment arm changes did change depending on the perturbation instant. After perturbations resulting in a forward pitch of the trunk a larger contribution was present from the CoP modulation when perturbations were given at MS or HSR, compared to perturbations at TOR. After backward pitch perturbations given at MS and HSR the CoP modulation counteracted the moment arm required for WBAM recovery. Therefore a larger contribution from the horizontal GRF was needed to direct the GRF posterior to the CoM and recover WBAM. In conclusion, the onset of WBAM perturbations does not affect the moment arm modulation needed for WBAM recovery, while it does affect the way CoP and GRF modulation contribute to that recovery.
Collapse
Affiliation(s)
- M van Mierlo
- Department of Biomechanical Engineering, University of Twente, Enschede, The Netherlands.
| | - M Abma
- Department of Biomechanical Engineering, University of Twente, Enschede, The Netherlands
| | - M Vlutters
- Department of Biomechanical Engineering, University of Twente, Enschede, The Netherlands
| | - E H F van Asseldonk
- Department of Biomechanical Engineering, University of Twente, Enschede, The Netherlands
| | - H van der Kooij
- Department of Biomechanical Engineering, University of Twente, Enschede, The Netherlands; Department of Biomechanical Engineering, Delft University of Technology, Delft, The Netherlands
| |
Collapse
|
8
|
Eveld M, van der Kooij H, King S, Goldfarb M, Zelik K, van Asseldonk E. Center-of-Mass Based foot Placement in Stumble Recovery. IEEE Int Conf Rehabil Robot 2023; 2023:1-6. [PMID: 37941231 DOI: 10.1109/icorr58425.2023.10304704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Exploring how foot placement relates to center-of-mass kinematics after unexpected disturbances for healthy adults could improve our understanding of human balance as well as inform the design/control of assistive device interventions to reduce fall risk. Therefore, in this work a kinematic dataset of stumble recovery responses from seven healthy adults was analyzed to investigate the effects of stumble perturbations on COM state, and the COM state's relationship to various foot placement metrics. COM velocity excursion after trips was significantly higher than excursion for unperturbed swing phases, increasing linearly as the trip occurred later in swing phase. Step length/width and foot position at heel-strike after the trip both increased with COM velocity at heel-strike, though weaker fits for foot positions suggest priority to other strategies. Swing durations were substantially longer for tripped swing phases versus normal swing phases and increased with COM velocity. This is the first investigation of these relationships for stumble recovery, and their alignment (or lack thereof) with previous models provides insights into the control of balance for this common daily-life disturbance.
Collapse
|
9
|
Gaudio LA, Gonzalez-Vargas J, Sartori M, van der Kooij H. Subject-Specific and COM Acceleration-Enhanced Reflex Neuromuscular Model to Predict Ankle Responses in Perturbed Gait. IEEE Int Conf Rehabil Robot 2023; 2023:1-6. [PMID: 37941200 DOI: 10.1109/icorr58425.2023.10304748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Subject-specific musculoskeletal models generate more accurate joint torque estimates from electromyography (EMG) inputs in relation to experimentally obtained torques. Similarly, reflex Neuromuscular Models (NMMs) that employ COM states in addition to musculotendon information generate muscle activations to musculoskeletal models that better predict ankle torques during perturbed gait. In this study, the reflex NMM of locomotion of one subject is identified by employing an EMG-calibrated musculoskeletal model in unperturbed and perturbed gait. A COM acceleration-enhanced reflex NMM is identified. Subject-specific musculoskeletal models improve torque tracking of the ankle joint in unperturbed and perturbed conditions. COM acceleration-enhanced reflex NMM improves ankle torque tracking especially in early stance and during backward perturbation. Results found herein can guide the implementation of reflex controllers in active prosthetic and orthotic devices.
Collapse
|
10
|
Afschrift M, van Asseldonk E, van Mierlo M, Bayon C, Keemink A, D'Hondt L, van der Kooij H, De Groote F. Assisting walking balance using a bio-inspired exoskeleton controller. J Neuroeng Rehabil 2023; 20:82. [PMID: 37370175 DOI: 10.1186/s12984-023-01205-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 06/19/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND Balance control is important for mobility, yet exoskeleton research has mainly focused on improving metabolic energy efficiency. Here we present a biomimetic exoskeleton controller that supports walking balance and reduces muscle activity. METHODS Humans restore balance after a perturbation by adjusting activity of the muscles actuating the ankle in proportion to deviations from steady-state center of mass kinematics. We designed a controller that mimics the neural control of steady-state walking and the balance recovery responses to perturbations. This controller uses both feedback from ankle kinematics in accordance with an existing model and feedback from the center of mass velocity. Control parameters were estimated by fitting the experimental relation between kinematics and ankle moments observed in humans that were walking while being perturbed by push and pull perturbations. This identified model was implemented on a bilateral ankle exoskeleton. RESULTS Across twelve subjects, exoskeleton support reduced calf muscle activity in steady-state walking by 19% with respect to a minimal impedance controller (p < 0.001). Proportional feedback of the center of mass velocity improved balance support after perturbation. Muscle activity is reduced in response to push and pull perturbations by 10% (p = 0.006) and 16% (p < 0.001) and center of mass deviations by 9% (p = 0.026) and 18% (p = 0.002) with respect to the same controller without center of mass feedback. CONCLUSION Our control approach implemented on bilateral ankle exoskeletons can thus effectively support steady-state walking and balance control and therefore has the potential to improve mobility in balance-impaired individuals.
Collapse
Affiliation(s)
- M Afschrift
- Department of Mechanical Engineering, Robotics Core Lab of Flanders Make, KU Leuven, Leuven, Belgium.
- Department of Human Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| | - E van Asseldonk
- Department of Biomechanical Engineering, University of Twente, Enschede, The Netherlands
| | - M van Mierlo
- Department of Biomechanical Engineering, University of Twente, Enschede, The Netherlands
| | - C Bayon
- Department of Biomechanical Engineering, University of Twente, Enschede, The Netherlands
| | - A Keemink
- Department of Biomechanical Engineering, University of Twente, Enschede, The Netherlands
| | - L D'Hondt
- Department of Movement Sciences, KU Leuven, Leuven, Belgium
| | - H van der Kooij
- Department of Biomechanical Engineering, University of Twente, Enschede, The Netherlands
- Department of Biomechanical Engineering, Delft University of Technology, Delft, The Netherlands
| | - F De Groote
- Department of Movement Sciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
11
|
Jin J, van Dieën JH, Kistemaker D, Daffertshofer A, Bruijn SM. Does ankle push-off correct for errors in anterior-posterior foot placement relative to center-of-mass states? PeerJ 2023; 11:e15375. [PMID: 37273538 PMCID: PMC10234269 DOI: 10.7717/peerj.15375] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 04/18/2023] [Indexed: 06/06/2023] Open
Abstract
Understanding the mechanisms humans use to stabilize walking is vital for predicting falls in elderly. Modeling studies identified two potential mechanisms to stabilize gait in the anterior-posterior direction: foot placement control and ankle push-off control: foot placement depends on position and velocity of the center-of-mass (CoM) and push-off covaries with deviations between actual and predicted CoM trajectories. While both control mechanisms have been reported in humans, it is unknown whether especially the latter one is employed in unperturbed steady-state walking. Based on the finding of Wang and Srinivasan that foot placement deviates in the same direction as the CoM states in the preceding swing phase, and assuming that this covariance serves the role of stabilizing gait, the covariance between the CoM states and foot placement can be seen as a measure of foot placement accuracy. We subsequently interpreted the residual variance in foot placement from a linear regression model as "errors" that must be compensated, and investigated whether these foot placement errors were correlated to push-off kinetic time series of the subsequent double stance phase. We found ankle push-off torque to be correlated to the foot placement errors in 30 participants when walking at normal and slow speeds, with peak correlations over the double stance phase up to 0.39. Our study suggests that humans use a push-off strategy for correcting foot placement errors in steady-state walking.
