1
|
Huang X, Gu C, Ran Q, Chen L, Tian S, Zhong M, Ren Z, Wang Q, Yang M, Ji J, Wan W, Huang J, Zhang H, Jin X. Exploring the forensic effectiveness and population genetic differentiation in Guizhou Miao and Bouyei group by the self-constructed panel of X chromosomal multi-insertion/deletions. BMC Genomics 2024; 25:1185. [PMID: 39648202 PMCID: PMC11626752 DOI: 10.1186/s12864-024-11088-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 11/25/2024] [Indexed: 12/10/2024] Open
Abstract
In this research, a self-developed panel comprising 22 X chromosomal multi-InDels and one X-STR was used to explore the genetic polymorphisms and forensic characteristics of these loci in Guizhou Miao and Guizhou Bouyei populations. Besides, genetic affiliations among Guizhou Miao, Guizhou Bouyei and Guizhou Han populations were investigated using principal component analysis, STRUCTURE and machine learning methods. The findings indicated that these loci in the male and female samples had comprehensive discrimination powers greater than 0.999999999. Meanwhile, the cumulative mean exclusion chance of these 23 loci for trio and duo cases were also greater than 0.9999 in Guizhou Miao and Guizhou Bouyei populations. Population genetic analyses of three Guizhou populations revealed that there were relatively low genetic divergences among these populations based on the self-constructed panel. In conclusion, this system could be utilized as the valuable tool for forensic personal identification and parentage testing in Guizhou Miao and Guizhou Bouyei populations.
Collapse
Affiliation(s)
- Xiaolan Huang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, Guizhou, 550025, China
| | - Changyun Gu
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, Guizhou, 550025, China
| | - Qianchong Ran
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, Guizhou, 550025, China
| | - Li Chen
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, Guizhou, 550025, China
| | - Shunyi Tian
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, Guizhou, 550025, China
| | - Min Zhong
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, Guizhou, 550025, China
| | - Zheng Ren
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, Guizhou, 550025, China
| | - Qiyan Wang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, Guizhou, 550025, China
| | - Meiqing Yang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, Guizhou, 550025, China
| | - Jingyan Ji
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, Guizhou, 550025, China
| | - Wen Wan
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, Guizhou, 550025, China
| | - Jiang Huang
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, 550025, China.
| | - Hongling Zhang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, Guizhou, 550025, China.
| | - Xiaoye Jin
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, Guizhou, 550025, China.
| |
Collapse
|
2
|
Feng Y, Wang T, Yang Y, You J, He K, Zhang H, Wang Q, Yang M, Huang J, Ren Z, Jin X. Genetic features and phylogenetic relationship analyses of Guizhou Han population residing in Southwest China via 38 X-InDels. PeerJ 2023; 11:e14964. [PMID: 36915656 PMCID: PMC10007965 DOI: 10.7717/peerj.14964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 02/06/2023] [Indexed: 03/11/2023] Open
Abstract
Background The insertion/deletion polymorphism (InDel), an ideal forensic genetic marker with a low spontaneous mutation rate and small amplification product fragments, is widely distributed in the genome, combining the advantages of STR and SNP genetic markers. The X-chromosome has high application value in complex paternity testing, and it is an excellent system for evaluating population admixture and studying evolutionary anthropology. However, further research is needed on the population genetics of X-chromosome InDels (X-InDels). Methods In this article, a system composed of 38 X-InDel loci was utilized to analyse and evaluate the forensic parameters of the Guizhou Han population in order to explore its forensic application efficiency. Results The results showed that expected heterozygosities spanned from 0.0189 to 0.5715, and the cumulative power of discrimination of the 32 X-InDels and three linkage blocks was 0.9999999954 and 0.999999999999741 for males and females, respectively. The combined mean exclusion chance of these loci for trios and duos is 0.999999 and 0.999747, respectively. Multiple methods like principal component analysis, Fst genetic distance, and phylogenetic reconstruction were employed for dissecting the genetic structure of the Guizhou Han population by comparing it with previously reported populations. As expected, the studied Han population displayed relatively close genetic affinities with the East Asian populations. At the same time, there were obvious genetic differentiations between the Guizhou Han population and other continental populations that were discerned, especially for the African populations. Conclusions This study further verified the applicability of 38 X-InDels for human personal identification and kinship analyses of Han Chinese, and also showed the application potential of X-InDels in population genetics.