Collapse
Affiliation(s)
- Jian Jin
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Jaap H. van Dieën
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Dinant Kistemaker
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Andreas Daffertshofer
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Institute of Brain and Behavior Amsterdam, Amsterdam, The Netherlands
| | - Sjoerd M. Bruijn
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Institute of Brain and Behavior Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
12
|
Bucklin MA, Deol J, Brown G, Perreault EJ, Gordon KE. Optimism persists when walking in unpredictable environments. Sci Rep 2023; 13:6853. [PMID: 37100839 PMCID: PMC10133317 DOI: 10.1038/s41598-023-33662-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 04/17/2023] [Indexed: 04/28/2023] Open
Abstract
Humans continuously modulate their control strategies during walking based on their ability to anticipate disturbances. However, how people adapt and use motor plans to create stable walking in unpredictable environments is not well understood. Our purpose was to investigate how people adapt motor plans when walking in a novel and unpredictable environment. We evaluated the whole-body center of mass (COM) trajectory of participants as they performed repetitions of a discrete goal-directed walking task during which a laterally-directed force field was applied to the COM. The force field was proportional in magnitude to forward walking velocity and randomly directed towards either the right or left each trial. We hypothesized that people would adapt a control strategy to reduce the COM lateral deviations created by the unpredictable force field. In support of our hypothesis, we found that with practice the magnitude of COM lateral deviation was reduced by 28% (force field left) and 44% (force field right). Participants adapted two distinct unilateral strategies, implemented regardless of if the force field was applied to the right or to the left, that collectively created a bilateral resistance to the unpredictable force field. These strategies included an anticipatory postural adjustment to resist against forces applied to the left, and a more lateral first step to resist against forces applied to the right. In addition, during catch trials when the force field was unexpectedly removed, participants exhibited trajectories similar to baseline trials. These findings were consistent with an impedance control strategy that provides a robust resistance to unpredictable perturbations. However, we also found evidence that participants made predictive adaptations in response to their immediate experience that persisted for three trials. Due to the unpredictable nature of the force field, this predictive strategy would sometimes result in greater lateral deviations when the prediction was incorrect. The presence of these competing control strategies may have long term benefits by allowing the nervous system to identify the best overall control strategy to use in a novel environment.
Collapse
Affiliation(s)
- Mary A Bucklin
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, 645 N. Michigan Ave, Suite 1100, Chicago, IL, 60611, USA.
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA.
| | - Jasjit Deol
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, 645 N. Michigan Ave, Suite 1100, Chicago, IL, 60611, USA
| | - Geoffrey Brown
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, 645 N. Michigan Ave, Suite 1100, Chicago, IL, 60611, USA
| | - Eric J Perreault
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
- Shirley Ryan Ability Lab, Chicago, IL, USA
- Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, IL, USA
| | - Keith E Gordon
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, 645 N. Michigan Ave, Suite 1100, Chicago, IL, 60611, USA
- Research Service, Edward Hines Jr. VA Hospital, Hines, IL, USA
| |
Collapse
|
13
|
van Mierlo M, Vlutters M, van Asseldonk EHF, van der Kooij H. Sagittal-plane balance perturbations during very slow walking: Strategies for recovering linear and angular momentum. J Biomech 2023; 152:111580. [PMID: 37058767 DOI: 10.1016/j.jbiomech.2023.111580] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 03/29/2023] [Accepted: 04/04/2023] [Indexed: 04/16/2023]
Abstract
Spatiotemporal gait characteristics change during very slow walking, a relevant speed considering individuals with movement disorders or using assistive devices. However, we lack insights in how very slow walking affects human balance control. Therefore, we aimed to identify how healthy individuals use balance strategies while walking very slow. Ten healthy participants walked on a treadmill at an average speed of 0.43ms-1, while being perturbed at toe off right by either perturbations of the whole-body linear momentum (WBLM) or angular momentum (WBAM). WBLM perturbations were given by a perturbation on the pelvis in forward or backward direction. The WBAM was perturbed by two simultaneous perturbations in opposite directions on the pelvis and upper body. The given perturbations had magnitudes of 4, 8, 12 and 16% of the participant's body weight, and lasted for 150ms. After perturbations of the WBLM the centre of pressure placement was modulated using the ankle joint, while keeping the moment arm of the ground reaction force (GRF) with respect to the centre of mass (CoM) small. After the perturbations of the WBAM a quick recovery was initiated, using the hip joint and adjusting the horizontal GRF to create a moment arm with respect to the CoM. These findings suggest no fundamental differences in the use of balance strategies at very slow walking compared to normal speeds. Still as the gait phases last longer, this time was exploited to counteract perturbations in the ongoing gait phase.
Collapse
Affiliation(s)
- M van Mierlo
- Department of Biomechanical Engineering, University of Twente, Enschede, The Netherlands.
| | - M Vlutters
- Department of Biomechanical Engineering, University of Twente, Enschede, The Netherlands
| | - E H F van Asseldonk
- Department of Biomechanical Engineering, University of Twente, Enschede, The Netherlands
| | - H van der Kooij
- Department of Biomechanical Engineering, University of Twente, Enschede, The Netherlands; Department of Biomechanical Engineering, Delft University of Technology, Delft, The Netherlands
| |
Collapse
|
14
|
Fallahtafti F, Bruijn S, Mohammadzadeh Gonabadi A, Sangtarashan M, Boron JB, Curtze C, Siu KC, Myers SA, Yentes J. Trunk Velocity Changes in Response to Physical Perturbations Are Potential Indicators of Gait Stability. SENSORS (BASEL, SWITZERLAND) 2023; 23:2833. [PMID: 36905037 PMCID: PMC10007351 DOI: 10.3390/s23052833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/03/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
Response to challenging situations is important to avoid falls, especially after medial perturbations, which require active control. There is a lack of evidence on the relationship between the trunk's motion in response to perturbations and gait stability. Eighteen healthy adults walked on a treadmill at three speeds while receiving perturbations of three magnitudes. Medial perturbations were applied by translating the walking platform to the right at left heel contact. Trunk velocity changes in response to the perturbation were calculated and divided into the initial and the recovery phases. Gait stability after a perturbation was assessed using the margin of stability (MOS) at the first heel contact, MOS mean, and standard deviation for the first five strides after the perturbation onset. Faster speed and smaller perturbations led to a lower deviation of trunk velocity from the steady state, which can be interpreted as an improvement in response to the perturbation. Recovery was quicker after small perturbations. The MOS mean was associated with the trunk's motion in response to perturbations during the initial phase. Increasing walking speed may increase resistance to perturbations, while increasing the magnitude of perturbation leads to greater trunk motions. MOS is a useful marker of resistance to perturbations.
Collapse
Affiliation(s)
- Farahnaz Fallahtafti
- Department of Biomechanics, University of Nebraska at Omaha, Omaha, NE 68182, USA
- VA Nebraska-Western Iowa Health Care System, Department of Veterans’ Affairs, Omaha, NE 68105, USA
| | - Sjoerd Bruijn
- Department of Human Movement Sciences, Faculty of Behavioral and Movement Sciences, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | | | - Mohammad Sangtarashan
- Department of Industrial Engineering, Amirkabir University of Technology, Tehran 15875, Iran
| | | | - Carolin Curtze
- Department of Biomechanics, University of Nebraska at Omaha, Omaha, NE 68182, USA
| | - Ka-Chun Siu
- Department of Health & Rehabilitation Sciences, Physical Therapy Program, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Sara A. Myers
- Department of Biomechanics, University of Nebraska at Omaha, Omaha, NE 68182, USA
- VA Nebraska-Western Iowa Health Care System, Department of Veterans’ Affairs, Omaha, NE 68105, USA
| | - Jennifer Yentes
- Department of Health & Rehabilitation Sciences, Physical Therapy Program, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Health & Kinesiology, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
15
|
Jabeen S, Baines PM, Harlaar J, Vallery H, Berry A. Reaction moments matter when designing lower-extremity robots for tripping recovery. PLoS One 2023; 18:e0280158. [PMID: 36809378 PMCID: PMC9942996 DOI: 10.1371/journal.pone.0280158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 12/21/2022] [Indexed: 02/23/2023] Open
Abstract
Balance recovery after tripping often requires an active adaptation of foot placement. Thus far, few attempts have been made to actively assist forward foot placement for balance recovery employing wearable devices. This study aims to explore the possibilities of active forward foot placement through two paradigms of actuation: assistive moments exerted with the reaction moments either internal or external to the human body, namely 'joint' moments and 'free' moments, respectively. Both paradigms can be applied to manipulate the motion of segments of the body (e.g., the shank or thigh), but joint actuators also exert opposing reaction moments on neighbouring body segments, altering posture and potentially inhibiting tripping recovery. We therefore hypothesised that a free moment paradigm is more effective in assisting balance recovery following tripping. The simulation software SCONE was used to simulate gait and tripping over various ground-fixed obstacles during the early swing phase. To aid forward foot placement, joint moments and free moments were applied either on the thigh to augment hip flexion or on the shank to augment knee extension. Two realizations of joint moments on the hip were simulated, with the reaction moment applied to either the pelvis or the contralateral thigh. The simulation results show that assisting hip flexion with either actuation paradigm on the thigh can result in full recovery of gait with a margin of stability and leg kinematics closely matching the unperturbed case. However, when assisting knee extension with moments on the shank, free moment effectively assist balance but joint moments with the reaction moment on the thigh do not. For joint moments assisting hip flexion, placement of the reaction moment on the contralateral thigh was more effective in achieving the desired limb dynamics than placing the reaction on the pelvis. Poor choice of placement of reaction moments may therefore have detrimental consequences for balance recovery, and removing them entirely (i.e., free moment) could be a more effective and reliable alternative. These results challenge conventional assumptions and may inform the design and development of a new generation of minimalistic wearable devices to promote balance during gait.
Collapse
Affiliation(s)
- Saher Jabeen
- Department of Biomechanical Engineering, Delft University of Technology, Delft, The Netherlands
| | - Patricia M. Baines
- Department of Biomechanical Engineering, Delft University of Technology, Delft, The Netherlands
| | - Jaap Harlaar
- Department of Biomechanical Engineering, Delft University of Technology, Delft, The Netherlands
- Department of Orthopedics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Heike Vallery
- Department of Biomechanical Engineering, Delft University of Technology, Delft, The Netherlands
- Department of Rehabilitation Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Andrew Berry
- Department of Biomechanical Engineering, Delft University of Technology, Delft, The Netherlands
- Department of Rehabilitation Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
16
|
Kobayashi T, Koh MWP, Jor A, Hisano G, Murata H, Ichimura D, Hobara H. Ground reaction forces during double limb stances while walking in individuals with unilateral transfemoral amputation. Front Bioeng Biotechnol 2023; 10:1041060. [PMID: 36727041 PMCID: PMC9885323 DOI: 10.3389/fbioe.2022.1041060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 12/28/2022] [Indexed: 01/13/2023] Open
Abstract
The asymmetrical gait of individuals with unilateral transfemoral amputation has been well documented. However, there is not a wealth of investigation into asymmetries during the double limb stance depending on whether the intact or prosthetic limb is leading. The first aim of this study was to compare ground reaction forces during the double limb stance of individuals with unilateral transfemoral amputation depending on whether their intact (initial double limb stance) or prosthetic (terminal double limb stance) limb was leading. The second aim of this study was to compare the asymmetry ratio of ground reaction forces during the double limb stance between individuals with and without unilateral transfemoral amputation. Thirty individuals, fifteen with unilateral transfemoral amputation and fifteen who were able-bodied, were recruited for this study. Each individual walked on an instrumented treadmill for 30 s at eight different speeds, ranging from 2.0 km/h to 5.5 km/h with .5 km/h increments. Ground reaction force parameters, temporal parameters, and asymmetry ratios of all parameters were computed from the data collected. The appropriate statistical analyses of all data based on normality were conducted to investigate the aims of this study. Significant main effects of speed, double limb stance, and their interactions were found for most parameters (p < .01 or p < .05). Individuals with unilateral transfemoral amputation spent a longer duration in terminal double limb stance than initial double limb stance at all tested speeds. They also experienced significantly higher peak vertical ground reaction force during initial double limb stance compared to terminal double limb stance with increasing walking speed. However, during terminal double limb stance, higher anteroposterior ground reaction force at initial contact was found when compared to initial double limb stance. Significant differences between individuals with unilateral transfemoral amputation and able-bodied individuals were found in asymmetry ratios for peak vertical ground reaction force, anteroposterior ground reaction force, anteroposterior shear, and mediolateral shear at all tested speeds. Asymmetrical loading persists in individuals with unilateral transfemoral amputation during double limb stance. Increasing walking speed increased ground reaction force loading asymmetries, which may make individuals with unilateral transfemoral amputation more susceptible to knee osteoarthritis or other musculoskeletal disorders. Further study is necessary to develop ideal gait strategies for the minimization of gait asymmetry in individuals with unilateral transfemoral amputation.
Collapse
Affiliation(s)
- Toshiki Kobayashi
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Mark W. P. Koh
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Abu Jor
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong, China,Department of Leather Engineering, Faculty of Mechanical Engineering, Khulna University of Engineering & Technology, Khulna, Bangladesh
| | - Genki Hisano
- Department of Systems and Control Engineering, Tokyo Institute of Technology, Tokyo, Japan,Research Fellow of Japan Society for the Promotion of Science (JSPS), Tokyo, Japan,Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology, Tokyo, Japan
| | - Hiroto Murata
- Department of Mechanical Engineering, Tokyo University of Science, Chiba, Japan
| | - Daisuke Ichimura
- Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology, Tokyo, Japan
| | - Hiroaki Hobara
- Faculty of Advanced Engineering, Tokyo University of Science, Tokyo, Japan,*Correspondence: Hiroaki Hobara,
| |
Collapse
|
17
|
Ren X, Lutter C, Kebbach M, Bruhn S, Bader R, Tischer T. Lower extremity joint compensatory effects during the first recovery step following slipping and stumbling perturbations in young and older subjects. BMC Geriatr 2022; 22:656. [PMID: 35948887 PMCID: PMC9367084 DOI: 10.1186/s12877-022-03354-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 07/29/2022] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The lower extremity may play a crucial role in compensating for gait perturbations. The study aimed to explore the mechanism of perturbation compensation by investigating the gait characteristics and lower extremity joint moment effects in young (YS) and older subjects (OS) during the first recovery gait following slipping (slipping_Rec1) and stumbling (stumbling_Rec1). METHOD An automatic perturbation-triggered program was developed using D-Flow software based on the Gait Real-time Analysis Interactive Lab to induce the two aforementioned perturbations. Marker trajectories and ground reaction forces were recorded from 15 healthy YS (age: 26.53 ± 3.04 years; body height: 1.73 ± 0.07 m; body mass: 66.81 ± 11.44 kg) and 15 healthy OS (age: 68.33 ± 3.29 years; body height: 1.76 ± 0.10 m; body mass: 81.13 ± 13.99 kg). The Human Body Model was used to compute the variables of interest. One-way analysis of variance and independent samples t-test statistical analyses were performed. RESULTS In slipping_Rec1 and stumbling_Rec1, the change in gait pattern was mainly reflected in a significant increase in step width, no alterations in step length and stance/swing ratio were revealed. Based on perturbed task specificity, lower extremity joint moments increased or decreased at specific phases of the gait cycle in both YS and OS in slipping_Rec1 and stumbling_Rec1 compared to normal gait. The two perturbed gaits reflected the respective compensatory requirements for the lower extremity joints, with both sagittal and frontal joint moments producing compensatory effects. The aging effect was not reflected in the gait pattern, but rather in the hip extension moment during the initial stance of slipping_Rec1. CONCLUSIONS Slipping appears to be more demanding for gait recovery than stumbling. Gait perturbation compensatory mechanisms for OS should concentrate on ankle strategy in the frontal plane and counter-rotation strategy around the hip.
Collapse
Affiliation(s)
- Xiping Ren
- College of Physical Education and Health Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321000, China.
- Biomechanics and Implant Technology Research Laboratory, Department of Orthopaedics, Rostock University Medical Centre, Doberaner Strasse 142, 18057, Rostock, Germany.