Collapse
Affiliation(s)
- Yuhang Feng
- Shanghai Key Lab of Forensic Medicine, Key Lab of Forensic Science, Ministry of Justice, China, Academy of Forensic Science, Shanghai, China.,Department of Forensic Medicine, Guizhou Medical University, Guiyang, China
| | - Ting Wang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, China
| | - Yunteng Yang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, China
| | - Jiangtao You
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, China
| | - Kun He
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, China
| | - Hongling Zhang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, China
| | - Qiyan Wang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, China
| | - Meiqing Yang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, China
| | - Jiang Huang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, China
| | - Zheng Ren
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, China
| | - Xiaoye Jin
- Shanghai Key Lab of Forensic Medicine, Key Lab of Forensic Science, Ministry of Justice, China, Academy of Forensic Science, Shanghai, China.,Department of Forensic Medicine, Guizhou Medical University, Guiyang, China
| |
Collapse
|
3
|
Feng Y, Zhang H, Wang Q, Jin X, Le C, Liu Y, Wang X, Jiang H, Ren Z. Whole mitochondrial genome analysis of Tai-Kadai-speaking populations in Southwest China. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.1000493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
As a single matrilineal gene, human mitochondrial DNA plays a very important role in the study of population genetics. The whole mitogenome sequences of 287 individuals of the Tai-Kadai-speaking population in Guizhou were obtained. It was discovered that there were 82, 104, and 94 haplotypes in 83 Bouyei individuals, 107 Dong individuals, and 97 Sui individuals, respectively; and the haplotype diversity in Bouyei, Dong, and Sui groups was 1.000 ± 0.02, 0.9993 ± 0.0015, and 0.999 ± 0.002, respectively. The result of neutrality tests of the Tai-Kadai-speaking population in Guizhou showed significant negative values, and the analysis of mismatch distribution showed an obvious unimodal distribution. The results implied that Guizhou Tai-Kadai-speaking populations had high genetic diversities and may have experienced recent population expansion. In addition, the primary haplogroups of studied populations were M*, F, B, D, and R*, implying that they may origin from Southern China. The matrilineal genetic structure of the Tai-Kadai-speaking populations in Guizhou was analyzed by merging the mitogenome data of 79 worldwide populations as reference data. The results showed that there were close relationships between studied populations and other Tai-Kadai as well as some Austronesian populations in East and Southeast Asia. Overall, the mitogenome data generated in this study will provide important data for the study of genetic structure of Tai-Kadai speaking populations.
Collapse
|
4
|
Ran P, Ou S, Hadi S, Safhi FA, Al-Qahtani WS, Xuan JF, Adnan A, Pei B. Genetic characteristics and forensic features of Xibe ethnic group revealed via extended set of Y-STRs. Ann Hum Biol 2022; 49:204-209. [PMID: 35815603 DOI: 10.1080/03014460.2022.2100478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
BACKGROUND Xibe is the fifth largest minority population of Liaoning province. Predominately they live in Liaoning province (69.52%), followed by Xinjiang (18.06%), Heilongjiang (3.99%), Jilin (1.63%) and Inner Mongolia provinces (1.57%). AIM To provide an updated and precise population database on an extended set of Y STRs not available before and explore the forensic characteristics of 26 Y chromosomal STRs. SUBJECTS & METHODS In this study, we genotyped 406 unrelated Xibe male individuals from Liaoning province using Goldeneye® 26Y System kit and calculated the forensic parameters of these 26 Y STRs loci. RESULTS All haplotypes generated for 406 Xibe samples using Goldeneye® 26Y kit were unique with a discrimination capacity (DC) of 1. On restricting the haplotypes to the Y-filer® set of 17 Y-STRs, we observed 392 haplotypes. Among them 93.53% (380) were unique with a DC of 0.9655 and haplotype diversity (HD) of 0.9998, showing high discrimination power of the extended set of markers in this population. Allelic frequencies ranged from 0.0024 to 0.7684 across 26 Y STRs loci. DYS385 showed the highest gene diversity (0.9691) among all markers. CONCLUSION According to pairwise RST genetic distances among Xibe populations from China, the Liaoning Xibe population showed the closest genetic distance (0.0035) followed by Xinjiang Xibe population (0.0218). Multidimensional scaling (MDS) analysis among Xibe and 29 other Chinese populations showed that local populations such as Manchu from Liaoning and Han from Beijing had a close affinity while Tibetans from Aba, China, were most distant from Xibe populations. Moreover, 12 individuals showed a null allele at DYS448 in Xibe population samples. We submitted Y-STRs data in the Y-Chromosome Haplotype Reference Database (YHRD) for future forensic and other usage.
Collapse
Affiliation(s)
- Peng Ran
- Xiamen Blood Center, Xiamen, Fujian province 361004, P.R. China
| | - Shanhai Ou
- Xiamen Blood Center, Xiamen, Fujian province 361004, P.R. China
| | - Sibte Hadi
- Department of Forensic Sciences, College of Criminal Justice, Naif Arab University of Security Sciences, Riyadh, 11452, Kingdom of Saudi Arabia
| | - Fatmah Ahmed Safhi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Wedad Saeed Al-Qahtani
- Department of Forensic Sciences, College of Criminal Justice, Naif Arab University of Security Sciences, Riyadh, 11452, Kingdom of Saudi Arabia
| | - Jin-Feng Xuan
- Department of Forensic Genetics, School of Forensic Medicine, China Medical University, Shenyang, Liaoning, P.R. China
| | - Atif Adnan
- Department of Forensic Sciences, College of Criminal Justice, Naif Arab University of Security Sciences, Riyadh, 11452, Kingdom of Saudi Arabia
| | - Bin Pei
- Xiamen Blood Center, Xiamen, Fujian province 361004, P.R. China
| |
Collapse
|
5
|
Guo H, Chen N, Yang Y, Zhou X, Li X, Jiang Y, Huang J, Du Q. Ethnic Disparity in the Incidence of Scoliosis Among Adolescents in Tianzhu Tibetan Autonomous County, China. Front Public Health 2022; 10:791550. [PMID: 35570980 PMCID: PMC9092046 DOI: 10.3389/fpubh.2022.791550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 04/04/2022] [Indexed: 11/23/2022] Open
Abstract
Objectives To determine the influence of ethnic disparities, socioeconomic status (SES) and hukou on the incidence of scoliosis. Methods We enrolled 2,445 junior high school students (Han: 1,153; ethnic minorities: 1,292) aged 12–16 years from two schools in Tianzhu Tibetan Autonomous County, Gansu Province from November 2020 to February 2021. We measured the angle of trunk rotation (ATR) using a scoliometer. Two-factor analysis of variance was used to comparatively analyze differences in the ATR according to ethnicity, age, sex, body mass index (BMI), and SES between the groups. Associations between risk factors and scoliosis were estimated using odds ratios and 95% confidence intervals with an unconditional multivariate logistic regression model for the two groups. Results Adolescents with Han ethnicity were more likely to have scoliosis than their ethnic minority counterparts (10.8% vs. 7.1%, P < 0.05). The ATR value in the Han group decreased with age whereas the minority group showed an upward trend (P < 0.05). The difference between ethnic groups was not significant, only at level 3. In particular, the ATR values among Han girls were significantly higher than those of ethnic minority girls (P < 0.05). Compared with Han adolescents, the BMI of ethnic minorities had a greater impact on the ATR. A statistically significant difference in SES was found between the two ethnic groups (P < 0.05). Hukou and parents' occupation had an important influence on the onset of scoliosis. Conclusions Han adolescents had higher ATR values and were more likely to have scoliosis than ethnic minority adolescents in our study. Growth and development indicators (height and BMI) and differences in SES between the two groups played an important role.