| | - Christoph Lutter
- Biomechanics and Implant Technology Research Laboratory, Department of Orthopaedics, Rostock University Medical Centre, Doberaner Strasse 142, 18057, Rostock, Germany
| | - Maeruan Kebbach
- Biomechanics and Implant Technology Research Laboratory, Department of Orthopaedics, Rostock University Medical Centre, Doberaner Strasse 142, 18057, Rostock, Germany
| | - Sven Bruhn
- Institute of Sport Science, University of Rostock, 18051, Rostock, Germany
| | - Rainer Bader
- Biomechanics and Implant Technology Research Laboratory, Department of Orthopaedics, Rostock University Medical Centre, Doberaner Strasse 142, 18057, Rostock, Germany
| | - Thomas Tischer
- Biomechanics and Implant Technology Research Laboratory, Department of Orthopaedics, Rostock University Medical Centre, Doberaner Strasse 142, 18057, Rostock, Germany
| |
Collapse
|
18
|
Shih KS, Hsu CC. Three-Dimensional Musculoskeletal Model of the Lower Extremity: Integration of Gait Analysis Data with Finite Element Analysis. J Med Biol Eng 2022. [DOI: 10.1007/s40846-022-00734-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
19
|
How Does Lower Limb Respond to Unexpected Balance Perturbations? New Insights from Synchronized Human Kinetics, Kinematics, Muscle Electromyography (EMG) and Mechanomyography (MMG) Data. BIOSENSORS 2022; 12:bios12060430. [PMID: 35735577 PMCID: PMC9220852 DOI: 10.3390/bios12060430] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/10/2022] [Accepted: 06/16/2022] [Indexed: 11/16/2022]
Abstract
Making rapid and proper compensatory postural adjustments is vital to prevent falls and fall-related injuries. This study aimed to investigate how, especially how rapidly, the multiple lower-limb muscles and joints would respond to the unexpected standing balance perturbations. Unexpected waist-pull perturbations with small, medium and large magnitudes were delivered to twelve healthy young adults from the anterior, posterior, medial and lateral directions. Electromyographical (EMG) and mechanomyographical (MMG) responses of eight dominant-leg muscles (i.e., hip abductor/adductors, hip flexor/extensor, knee flexor/extensor, and ankle dorsiflexor/plantarflexors) together with the lower-limb joint angle, moment, and power data were recorded. The onset latencies, time to peak, peak values, and/or rate of change of these signals were analyzed. Statistical analysis revealed that: (1) agonist muscles resisting the delivered perturbation had faster activation than the antagonist muscles; (2) ankle muscles showed the largest rate of activation among eight muscles following both anteroposterior and mediolateral perturbations; (3) lower-limb joint moments that complied with the perturbation had faster increase; and (4) larger perturbation magnitude tended to evoke a faster response in muscle activities, but not necessarily in joint kinetics/kinematics. These findings provided insights regarding the underlying mechanism and lower-limb muscle activities to maintain reactive standing balance in healthy young adults.
Collapse
|
20
|
Recovery from sagittal-plane whole body angular momentum perturbations during walking. J Biomech 2022; 141:111169. [DOI: 10.1016/j.jbiomech.2022.111169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/07/2022] [Accepted: 05/26/2022] [Indexed: 11/23/2022]
|
21
|
The Existence of Shared Muscle Synergies Underlying Perturbed and Unperturbed Gait Depends on Walking Speed. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12042135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Muscle synergy theory assumes that the central nervous system generates a wide range of complex motor outputs by recruiting muscle synergies with different strengths and timings. The current understanding is that a common set of muscle synergies underlies unperturbed as well as perturbed walking at self-selected speeds. However, it is not known whether this is the case for substantially slower walking. The aim of this study was to investigate whether a shared set of muscle synergies underlies balance recovery responses following inward- and outward-directed perturbations in the mediolateral direction at various perturbation onsets and walking speeds. Twelve healthy subjects walked at three walking speeds (0.4, 0.6, and 0.8 m/s) on a treadmill while perturbations were applied to the pelvis using the balance assessment robot. A set of sixteen EMG signals, i.e., eight muscles per leg, was measured and decomposed into muscle synergies and weighting curves using non-negative matrix factorization. The muscles included were left and right tibialis anterior, soleus, gastrocnemius medialis, gastrocnemius lateralis, rectus femoris, hamstring, gluteus medius, and gluteus maximus. In general, four muscle synergies were needed to adequately reconstruct the data. Muscle synergies were similar for unperturbed and perturbed walking at a high walking speed (0.8 m/s). However, the number of similar muscle synergies between perturbed and unperturbed walking was significantly lower for low walking speeds (0.4 and 0.6 m/s). These results indicate that shared muscle synergies underlying perturbed and unperturbed walking are less present during slow walking compared to fast walking.
Collapse
|
22
|
Bayón C, Keemink AQL, van Mierlo M, Rampeltshammer W, van der Kooij H, van Asseldonk EHF. Cooperative ankle-exoskeleton control can reduce effort to recover balance after unexpected disturbances during walking. J Neuroeng Rehabil 2022; 19:21. [PMID: 35172846 PMCID: PMC8851842 DOI: 10.1186/s12984-022-01000-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 02/02/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In the last two decades, lower-limb exoskeletons have been developed to assist human standing and locomotion. One of the ongoing challenges is the cooperation between the exoskeleton balance support and the wearer control. Here we present a cooperative ankle-exoskeleton control strategy to assist in balance recovery after unexpected disturbances during walking, which is inspired on human balance responses. METHODS We evaluated the novel controller in ten able-bodied participants wearing the ankle modules of the Symbitron exoskeleton. During walking, participants received unexpected forward pushes with different timing and magnitude at the pelvis level, while being supported (Exo-Assistance) or not (Exo-NoAssistance) by the robotic assistance provided by the controller. The effectiveness of the assistive strategy was assessed in terms of (1) controller performance (Detection Delay, Joint Angles, and Exerted Ankle Torques), (2) analysis of effort (integral of normalized Muscle Activity after perturbation onset); and (3) Analysis of center of mass COM kinematics (relative maximum COM Motion, Recovery Time and Margin of Stability) and spatio-temporal parameters (Step Length and Swing Time). RESULTS In general, the results show that when the controller was active, it was able to reduce participants' effort while keeping similar ability to counteract and withstand the balance disturbances. Significant reductions were found for soleus and gastrocnemius medialis activity of the stance leg when comparing Exo-Assistance and Exo-NoAssistance walking conditions. CONCLUSIONS The proposed controller was able to cooperate with the able-bodied participants in counteracting perturbations, contributing to the state-of-the-art of bio-inspired cooperative ankle exoskeleton controllers for supporting dynamic balance. In the future, this control strategy may be used in exoskeletons to support and improve balance control in users with motor disabilities.
Collapse
Affiliation(s)
- Cristina Bayón
- Department of Biomechanical Engineering, University of Twente, Enschede, The Netherlands
| | - Arvid Q. L. Keemink
- Department of Biomechanical Engineering, University of Twente, Enschede, The Netherlands
| | - Michelle van Mierlo
- Department of Biomechanical Engineering, University of Twente, Enschede, The Netherlands
| | | | - Herman van der Kooij
- Department of Biomechanical Engineering, University of Twente, Enschede, The Netherlands
- Department of BioMechanical Engineering, Delft University of Technology, Delft, The Netherlands
| | | |
Collapse
|
23
|
Li J, Huang HJ. Small directional treadmill perturbations induce differential gait stability adaptation. J Neurophysiol 2022; 127:38-55. [PMID: 34851745 PMCID: PMC8721900 DOI: 10.1152/jn.00091.2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Introducing unexpected perturbations to challenge gait stability is an effective
approach to investigate balance control strategies. Little is known about the
extent to which people can respond to small perturbations during walking. This
study aimed to determine how subjects adapted gait stability to multidirectional
perturbations with small magnitudes applied on a stride-by-stride basis. Ten
healthy young subjects walked on a treadmill that either briefly decelerated
belt speed (“stick”), accelerated belt speed
(“slip”), or shifted the platform medial-laterally at right leg
mid-stance. We quantified gait stability adaptation in both anterior-posterior
and medial-lateral directions using margin of stability and its components, base
of support, and extrapolated center of mass. Gait stability was disrupted upon
initially experiencing the small perturbations as margin of stability decreased
in the stick, slip, and medial shift perturbations and increased in the lateral
shift perturbation. Gait stability metrics were generally disrupted more for
perturbations in the coincident direction. Subjects employed both feedback and
feedforward strategies in response to the small perturbations, but mostly used
feedback strategies during adaptation. Subjects primarily used base of support
(foot placement) control in the lateral shift perturbation and extrapolated
center of mass control in the slip and medial shift perturbations. These
findings provide new knowledge about the extent of gait stability adaptation to
small magnitude perturbations applied on a stride-by-stride basis and reveal
potential new approaches for balance training interventions to target foot
placement and center of mass control. NEW & NOTEWORTHY Little is known about if and how humans can
adapt to small magnitude perturbations experienced on a stride-by-stride basis
during walking. Here, we show that even small perturbations disrupted gait
stability and that subjects could still adapt their reactive balance control.
Depending on the perturbation direction, subjects might prefer adjusting their
foot placement over their center of mass and vice versa. These findings could
help potentially tune balance training to target specific aspects of
balance.
Collapse
Affiliation(s)
- Jinfeng Li
- Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, Florida
| | - Helen J Huang
- Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, Florida.,Disability, Aging, and Technology (DAT) Cluster, University of Central Florida, Orlando, Florida.,Bionic Materials, Implants, and Interfaces (Biionix) Cluster, University of Central Florida, Orlando, Florida
| |
Collapse
|
24
|
Keemink AQL, Brug TJH, van Asseldonk EHF, Wu AR, van der Kooij H. Whole Body Center of Mass Feedback in a Reflex-Based Neuromuscular Model Predicts Ankle Strategy During Perturbed Walking. IEEE Trans Neural Syst Rehabil Eng 2021; 29:2521-2529. [PMID: 34847033 DOI: 10.1109/tnsre.2021.3131366] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Active prosthetic and orthotic devices have the potential to increase quality of life for individuals with impaired mobility. However, more research into human-like control methods is needed to create seamless interaction between device and user. In forward simulations the reflex-based neuromuscular model (RNM) by Song and Geyer shows promising similarities with real human gait in unperturbed conditions. The goal of this work was to validate and, if needed, extend the RNM to reproduce human kinematics and kinetics during walking in unperturbed and perturbed conditions. The RNM was optimized to reproduce joint torque, calculated with inverse dynamics, from kinematic and force data of unperturbed and perturbed treadmill walking of able-bodied human subjects. Torques generated by the RNM matched closely with torques found from inverse dynamics analysis on human data for unperturbed walking. However, for perturbed walking the modulation of the ankle torque in the RNM was opposite to the modulation observed in humans. Therefore, the RNM was extended with a control module that activates and inhibits muscles around the ankle of the stance leg, based on changes in whole body center of mass velocity. The added module improves the ability of the RNM to replicate human ankle torque response in response to perturbations. This reflex-based neuromuscular model with whole body center of mass velocity feedback can reproduce gait kinetics of unperturbed and perturbed gait, and as such holds promise as a basis for advanced controllers of prosthetic and orthotic devices.
Collapse
|
25
|
Olenšek A, Zadravec M, Burger H, Matjačić Z. Dynamic balancing responses in unilateral transtibial amputees following outward-directed perturbations during slow treadmill walking differ considerably for amputated and non-amputated side. J Neuroeng Rehabil 2021; 18:123. [PMID: 34332595 PMCID: PMC8325816 DOI: 10.1186/s12984-021-00914-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 07/19/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Due to disrupted motor and proprioceptive function, lower limb amputation imposes considerable challenges associated with balance and greatly increases risk of falling in presence of perturbations during walking. The aim of this study was to investigate dynamic balancing responses in unilateral transtibial amputees when they were subjected to perturbing pushes to the pelvis in outward direction at the time of foot strike on their non-amputated and amputated side during slow walking. METHODS Fourteen subjects with unilateral transtibial amputation and nine control subjects participated in the study. They were subjected to perturbations that were delivered to the pelvis at the time of foot strike of either the left or right leg. We recorded trajectories of center of pressure and center of mass, durations of in-stance and stepping periods as well as ground reaction forces. Statistical analysis was performed to determine significant differences in dynamic balancing responses between control subjects and subjects with amputation when subjected to outward-directed perturbation upon entering stance phases on their non-amputated or amputated sides. RESULTS When outward-directed perturbations were delivered at the time of foot strike of the non-amputated leg, subjects with amputation were able to modulate center of pressure and ground reaction force similarly as control subjects which indicates application of in-stance balancing strategies. On the other hand, there was a complete lack of in-stance response when perturbations were delivered when the amputated leg entered the stance phase. Subjects with amputations instead used the stepping strategy and adjusted placement of the non-amputated leg in the ensuing stance phase to make a cross-step. Such response resulted in significantly larger displacement of center of mass. CONCLUSIONS Results of this study suggest that due to the absence of the COP modulation mechanism, which is normally supplied by ankle motor function, people with unilateral transtibial amputation are compelled to choose the stepping strategy over in-stance strategy when they are subjected to outward-directed perturbation on the amputated side. However, the stepping response is less efficient than in-stance response.
Collapse
Affiliation(s)
- Andrej Olenšek
- University Rehabilitation Institute, Linhartova 51, 1000, Ljubljana, Slovenia.
| | - Matjaž Zadravec
- University Rehabilitation Institute, Linhartova 51, 1000, Ljubljana, Slovenia
| | - Helena Burger
- University Rehabilitation Institute, Linhartova 51, 1000, Ljubljana, Slovenia
| | - Zlatko Matjačić
- University Rehabilitation Institute, Linhartova 51, 1000, Ljubljana, Slovenia
| |
Collapse
|
26
|
van Mierlo M, Vlutters M, van Asseldonk EHF, van der Kooij H. Centre of pressure modulations in double support effectively counteract anteroposterior perturbations during gait. J Biomech 2021; 126:110637. [PMID: 34325123 DOI: 10.1016/j.jbiomech.2021.110637] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 04/24/2021] [Accepted: 05/31/2021] [Indexed: 11/24/2022]
Abstract
Centre of mass (CoM) motion during human balance recovery is largely influenced by the ground reaction force (GRF) and the centre of pressure (CoP). During gait, foot placement creates a region of possible CoP locations in the following double support (DS). This study aims to increase insight into how humans modulate the CoP during DS, and which CoP modulations are theoretically possible to maintain balance in the sagittal plane. Three variables sufficient to describe the shape, length and duration of the DS CoP trajectory of the total GRF, were assessed in perturbed human walking. To counteract the forward perturbations, braking was required and all CoP variables showed modulations correlated to the observed change in CoM velocity over the DS phase. These correlations were absent after backward perturbations, when only little propulsion was needed to counteract the perturbation. Using a linearized inverted pendulum model we could explore how the observed parameter modulations are effective in controlling the CoM. The distance the CoP travels forward and the instant the leading leg was loaded largely affected the CoM velocity, while the duration mainly affected the CoM position. The simulations also showed that various combinations of CoP parameters can reach a desired CoM position and velocity at the end of DS, and that even a full recovery in the sagittal plane within DS would theoretically have been possible. However, the human subjects did not exploit the therefore required CoP modulations. Overall, modulating the CoP trajectory in DS does effectively contributes to balance recovery.
Collapse
Affiliation(s)
- M van Mierlo
- Department of Biomechanical Engineering, University of Twente, Enschede, The Netherlands.
| | - M Vlutters
- Department of Biomechanical Engineering, University of Twente, Enschede, The Netherlands
| | - E H F van Asseldonk
- Department of Biomechanical Engineering, University of Twente, Enschede, The Netherlands
| | - H van der Kooij
- Department of Biomechanical Engineering, University of Twente, Enschede, The Netherlands; Department of Biomechanical Engineering, Delft University of Technology, Delft, The Netherlands
| |
Collapse
|
27
|
Afschrift M, De Groote F, Jonkers I. Similar sensorimotor transformations control balance during standing and walking. PLoS Comput Biol 2021; 17:e1008369. [PMID: 34170903 PMCID: PMC8266079 DOI: 10.1371/journal.pcbi.1008369] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 07/08/2021] [Accepted: 05/24/2021] [Indexed: 01/24/2023] Open
Abstract
Standing and walking balance control in humans relies on the transformation of sensory information to motor commands that drive muscles. Here, we evaluated whether sensorimotor transformations underlying walking balance control can be described by task-level center of mass kinematics feedback similar to standing balance control. We found that delayed linear feedback of center of mass position and velocity, but not delayed linear feedback from ankle angles and angular velocities, can explain reactive ankle muscle activity and joint moments in response to perturbations of walking across protocols (discrete and continuous platform translations and discrete pelvis pushes). Feedback gains were modulated during the gait cycle and decreased with walking speed. Our results thus suggest that similar task-level variables, i.e. center of mass position and velocity, are controlled across standing and walking but that feedback gains are modulated during gait to accommodate changes in body configuration during the gait cycle and in stability with walking speed. These findings have important implications for modelling the neuromechanics of human balance control and for biomimetic control of wearable robotic devices. The feedback mechanisms we identified can be used to extend the current neuromechanical models that lack balance control mechanisms for the ankle joint. When using these models in the control of wearable robotic devices, we believe that this will facilitate shared control of balance between the user and the robotic device. The stability of human standing and walking is remarkable, given that from a mechanical point of view standing and walking are highly unstable and therefore require well-coordinated control actions from the central nervous system. The nervous system continuously receives information on the state of the body through sensory inputs, which is processed to generate descending motor commands to the muscles. It remains, however, unclear how the central nervous system uses information from multiple sensors to control walking balance. In standing balance, such sensorimotor transformations have been studied. When standing balance is perturbed, previous studies suggest that the central nervous system estimates the movement of the whole body center of mass to activate muscles and control balance. Here, we investigated whether the same sensorimotor transformations underlie control of walking balance. We found that changes in muscle activity and ankle moments in response to perturbations of walking balance were indeed proportional to center of mass movement. These findings suggest that common processes underlie control of standing and walking balance. Our work is significant because it captures the result of complex underlying neural processes in a simple relation between the body’s center of mass movement and corrective joint moments that can be implemented in the control of prostheses and exoskeletons to support balance control in a human-like manner.