Collapse
Affiliation(s)
- Haibin Guo
- Department of Rehabilitation Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Nan Chen
- Department of Rehabilitation Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuqi Yang
- College of Global Public Health, New York University, New York, NY, United States
| | - Xuan Zhou
- Department of Rehabilitation Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xin Li
- Department of Rehabilitation Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Jiang
- Department of Rehabilitation Medicine, Third People's Hospital of Gansu Province, Lanzhou, China
| | - Jiaoling Huang
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qing Du
- Department of Rehabilitation Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
6
|
Yang M, Yang X, Ren Z, He G, Zhang H, Wang Q, Liu Y, Zhang H, Ji J, Chen J, Guo J, Huang J, Wang CC. Genetic Admixture History and Forensic Characteristics of Guizhou Sui People Inferred From Autosomal Insertion/Deletion and Genome-Wide Single-Nucleotide Polymorphisms. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.844761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Insertion-deletion (Indel) serves as one of the important markers in forensic personal identification and parentage testing, especially for cases with degraded samples. However, the genetic diversity and forensic features in ethnolinguistically diverse southwestern Chinese populations remain to be explored. Sui, one Tai-Kadai-speaking population residing in Guizhou, has a complex genetic history based on linguistic, historic, and anthropological evidence. In this study, we genotyped 30 Indels from 511 Guizhou Sui individuals and obtained approximately 700,000 genome-wide single-nucleotide polymorphisms (SNPs) in 15 representative Sui individuals to comprehensively characterize the genetic diversity, forensic characteristics, and genomic landscape of Guizhou Sui people. The estimated forensic statistically allele frequency spectrum and parameters demonstrated that this Indels panel was polymorphic and informative in Tai-Kadai populations in southern China. Results of principal component analysis (PCA), STRUCTURE, and phylogenetic trees showed that Guizhou Sui had a close genetic relationship with geographically close Tai-Kadai and Hmong-Mien people. Furthermore, genomic analysis based on the Fst and f4-statistics further suggested the genetic affinity within southern Chinese Tai-Kadai-speaking populations and a close relationship with geographically adjoining Guizhou populations. Admixture models based on the ADMIXTURE, f4, three-way qpAdm, and ALDER results demonstrated the interaction between the common ancestor for Tai-Kadai/Austronesian, Hmong-Mien, and Austroasiatic speaking populations played a significant role in the formation of modern Tai-Kadai people. We observed a sex-biased influence in Sui people by finding that the dominant Y chromosomal type was a Hmong-Mien specific lineage O2a2a1a2a1a2-N5 but the mtDNA lineages were commonly found in Tai-Kadai populations. The additional southward expansion of millet farmers in the Yellow River Basin has impacted the gene pool of southern populations including Tai-Kadai. The whole-genome sequencing in the future will shed more light on the finer genetic profile of Guizhou populations.
Collapse
|
7
|
Jin X, Zhang H, Ren Z, Wang Q, Liu Y, Ji J, Zhang H, Yang M, Zhou Y, Huang J. Developmental Validation of a Rapidly Mutating Y-STR Panel Labeled by Six Fluoresceins for Forensic Research. Front Genet 2022; 13:777440. [PMID: 35309136 PMCID: PMC8927084 DOI: 10.3389/fgene.2022.777440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 01/20/2022] [Indexed: 11/23/2022] Open
Abstract
The male-specific region of the human Y chromosome is a useful genetic marker for genealogical searching, male inheritance testing, and male DNA mixture deconvolution in forensic studies. However, the Y chromosomal short tandem repeats (Y-STRs) are difficult to distinguish among related males due to their low/medium mutation rate. In contrast, rapidly mutating (RM) Y-STRs exhibit unusually high mutation rates and possess great potential for differentiating male lineages. In this study, we developed a novel Y-STRs multiplex amplification assay of 32 RM Y-STRs by fragment analysis using six dye-labeled technologies (FAM, HEX, TAMRA, ROX, VIG, and SIZ). The development and the validation of the kit were carried out in accordance with the Scientific Working Group guidelines on DNA Analysis Methods. Identical allelic profiles of the 32 RM Y-STRs using a DNA 9948 sample as the positive control could be observed at different concentrations of PCR reagents. Further, the RM Y-STRs did not show cross-reactions with other common animal species, and the developed assay could tolerate interferences from common PCR inhibitors and mixed DNA samples. More importantly, the kit showed relatively high sensitivity and could detect trace DNA samples. Genetic distributions of 32 RM Y-STRs in the Guizhou Han population revealed that these RM Y-STRs showed relatively high genetic diversities. In conclusion, the RM Y-STR assay developed here showed good species specificity, high sensitivity, tolerance to inhibitors, and sample compatibility, which can be viewed as a highly efficient tool with high discrimination capacity for forensic male differentiation.