Collapse
Affiliation(s)
- Maarten Afschrift
- Department of Mechanical Engineering, Robotics Core Lab of Flanders Make, KU Leuven, Belgium
- * E-mail:
| | | | - Ilse Jonkers
- Department of Movement Sciences, KU Leuven, Belgium
| |
Collapse
|
28
|
Koh K, Park YS, Park DW, Shim JK. Dance training improves the CNS's ability to utilize the redundant degrees of freedom of the whole body. Sci Rep 2020; 10:22197. [PMID: 33335153 PMCID: PMC7747644 DOI: 10.1038/s41598-020-79081-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 11/30/2020] [Indexed: 11/09/2022] Open
Abstract
Professional dancers demonstrate an amazing ability to control their balance. However, little is known about how they coordinate their body segments for such superior control. In this study, we investigated how dancers coordinate body segments when a physical perturbation is given to their body. A custom-made machine was used to provide a short pulling impulse at the waist in the anterior direction to ten dancers and ten non-dancers. We used Uncontrolled Manifold analysis to quantify the variability in the task-relevant space and task-irrelevant space within the multi-dimensional space made up of individual segments’ centers of mass with a velocity adjustment. The dancers demonstrated greater utilization of redundant degrees of freedom (DoFs) supported by the greater task-irrelevant variability as compared to non-dancers. These findings suggest that long-term specialized dance training can improve the central nervous system’s ability to utilize the redundant DoFs in the whole-body system.
Collapse
Affiliation(s)
- Kyung Koh
- Department of Kinesiology, University of Maryland, College Park, MD, USA.,Department of Physical Therapy and Rehabilitation Science, University of Maryland, Baltimore, MD, USA
| | - Yang Sun Park
- Department of Sports Welfare, Korea National University of Transportation, Chungcheongbuk-do, South Korea.
| | - Da Won Park
- Department of Kinesiology, Seoul National University, Seoul, South Korea
| | - Jae Kun Shim
- Department of Kinesiology, University of Maryland, College Park, MD, USA. .,Department of Mechanical Engineering, Kyung Hee University, Yongin-Si, Gyeonggi-do, South Korea. .,Neuroscience and Cognitive Science Program, University of Maryland, College Park, MD, USA. .,Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA.
| |
Collapse
|
29
|
Agreement of Gait Events Detection during Treadmill Backward Walking by Kinematic Data and Inertial Motion Units. SENSORS 2020; 20:s20216331. [PMID: 33171972 PMCID: PMC7664179 DOI: 10.3390/s20216331] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/03/2020] [Accepted: 11/04/2020] [Indexed: 12/17/2022]
Abstract
Backward walking (BW) is being increasingly used in neurologic and orthopedic rehabilitation as well as in sports to promote balance control as it provides a unique challenge to the sensorimotor control system. The identification of initial foot contact (IC) and terminal foot contact (TC) events is crucial for gait analysis. Data of optical motion capture (OMC) kinematics and inertial motion units (IMUs) are commonly used to detect gait events during forward walking (FW). However, the agreement between such methods during BW has not been investigated. In this study, the OMC kinematics and inertial data of 10 healthy young adults were recorded during BW and FW on a treadmill at different speeds. Gait events were measured using both kinematics and inertial data and then evaluated for agreement. Excellent reliability (Interclass Correlation > 0.9) was achieved for the identification of both IC and TC. The absolute differences between methods during BW were 18.5 ± 18.3 and 20.4 ± 15.2 ms for IC and TC, respectively, compared to 9.1 ± 9.6 and 10.0 ± 14.9 for IC and TC, respectively, during FW. The high levels of agreement between methods indicate that both may be used for some applications of BW gait analysis.
Collapse
|
30
|
Elkarif V, Kandel L, Rand D, Schwartz I, Greenberg A, Portnoy S. Kinematics following gait perturbation in adults with knee osteoarthritis: Scheduled versus not scheduled for knee arthroplasty. Gait Posture 2020; 81:144-152. [PMID: 32888553 DOI: 10.1016/j.gaitpost.2020.07.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 07/16/2020] [Accepted: 07/18/2020] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To compare recovery kinematics following trip-simulated perturbation during gait between three groups: adults without knee Osteoarthritis (OA) and adults with OA, scheduled and not scheduled for Total Knee Replacement (TKR). METHODS People with OA scheduled for TKR (TKR group; N = 19) and not scheduled (NTKR group; N = 17) were age-matched with People without OA (N = 19). Outcome measures included: joint range of motion (ROM), Timed Up and Go (TUG), joint pain levels, Oxford score, Instrumental Activities of Daily Living Questionnaire, and the Activities-specific Balance Confidence Scale. Also, spatiotemporal gait parameters and joint kinematics were recorded during perturbed and unperturbed gait. The perturbed gait data were normalized by unperturbed gait data. RESULTS There were no differences between the two OA groups in the four questionnaire scores and joint ROM. The TUG score of the TKR group was higher than that of the NTKR group. There were no statistically significant between-group differences in the normalized spatiotemporal parameters. The OA groups showed statistically significant lower anterior pelvic tilt ranges and higher maximal hip adduction of the contralateral limb compared to the Non-OA group. When the contralateral limb was perturbed, the TKR group showed significantly lower pelvic rotation range compared to the NTKR and Non-OA groups. When the OA limb was perturbed, the maximal hip flexion of the injured limb was significantly lower and the maximal knee flexion higher in the OA groups compared with the Non-OA group. CONCLUSION The recovery strategy from trip-simulated perturbation of individuals with OA differs from that of individuals without OA. This may emphasize the importance of devising a treatment plan that focuses on improving balance and reactions to gait perturbation.
Collapse
Affiliation(s)
- Vicktoria Elkarif
- Department of Occupational Therapy, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Leonid Kandel
- Department of Orthopaedics Department, Hadassah Medical Center, Mount Scopus, Jerusalem, Israel
| | - Debbie Rand
- Department of Occupational Therapy, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Isabella Schwartz
- Department of Physical and Medicine Rehabilitation, Hadassah Medical Center, Mount Scopus, Jerusalem, Israel
| | - Alexander Greenberg
- Department of Orthopaedics Department, Hadassah Medical Center, Mount Scopus, Jerusalem, Israel
| | - Sigal Portnoy
- Department of Occupational Therapy, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
31
|
Matjačić Z, Zadravec M, Olenšek A. Biomechanics of In-Stance Balancing Responses Following Outward-Directed Perturbation to the Pelvis During Very Slow Treadmill Walking Show Complex and Well-Orchestrated Reaction of Central Nervous System. Front Bioeng Biotechnol 2020; 8:884. [PMID: 32850738 PMCID: PMC7399078 DOI: 10.3389/fbioe.2020.00884] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 07/09/2020] [Indexed: 11/13/2022] Open
Abstract
Multiple strategies may be used when counteracting loss of balance during walking. Placing the foot onto a new location is not efficient when walking speed is very low. Instead medio-lateral displacement of center-of-pressure, rotation of body segments to produce a lateral ground-reaction-force, and pronounced braking of movement in the plane of progression is used. It is, however, presently not known in what way these in-stance balancing strategies are interrelated. Twelve healthy subjects walked very slowly on an instrumented treadmill and received outward-directed pushes to the waist. We created experimental conditions where the use of stepping strategy to recover balance following an outward push was minimized by appropriately selecting the amplitude and timing of perturbation. Our experimental results showed that in the first part of the response the principal strategy used to counteract the effect of a perturbing push was a short but substantial increase in lateral ground-reaction-force. Concomitant slowing of the movement and related anterior displacement of center-of-pressure enabled lateral displacement of center-of-pressure which was, together with a short but substantial increase in vertical ground-reaction-force, instrumental in reducing the inevitable increase of whole-body angular momentum in the frontal plane. However, anterior displacement of center-of-pressure and increased vertical ground-reaction-force also induced an increase in whole-body angular momentum in the sagittal plane. In the second part of the response the lateral ground-reaction-force was decreased with respect to unperturbed walking thus allowing for a decrease of whole-body angular momentum in the frontal plane. Additionally, an increase in anterior ground-reaction-force in the second part of the response propelled the center-of-mass in the direction of movement, thus re-synchronizing it with the frontal plane component of the center-of-mass as well as decreasing whole-body angular momentum in the sagittal plane. The results of this study show that use of in-stance balancing strategies counteracts the effect a perturbing push imposed on the center-of-mass, re-synchronizes the movement of center-of-mass in sagittal and frontal planes to the values seen in unperturbed walking and maintains control of whole-body angular momentum in both frontal and sagittal planes.
Collapse
Affiliation(s)
- Zlatko Matjačić
- Research and Development Unit, University Rehabilitation Institute Republic of Slovenia, Ljubljana, Slovenia
| | | | | |
Collapse
|
32
|
Zadravec M, Olenšek A, Rudolf M, Bizovičar N, Goljar N, Matjačić Z. Assessment of dynamic balancing responses following perturbations during slow walking in relation to clinical outcome measures for high-functioning post-stroke subjects. J Neuroeng Rehabil 2020; 17:85. [PMID: 32615990 PMCID: PMC7330998 DOI: 10.1186/s12984-020-00710-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 06/23/2020] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Generating appropriate balancing reactions in response to unexpected loss of balance during walking is important to prevent falls. The purpose of this study was to assess dynamic balancing responses following pushes to the pelvis in groups of post-stroke and healthy subjects. METHODS Forty-one post-stroke subjects and forty-three healthy subjects participated in the study. Dynamic balancing responses to perturbations triggered at heel strike of the left or right leg, directed in the forward, backward, inward and outward directions during slow treadmill walking were assessed. Responses of the healthy group provided reference values used to classify responses of the post-stroke group into two subgroups; one within the reference responses ("inside" subgroup) and the other that falls out ("outside" subgroup). A battery of selected clinical outcome measures (6-Minute Walk Test, 10-Meter Walk Test, Timed-Up-and-Go test, Four Square Step Test, Functional Gait Assessment, Functional Independence Measure and One-legged stance test) was additionally assessed in the post-stroke group. RESULTS The "inside" subgroup of post-stroke subjects was able to appropriately modulate centre-of-pressure and ground-reaction-force both under the impaired and non-impaired leg in response to perturbations. The "outside" subgroup of post-stroke subjects showed limited modulation of centre-of-pressure and ground-reaction-force under the impaired leg; instead stepping strategy was used in which the non-impaired leg was placed such as to make a longer step (forward perturbation), to make a shorter step (backward perturbation) or to make a cross-step (outward perturbation). Consequently, peak centre-of-mass displacements following perturbations were significantly higher in the "outside" subgroup compared to the "inside" subgroup. Responses in both subgroups following inward perturbations did not differ. Majority of clinical outcome measures moderately correlated with the peak centre-of-mass displacements for forward perturbations and exhibited weak correlations for other perturbation directions. CONCLUSIONS Substantial number of post-stroke subjects, that were considered to be independent walkers, have reduced capabilities to execute appropriate balancing responses following perturbations commencing on the hemiparetic leg and may thus benefit from perturbation-based training. Timed-Up-and-Go and Functional Independence Measure tests may provide an indication on the abilities of each subject to counteract unexpected loss of balance. However, a reliable assessment should be done through perturbation-based measures.
Collapse
Affiliation(s)
- Matjaž Zadravec
- University rehabilitation institute Republic of Slovenia, Linhartova 51, SI-1000, Ljubljana, Slovenia
| | - Andrej Olenšek
- University rehabilitation institute Republic of Slovenia, Linhartova 51, SI-1000, Ljubljana, Slovenia
| | - Marko Rudolf
- University rehabilitation institute Republic of Slovenia, Linhartova 51, SI-1000, Ljubljana, Slovenia
| | - Nataša Bizovičar
- University rehabilitation institute Republic of Slovenia, Linhartova 51, SI-1000, Ljubljana, Slovenia
| | - Nika Goljar
- University rehabilitation institute Republic of Slovenia, Linhartova 51, SI-1000, Ljubljana, Slovenia
| | - Zlatko Matjačić
- University rehabilitation institute Republic of Slovenia, Linhartova 51, SI-1000, Ljubljana, Slovenia.
| |
Collapse
|
33
|
Cui C, Kulkarni A, Rietdyk S, Barbieri FA, Ambike S. Synergies in the ground reaction forces and moments during double support in curb negotiation in young and older adults. J Biomech 2020; 106:109837. [DOI: 10.1016/j.jbiomech.2020.109837] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/21/2020] [Accepted: 05/02/2020] [Indexed: 12/28/2022]
|
34
|
Zhang Y, Smeets JBJ, Brenner E, Verschueren S, Duysens J. Fast responses to stepping-target displacements when walking. J Physiol 2020; 598:1987-2000. [PMID: 32128815 PMCID: PMC7317495 DOI: 10.1113/jp278986] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 03/02/2020] [Indexed: 11/25/2022] Open
Abstract
Key points Goal‐directed arm movements can be adjusted at short latency to target shifts. We tested whether similar adjustments are present during walking on a treadmill with shifting stepping targets. Participants responded at short latency with an adequate gain to small shifts of the stepping targets. Movements of the feet during walking are controlled in a similar way to goal‐directed arm movements if balance is not violated.
Abstract It is well‐known that goal‐directed hand movements can be adjusted to small changes in target location with a latency of about 100 ms. We tested whether people make similar fast adjustments when a target location for foot placement changes slightly as they walk over a flat surface. Participants walked at 3 km/h on a treadmill on which stepping stones were projected. The stones were 50 cm apart in the walking direction. Every 5–8 steps, a stepping stone was unexpectedly displaced by 2.5 cm in the medio‐lateral direction. The displacement took place during the first half of the swing phase. We found fast adjustments of the foot trajectory, with a latency of about 155 ms, initiated by changes in muscle activation 123 ms after the perturbation. The responses corrected for about 80% of the perturbation. We conclude that goal‐directed movements of the foot are controlled in a similar way to those of the hand, thus also giving very fast adjustments. Goal‐directed arm movements can be adjusted at short latency to target shifts. We tested whether similar adjustments are present during walking on a treadmill with shifting stepping targets. Participants responded at short latency with an adequate gain to small shifts of the stepping targets. Movements of the feet during walking are controlled in a similar way to goal‐directed arm movements if balance is not violated.
Collapse
Affiliation(s)
- Yajie Zhang
- Department of Rehabilitation Sciences, FaBer, KU Leuven, Leuven, Belgium.,Department of Human Movement Sciences, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Jeroen B J Smeets
- Department of Human Movement Sciences, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Eli Brenner
- Department of Human Movement Sciences, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Sabine Verschueren
- Department of Rehabilitation Sciences, FaBer, KU Leuven, Leuven, Belgium
| | - Jacques Duysens
- Motor Control Laboratory, Movement Control and Neuroplasticity Research Group, FaBeR, KU Leuven, Leuven, Belgium
| |
Collapse
|
35
|
Abstract
Human walking speeds can be influenced by multiple factors, from energetic considerations to the time to reach a destination. Neurological deficits or lower-limb injuries can lead to slower walking speeds, and the recovery of able-bodied gait speed and behavior from impaired gait is considered an important rehabilitation goal. Because gait studies are typically performed at faster speeds, little normative data exists for very slow speeds (less than 0.6 ms[Formula: see text]). The purpose of our study was to investigate healthy gait mechanics at extremely slow walking speeds. We recorded kinematic and kinetic data from eight adult subjects walking at four slow speeds from 0.1 ms[Formula: see text] to 0.6 ms[Formula: see text] and at their self-selected speed. We found that known relations for spatiotemporal and work measures are still valid at very slow speeds. Trends derived from slow speeds largely provided reasonable estimates of gait measures at self-selected speeds. Our study helps enable valuable comparisons between able-bodied and impaired gait, including which pathological behaviors can be attributed to slow speeds and which to gait deficits. We also provide a slow walking dataset, which may serve as normative data for clinical evaluations and gait rehabilitative devices.