Collapse
Affiliation(s)
- Xiaoye Jin
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, China
| | - Hongling Zhang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, China
| | - Zheng Ren
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, China
| | - Qiyan Wang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, China
| | - Yubo Liu
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, China
| | - Jingyan Ji
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, China
| | - Han Zhang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, China
| | - Meiqing Yang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, China
| | - Yongsong Zhou
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Jiang Huang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, China
- *Correspondence: Jiang Huang,
| |
Collapse
|
8
|
Chen J, He G, Ren Z, Wang Q, Liu Y, Zhang H, Yang M, Zhang H, Ji J, Zhao J, Guo J, Chen J, Zhu K, Yang X, Wang R, Ma H, Tao L, Liu Y, Shen Q, Yang W, Wang CC, Huang J. Fine-Scale Population Admixture Landscape of Tai–Kadai-Speaking Maonan in Southwest China Inferred From Genome-Wide SNP Data. Front Genet 2022; 13:815285. [PMID: 35251126 PMCID: PMC8891617 DOI: 10.3389/fgene.2022.815285] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/27/2022] [Indexed: 12/27/2022] Open
Abstract
Guizhou Province harbors extensive ethnolinguistic and cultural diversity with Sino-Tibetan-, Hmong–Mien-, and Tai–Kadai-speaking populations. However, previous genetic analyses mainly focused on the genetic admixture history of the former two linguistic groups. The admixture history of Tai–Kadai-speaking populations in Guizhou needed to be characterized further. Thus, we genotyped genome-wide SNP data from 41 Tai–Kadai-speaking Maonan people and made a comprehensive population genetic analysis to explore their genetic origin and admixture history based on the pattern of the sharing alleles and haplotypes. We found a genetic affinity among geographically different Tai–Kadai-speaking populations, especially for Guizhou Maonan people and reference Maonan from Guangxi. Furthermore, formal tests based on the f3/f4-statistics further identified an adjacent connection between Maonan and geographically adjacent Hmong–Mien and Sino-Tibetan people, which was consistent with their historically documented shared material culture (Zhang et al., iScience, 2020, 23, 101032). Fitted qpAdm-based two-way admixture models with ancestral sources from northern and southern East Asians demonstrated that Maonan people were an admixed population with primary ancestry related to Guangxi historical people and a minor proportion of ancestry from Northeast Asians, consistent with their linguistically supported southern China origin. Here, we presented the landscape of genetic structure and diversity of Maonan people and a simple demographic model for their evolutionary process. Further whole-genome-sequence–based projects can be presented with more detailed information about the population history and adaptative history of the Guizhou Maonan people.
Collapse
Affiliation(s)
- Jing Chen
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, China
| | - Guanglin He
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
- Department of Anthropology and Ethnology, School of Sociology and Anthropology, Institute of Anthropology, National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
- Institute Of Rare Diseases, West China Hospital of Sichuan University, Chengdu, China
| | - Zheng Ren
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, China
| | - Qiyan Wang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, China
| | - Yubo Liu
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, China
| | - Hongling Zhang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, China
| | - Meiqing Yang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, China
| | - Han Zhang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, China
| | - Jingyan Ji
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, China
| | - Jing Zhao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
- Department of Anthropology and Ethnology, School of Sociology and Anthropology, Institute of Anthropology, National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
| | - Jianxin Guo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
- Department of Anthropology and Ethnology, School of Sociology and Anthropology, Institute of Anthropology, National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
| | - Jinwen Chen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
- Department of Anthropology and Ethnology, School of Sociology and Anthropology, Institute of Anthropology, National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
| | - Kongyang Zhu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
- Department of Anthropology and Ethnology, School of Sociology and Anthropology, Institute of Anthropology, National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
| | - Xiaomin Yang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
- Department of Anthropology and Ethnology, School of Sociology and Anthropology, Institute of Anthropology, National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
| | - Rui Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
- Department of Anthropology and Ethnology, School of Sociology and Anthropology, Institute of Anthropology, National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
| | - Hao Ma
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
- Department of Anthropology and Ethnology, School of Sociology and Anthropology, Institute of Anthropology, National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
| | - Le Tao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
- Department of Anthropology and Ethnology, School of Sociology and Anthropology, Institute of Anthropology, National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
| | - Yilan Liu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
- Department of Anthropology and Ethnology, School of Sociology and Anthropology, Institute of Anthropology, National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
| | - Qu Shen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
- Department of Anthropology and Ethnology, School of Sociology and Anthropology, Institute of Anthropology, National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
| | - Wenjiao Yang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
- Department of Anthropology and Ethnology, School of Sociology and Anthropology, Institute of Anthropology, National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
| | - Chuan-Chao Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
- Department of Anthropology and Ethnology, School of Sociology and Anthropology, Institute of Anthropology, National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
- *Correspondence: Chuan-Chao Wang, ; Jiang Huang,
| | - Jiang Huang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, China
- *Correspondence: Chuan-Chao Wang, ; Jiang Huang,
| |
Collapse
|
9
|
Zhang Y, Wang Y, Chen Y, Zhou J, Xu L, Xu K, Wang N, Fu C, Liu T. Associations of Dietary Patterns and Risk of Hypertension in Southwest China: A Prospective Cohort Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182312378. [PMID: 34886102 PMCID: PMC8656527 DOI: 10.3390/ijerph182312378] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/21/2021] [Accepted: 11/22/2021] [Indexed: 12/17/2022]
Abstract
Empirical data on the association between diet and incident hypertension in Southwest China is lacking. We examined the associations between various dietary patterns and the risk of incident hypertension in this prospective population cohort of Southwest China. A total of 5442 eligible adults were included from Guizhou Province, China, since 2010. Dietary information was obtained using face-to-face interviews with a semi-quantitative food frequency questionnaire, and dietary patterns were characterized using factor analysis. The hazard ratios (HRs) and 95% confidence intervals (95% CIs) were estimated for the associations between various dietary patterns and incident hypertension risk using a Cox proportional hazard model. Until 2020, a total of 1177 new hypertension cases were identified during an average follow-up of 6.97 years. In the multivariable-adjusted analysis, a low intake of the junk food pattern was significantly associated with the reducing risk of incident hypertension (HR: 0.772, 95% CI: 0.671, 0.887) and a high intake of the vegetable-grain pattern statistically lowered the risk of incident hypertension (HR: 0.774, 95% CI: 0.669, 0.894) compared with the medium intake of such patterns. Higher adherence to the vegetable-grain pattern and lower adherence to the junk food pattern significantly lowered the hypertension incidence among the population in Southwest China. Those findings suggested healthy diet guidelines should be developed for the prevention of hypertension.
Collapse
Affiliation(s)
- Yixia Zhang
- Guizhou Center for Disease Control and Prevention, Guiyang 550004, China; (Y.Z.); (J.Z.); (L.X.)
| | - Yanhuan Wang
- School of Public Health & Key Laboratory of Public Health Safety & NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai 200032, China; (Y.W.); (Y.C.); (K.X.); (N.W.)
| | - Yun Chen
- School of Public Health & Key Laboratory of Public Health Safety & NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai 200032, China; (Y.W.); (Y.C.); (K.X.); (N.W.)
| | - Jie Zhou
- Guizhou Center for Disease Control and Prevention, Guiyang 550004, China; (Y.Z.); (J.Z.); (L.X.)
| | - Lina Xu
- Guizhou Center for Disease Control and Prevention, Guiyang 550004, China; (Y.Z.); (J.Z.); (L.X.)
| | - Kelin Xu
- School of Public Health & Key Laboratory of Public Health Safety & NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai 200032, China; (Y.W.); (Y.C.); (K.X.); (N.W.)
| | - Na Wang
- School of Public Health & Key Laboratory of Public Health Safety & NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai 200032, China; (Y.W.); (Y.C.); (K.X.); (N.W.)
| | - Chaowei Fu
- School of Public Health & Key Laboratory of Public Health Safety & NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai 200032, China; (Y.W.); (Y.C.); (K.X.); (N.W.)
- Correspondence: (C.F.); (T.L.)
| | - Tao Liu
- Guizhou Center for Disease Control and Prevention, Guiyang 550004, China; (Y.Z.); (J.Z.); (L.X.)
- Correspondence: (C.F.); (T.L.)
| |
Collapse
|
10
|
Luo T, Wang R, Wang CC. Inferring the population structure and admixture history of three Hmong-Mien-speaking Miao tribes from southwest China based on Genome-wide SNP genotyping. Ann Hum Biol 2021; 48:418-429. [PMID: 34763584 DOI: 10.1080/03014460.2021.2005825] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Hmong-Mien speaking Miao, also called Hmong, is the sixthlargest ethnic group in mainland China. However, the fine-scale genetic profiles and population history of Miao populations in southwest China, especially in Guizhou province, remain uncharacterised due to a scarcity of samples of genome-wide data from different tribes. AIM To further investigate the population substructure and admixture history of the Guizhou Miao minority. SUBJECTS AND METHODS We collected 29 samples from three Miao tribes of Guizhou province in southwest China and genotyped about 700,000 genome-wide SNPs of each sample. We analysed newly generated data in together with published modern/ancient East Asian populations datasets via a series of population genetic methods, including principal component analysis (PCA), ADMIXTURE, Fst, TreeMix, f-statistics, qpWave, and qpAdm. RESULTS PCA and ADMIXTURE results showed that the three studied Guizhou Miao groups consistently fell on the Hmong-Mien-related genetic cline and were relatively genetically homogeneous, displayingd a genetic affinity with neighbouring Tai-Kadai speaking populations such as Dong. These results were further confirmed by the observed genetic clade in Fst, TreeMix, outgroup-f3 -statistics, and f4 -statistics. Furthermore, f4 -based allele sharing patterns illustrated that compared with Hunan Miao in central China, Guizhou Miao shared more alleles with Hmong-Mien-speaking Vietnam Hmong and Tai-Kadai-speaking CoLao, Dong, while exhibiting less northeast Asian-related ancestry. Admixture-f3 and f4 statistics revealed the North-South admixture pattern for the studied Guizhou Miao. A qpAdm-based two-way admixture model further revealed that the studied Guizhou Miao harboured 44%∼55.4% indigenous Austronesian-speaking Atayal-related ancestry and 44.6%∼56% Late Neolithic Yellow River farmer-related ancestry. CONCLUSIONS The population structure within Hmong-Mien-related populations showed a geographic correlation. Hmong-Mien speaking Hunan Miao, Guizhou Miao, and Vietnam Hmong presented closer genetic relationships although they dwelt in different regions, suggesting the preservation of the original Hmong-related genetic diversity. The results based on genome-wide SNPs data generally matched the migration history for the Miao population. Our study contributes to a better knowledge of Miao populations and the population structure in southwest China.