Collapse
|
36
|
Influence of Treadmill Speed and Perturbation Intensity on Selection of Balancing Strategies during Slow Walking Perturbed in the Frontal Plane. Appl Bionics Biomech 2019; 2019:1046459. [PMID: 31281413 PMCID: PMC6589317 DOI: 10.1155/2019/1046459] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 05/08/2019] [Accepted: 05/16/2019] [Indexed: 11/27/2022] Open
Abstract
Background Common understanding is that adequate foot placement (stepping strategy) is crucial in maintaining stability during walking at normal speed. The aim of this study was to investigate strategies that humans use to cope with lateral perturbations during very slow walking. Methods Ten healthy individuals underwent an experimental protocol whereby a set of perturbations directed inward (medially to a stance leg) and outward (laterally to a stance leg) of three intensities (F1 = 5%, F2 = 10%, and F3 = 15% of body weight), applied at three instances of a stance phase, were delivered in random order to the pelvis using a balance assessment robot while walking on a treadmill at three walking speeds (S1 = 0.4, S2 = 0.6, and S3 = 0.8 m/s). We analyzed the peak center of mass displacements; step length, step width, and step times; and the lateral component of ground reaction force for perturbations that were delivered at the beginning of the gait cycle. Results Responses after inward perturbations were similar at all tested speeds and consistently employed stepping strategy that was further facilitated by a shortened stance. Wider and shorter steps were applied with increased perturbation intensity. Responses following outward perturbations were more complex. At S1, hip strategy (impulse-like increase of mediolateral ground reaction force) augmented with ankle strategy (mediolateral shift of the center of pressure) mainly contributed to responses already during the stance phase. The stance duration was significantly longer for all perturbation intensities. At S2, the relative share of hip strategy was reduced while with increased perturbation intensity, stepping strategy was gradually added. The stance duration was significantly longer for F1 and F2. At S3, stepping strategy was mainly used while the duration of stance was similar to the one in unperturbed walking. Responses following both inward and outward perturbations at all speeds were characterized by temporary slowing down movement in a sagittal plane that was more pronounced with increased perturbation intensity. Conclusions This study provides novel insights into balancing strategies used at slower walking speeds which may be more relevant to understand the challenges of gait stability following perturbations in the frontal plane in clinical populations.
Collapse
|
37
|
Vlutters M, van Asseldonk EHF, van der Kooij H. Ankle muscle responses during perturbed walking with blocked ankle joints. J Neurophysiol 2019; 121:1711-1717. [PMID: 30864874 DOI: 10.1152/jn.00752.2018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The ankle joint muscles can contribute to balance during walking by modulating the center of pressure and ground reaction forces through an ankle moment. This is especially effective in the sagittal plane through ankle plantar- or dorsiflexion. If the ankle joints were to be physically blocked to make an ankle strategy ineffective, there would be no functional contribution of these muscles to balance during walking, nor would these muscles generate afferent output regarding ankle joint rotation. Consequently, ankle muscle activation for the purpose of balance control would be expected to disappear. We have performed an experiment in which subjects received anteroposterior pelvis perturbations during walking while their ankle joints could not contribute to the balance recovery. The latter was realized by physically blocking the ankle joints through a pair of modified ankle-foot orthoses. In this article we present the lower limb muscle activity responses in reaction to these perturbations. Of particular interest are the tibialis anterior and gastrocnemius medialis muscles, which could not contribute to the balance recovery through the ankle joint or encode muscle length changes caused by ankle joint rotation. Yet, these muscles showed long-latency responses, ~100 ms after perturbation onset. The response amplitudes were dependent on the perturbation magnitude and direction, as well as the state of the leg. The results imply that ankle muscle responses can be evoked without changes in proprioceptive information of those muscles through ankle rotation. This suggest a more centralized regulation of balance control, not strictly related to the ankle joint kinematics. NEW & NOTEWORTHY Walking human subjects received forward-backward perturbations at the pelvis while wearing "pin-shoes," a pair of modified ankle-foot orthoses that physically blocked ankle joint movement and reduced the base of support of each foot to a single point. The lower leg muscles showed long-latency perturbation-dependent activity changes, despite having no functional contributions to balance control through the ankle joint and not having been subjected to muscle length changes through ankle joint rotation.
Collapse
Affiliation(s)
- Mark Vlutters
- Department of Biomechanical Engineering, University of Twente , Enschede , The Netherlands
| | | | - Herman van der Kooij
- Department of Biomechanical Engineering, University of Twente , Enschede , The Netherlands
| |
Collapse
|
38
|
Farkhatdinov I, Ebert J, van Oort G, Vlutters M, van Asseldonk E, Burdet E. Assisting Human Balance in Standing With a Robotic Exoskeleton. IEEE Robot Autom Lett 2019. [DOI: 10.1109/lra.2018.2890671] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
39
|
Afschrift M, van Deursen R, De Groote F, Jonkers I. Increased use of stepping strategy in response to medio-lateral perturbations in the elderly relates to altered reactive tibialis anterior activity. Gait Posture 2019; 68:575-582. [PMID: 30654320 DOI: 10.1016/j.gaitpost.2019.01.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 10/26/2018] [Accepted: 01/09/2019] [Indexed: 02/02/2023]
Abstract
BACKGROUND The influence of aging on reactive control of balance during walking has been mainly investigated in the sagittal plane, whereas balance control in response to frontal plane perturbations is largely unexplored in the elderly. This is remarkable, given that walking mainly requires active control in the frontal plane. An extensive gait perturbation protocol was used to test whether reactive control of walking balance changes with aging and whether these changes are more pronounced in the frontal than in the sagittal plane. RESEARCH QUESTION Do alterations in reactive muscle activity cause an age-related shift in stepping strategy in response to perturbations in the frontal and sagittal planes during walking? METHOD A treadmill-based perturbation protocol imposed frontal and sagittal plane perturbations of different magnitudes during different phases of the gait cycle. Motion capture and electromyography measured the response to the different perturbations in a group of eighteen young and ten older adults. RESULTS Only for a small subset of the perturbations, reactive muscle activity and kinematic strategies differed between young and older subjects. When perturbation magnitude increased, the older adults relied more on a stepping strategy for inward directed frontal plane perturbations and for sagittal plane perturbation just before heelstrike. Tibialis anterior activity increased less in the older compared to the young subjects. Using simulations, we related tibialis anterior activity to backward and outward movement of the center of pressure in the stance foot and confirmed its contribution to the ankle strategy. We concluded that deficient tibialis anterior activity predisposes elderly to use stepping rather than lateral ankle strategies to control balance. SIGNIFICANCE Rehabilitation targets for fall prevention in elderly need to also focus on ankle muscle reactivity.
Collapse
|
40
|
Best AN, Martin JP, Li Q, Wu AR. Stepping behavior contributes little to balance control against continuous mediolateral trunk perturbations. J Exp Biol 2019; 222:jeb.212787. [DOI: 10.1242/jeb.212787] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 11/20/2019] [Indexed: 11/20/2022]
Abstract
Human bipedal gait is exceptionally stable, but the underlying strategies to maintain stability are unclear, especially in the frontal plane. Our study investigates balance strategies of healthy adults subjected to continuous mediolateral oscillations at the trunk during walking. We used a backpack with a passive inverted pendulum to create perturbations that were fixed, in-phase, or out-of-phase with subjects’ trunk. We evaluated subjects’ corrective strategies and whether they yielded equivalent stability, measured by the margin of stability and the local divergence exponent. The margin of stability measure quantified adjustments in step behavior relative to the centre of mass, and the local divergence exponent measure characterized the chaotic behavior of the system throughout the entire trial. Among the conditions, there was no significant difference in the step width. We found a higher margin of stability for the out-of-phase condition and the lowest local divergence exponent for the in-phase and the highest for the fixed condition. These results indicate that the in-phase condition was more stable with respect to fluctuations throughout gait cycles, and the out-of-phase condition was more stable in terms of foot placement relative to centre of mass. To maintain equivalent or greater gait stability, subjects elected to reduce the motion of their centre of mass rather than alter step width. The reduction in centre of mass motion without reduction in step width suggests direct control of the centre of mass to maintain stability was preferred over adjusting stepping behavior.
Collapse
Affiliation(s)
- Aaron N. Best
- Ingenuity Labs Research Institute, Department of Mechanical and Materials Engineering, Queen's University, Kingston K7L 3N6, Canada
| | - Jean-Paul Martin
- Ingenuity Labs Research Institute, Department of Mechanical and Materials Engineering, Queen's University, Kingston K7L 3N6, Canada
| | - Qingguo Li
- Ingenuity Labs Research Institute, Department of Mechanical and Materials Engineering, Queen's University, Kingston K7L 3N6, Canada
| | - Amy R. Wu
- Ingenuity Labs Research Institute, Department of Mechanical and Materials Engineering, Queen's University, Kingston K7L 3N6, Canada
| |
Collapse
|