Collapse
Affiliation(s)
- Ting Luo
- Department of Anthropology and Ethnology, Institute of Anthropology, School of Sociology and Anthropology, Xiamen University, Xiamen, China
| | - Rui Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Chuan-Chao Wang
- Department of Anthropology and Ethnology, Institute of Anthropology, School of Sociology and Anthropology, Xiamen University, Xiamen, China.,State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China.,State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
| |
Collapse
|
11
|
Chen Y, Wang Y, Xu K, Zhou J, Yu L, Wang N, Liu T, Fu C. Adiposity and Long-Term Adiposity Change Are Associated with Incident Diabetes: A Prospective Cohort Study in Southwest China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182111481. [PMID: 34769995 PMCID: PMC8582792 DOI: 10.3390/ijerph182111481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 10/25/2021] [Accepted: 10/29/2021] [Indexed: 02/08/2023]
Abstract
In order to estimate the associations of different adiposity indicators and long-term adiposity changes with risk of incident type 2 diabetes (T2DM), we conducted a 10-year prospective cohort study of 7441 adults in Guizhou, China, from 2010 to 2020. Adiposity was measured at baseline and follow-up. Cox proportional hazard models were used to estimated hazard ratios (HRs) and 95% confidence intervals (95% CIs). A total of 764 new diabetes cases were identified over an average follow-up of 7.06 years. Adiposity indicators, body mass index (BMI), waist circumference (WC), waist-height ratio (WHtR), and long-term adiposity changes (both weight change and WC change) were significantly associated with an increased risk of T2DM (adjusted HRs: 1.16–1.48). Significant non-linear relationships were found between weight/WC change and incident T2DM. Compared with subjects with stable WC from baseline to follow-up visit, the subjects with WC gain ≥9 cm had a 1.61-fold greater risk of T2DM; those with WC loss had a 30% lower risk. Furthermore, the associations were stronger among participants aged 40 years or older, women, and Han Chinese. Preventing weight or WC gain and promoting maintenance of normal body weight or WC are important approaches for diabetes prevention, especially for the elderly, women, and Han Chinese.
Collapse
Affiliation(s)
- Yun Chen
- School of Public Health, Key Laboratory of Public Health Safety, NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai 200032, China; (Y.C.); (K.X.); (N.W.)
| | - Yiying Wang
- Guizhou Center for Disease Control and Prevention, Guiyang 550004, China; (Y.W.); (J.Z.); (L.Y.)
| | - Kelin Xu
- School of Public Health, Key Laboratory of Public Health Safety, NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai 200032, China; (Y.C.); (K.X.); (N.W.)
| | - Jie Zhou
- Guizhou Center for Disease Control and Prevention, Guiyang 550004, China; (Y.W.); (J.Z.); (L.Y.)
| | - Lisha Yu
- Guizhou Center for Disease Control and Prevention, Guiyang 550004, China; (Y.W.); (J.Z.); (L.Y.)
| | - Na Wang
- School of Public Health, Key Laboratory of Public Health Safety, NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai 200032, China; (Y.C.); (K.X.); (N.W.)
| | - Tao Liu
- Guizhou Center for Disease Control and Prevention, Guiyang 550004, China; (Y.W.); (J.Z.); (L.Y.)
- Correspondence: (T.L.); (C.F.); Tel.: +86-21-3356-3933 (C.F.)
| | - Chaowei Fu
- School of Public Health, Key Laboratory of Public Health Safety, NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai 200032, China; (Y.C.); (K.X.); (N.W.)
- Correspondence: (T.L.); (C.F.); Tel.: +86-21-3356-3933 (C.F.)
| |
Collapse
|
12
|
Bin X, Wang R, Huang Y, Wei R, Zhu K, Yang X, Ma H, He G, Guo J, Zhao J, Yang M, Chen J, Zhang X, Tao L, Liu Y, Huang X, Wang CC. Genomic Insight Into the Population Structure and Admixture History of Tai-Kadai-Speaking Sui People in Southwest China. Front Genet 2021; 12:735084. [PMID: 34616433 PMCID: PMC8489805 DOI: 10.3389/fgene.2021.735084] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 08/23/2021] [Indexed: 12/14/2022] Open
Abstract
Sui people, which belong to the Tai-Kadai-speaking family, remain poorly characterized due to a lack of genome-wide data. To infer the fine-scale population genetic structure and putative genetic sources of the Sui people, we genotyped 498,655 genome-wide single-nucleotide polymorphisms (SNPs) using SNP arrays in 68 Sui individuals from seven indigenous populations in Guizhou province and Guangxi Zhuang Autonomous Region in Southwest China and co-analyzed with available East Asians via a series of population genetic methods including principal component analysis (PCA), ADMIXTURE, pairwise Fst genetic distance, f-statistics, qpWave, and qpAdm. Our results revealed that Guangxi and Guizhou Sui people showed a strong genetic affinity with populations from southern China and Southeast Asia, especially Tai-Kadai- and Hmong-Mien-speaking populations as well as ancient Iron Age Taiwan Hanben, Gongguan individuals supporting the hypothesis that Sui people came from southern China originally. The indigenous Tai-Kadai-related ancestry (represented by Li), Northern East Asian-related ancestry, and Hmong-Mien-related lineage contributed to the formation processes of the Sui people. We identified the genetic substructure within Sui groups: Guizhou Sui people were relatively homogeneous and possessed similar genetic profiles with neighboring Tai-Kadai-related populations, such as Maonan. While Sui people in Yizhou and Huanjiang of Guangxi might receive unique, additional gene flow from Hmong-Mien-speaking populations and Northern East Asians, respectively, after the divergence within other Sui populations. Sui people could be modeled as the admixture of ancient Yellow River Basin farmer-related ancestry (36.2-54.7%) and ancient coastal Southeast Asian-related ancestry (45.3-63.8%). We also identified the potential positive selection signals related to the disease susceptibility in Sui people via integrated haplotype score (iHS) and number of segregating sites by length (nSL) scores. These genomic findings provided new insights into the demographic history of Tai-Kadai-speaking Sui people and their interaction with neighboring populations in Southern China.
Collapse
Affiliation(s)
- Xiaoyun Bin
- College of Basic Medical Sciences, Youjiang Medical University for Nationalities, Baise, China
| | - Rui Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China.,Department of Anthropology and Ethnology, Institute of Anthropology, School of Sociology and Anthropology, National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China.,State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
| | - Youyi Huang
- College of Basic Medical Sciences, Youjiang Medical University for Nationalities, Baise, China
| | - Rongyao Wei
- College of Basic Medical Sciences, Youjiang Medical University for Nationalities, Baise, China
| | - Kongyang Zhu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China.,Department of Anthropology and Ethnology, Institute of Anthropology, School of Sociology and Anthropology, National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China.,State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
| | - Xiaomin Yang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China.,Department of Anthropology and Ethnology, Institute of Anthropology, School of Sociology and Anthropology, National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China.,State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
| | - Hao Ma
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China.,Department of Anthropology and Ethnology, Institute of Anthropology, School of Sociology and Anthropology, National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China.,State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
| | - Guanglin He
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China.,Department of Anthropology and Ethnology, Institute of Anthropology, School of Sociology and Anthropology, National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China.,State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
| | - Jianxin Guo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China.,Department of Anthropology and Ethnology, Institute of Anthropology, School of Sociology and Anthropology, National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China.,State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
| | - Jing Zhao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China.,Department of Anthropology and Ethnology, Institute of Anthropology, School of Sociology and Anthropology, National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China.,State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
| | - Meiqing Yang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, China
| | - Jing Chen
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, China
| | | | - Le Tao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China.,Department of Anthropology and Ethnology, Institute of Anthropology, School of Sociology and Anthropology, National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China.,State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
| | - Yilan Liu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China.,Department of Anthropology and Ethnology, Institute of Anthropology, School of Sociology and Anthropology, National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China.,State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
| | - Xiufeng Huang
- College of Basic Medical Sciences, Youjiang Medical University for Nationalities, Baise, China
| | - Chuan-Chao Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China.,Department of Anthropology and Ethnology, Institute of Anthropology, School of Sociology and Anthropology, National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China.,State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
| |
Collapse
|
13
|
Chen J, He G, Ren Z, Wang Q, Liu Y, Zhang H, Yang M, Zhang H, Ji J, Zhao J, Guo J, Zhu K, Yang X, Wang R, Ma H, Wang CC, Huang J. Genomic Insights Into the Admixture History of Mongolic- and Tungusic-Speaking Populations From Southwestern East Asia. Front Genet 2021; 12:685285. [PMID: 34239544 PMCID: PMC8258170 DOI: 10.3389/fgene.2021.685285] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/05/2021] [Indexed: 12/17/2022] Open
Abstract
As a major part of the modern Trans-Eurasian or Altaic language family, most of the Mongolic and Tungusic languages were mainly spoken in northern China, Mongolia, and southern Siberia, but some were also found in southern China. Previous genetic surveys only focused on the dissection of genetic structure of northern Altaic-speaking populations; however, the ancestral origin and genomic diversification of Mongolic and Tungusic-speaking populations from southwestern East Asia remain poorly understood because of the paucity of high-density sampling and genome-wide data. Here, we generated genome-wide data at nearly 700,000 single-nucleotide polymorphisms (SNPs) in 26 Mongolians and 55 Manchus collected from Guizhou province in southwestern China. We applied principal component analysis (PCA), ADMIXTURE, f statistics, qpWave/qpAdm analysis, qpGraph, TreeMix, Fst, and ALDER to infer the fine-scale population genetic structure and admixture history. We found significant genetic differentiation between northern and southern Mongolic and Tungusic speakers, as one specific genetic cline of Manchu and Mongolian was identified in Guizhou province. Further results from ADMIXTURE and f statistics showed that the studied Guizhou Mongolians and Manchus had a strong genetic affinity with southern East Asians, especially for inland southern East Asians. The qpAdm-based estimates of ancestry admixture proportion demonstrated that Guizhou Mongolians and Manchus people could be modeled as the admixtures of one northern ancestry related to northern Tungusic/Mongolic speakers or Yellow River farmers and one southern ancestry associated with Austronesian, Tai-Kadai, and Austroasiatic speakers. The qpGraph-based phylogeny and neighbor-joining tree further confirmed that Guizhou Manchus and Mongolians derived approximately half of the ancestry from their northern ancestors and the other half from southern Indigenous East Asians. The estimated admixture time ranged from 600 to 1,000 years ago, which further confirmed the admixture events were mediated via the Mongolians Empire expansion during the formation of the Yuan dynasty.
Collapse
Affiliation(s)
- Jing Chen
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, China
| | - Guanglin He
- State Key Laboratory of Cellular Stress Biology, State Key Laboratory of Marine Environmental Science, Department of Anthropology and Ethnology, Institute of Anthropology, National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China
| | - Zheng Ren
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, China
| | - Qiyan Wang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, China
| | - Yubo Liu
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, China
| | - Hongling Zhang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, China
| | - Meiqing Yang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, China
| | - Han Zhang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, China
| | - Jingyan Ji
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, China
| | - Jing Zhao
- State Key Laboratory of Cellular Stress Biology, State Key Laboratory of Marine Environmental Science, Department of Anthropology and Ethnology, Institute of Anthropology, National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China
| | - Jianxin Guo
- State Key Laboratory of Cellular Stress Biology, State Key Laboratory of Marine Environmental Science, Department of Anthropology and Ethnology, Institute of Anthropology, National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China
| | - Kongyang Zhu
- State Key Laboratory of Cellular Stress Biology, State Key Laboratory of Marine Environmental Science, Department of Anthropology and Ethnology, Institute of Anthropology, National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China
| | - Xiaomin Yang
- State Key Laboratory of Cellular Stress Biology, State Key Laboratory of Marine Environmental Science, Department of Anthropology and Ethnology, Institute of Anthropology, National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China
| | - Rui Wang
- State Key Laboratory of Cellular Stress Biology, State Key Laboratory of Marine Environmental Science, Department of Anthropology and Ethnology, Institute of Anthropology, National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China
| | - Hao Ma
- State Key Laboratory of Cellular Stress Biology, State Key Laboratory of Marine Environmental Science, Department of Anthropology and Ethnology, Institute of Anthropology, National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China
| | - Chuan-Chao Wang
- State Key Laboratory of Cellular Stress Biology, State Key Laboratory of Marine Environmental Science, Department of Anthropology and Ethnology, Institute of Anthropology, National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China
- School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiang Huang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, China
| |
Collapse
|
14
|
Fan H, Xie Q, Li Y, Wang L, Wen SQ, Qiu P. Insights Into Forensic Features and Genetic Structures of Guangdong Maoming Han Based on 27 Y-STRs. Front Genet 2021; 12:690504. [PMID: 34220963 PMCID: PMC8253533 DOI: 10.3389/fgene.2021.690504] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 05/14/2021] [Indexed: 11/13/2022] Open
Abstract
Maoming is located in the southwest region of Guangdong Province and is the cradle of Gaoliang culture, which is the representative branch of Lingnan cultures. Historical records showed that the amalgamations between Gaoliang aborigines and distinct ethnic minorities had some influences on the shaping of Gaoliang culture, especially for the local Tai-kadai language-speaking Baiyue and Han Chinese from Central China. However, there is still no exact genetic evidence for the influences on the genetic pool of Maoming Han, and the genetic relationships between Maoming Han and other Chinese populations are still unclear. Hence, in order to get a better understanding of the paternal genetic structures and characterize the forensic features of 27 Y-chromosomal short tandem repeats (Y-STRs) in Han Chinese from Guangdong Maoming, we firstly applied the AmpFLSTR® Yfiler® Plus PCR Amplification Kit (Thermo Fisher Scientific, Waltham, MA, United States) to genotype the haplotypes in 431 Han males residing in Maoming. A total of 263 different alleles were determined across all 27 Y-STRs with the corresponding allelic frequencies from 0.0004 to 0.7401, and the range of genetic diversity (GD) was 0.4027 (DYS391) to 0.9596 (DYS385a/b). In the first batch of 27 Yfiler data in Maoming Han, 417 distinct haplotypes were discovered, and nine off-ladder alleles were identified at six Y-STRs; in addition, no copy number variant or null allele was detected. The overall haplotype diversity (HD) and discrimination capacity (DC) of 27 Yfiler were 0.9997 and 0.9675, respectively, which demonstrated that the 6-dye and 27-plex system has sufficient system effectiveness for forensic applications in Maoming Han. What is more, the phylogenetic analyses indicated that Maoming Han, which is a Southern Han Chinese population, has a close relationship with Meizhou Kejia, which uncovered that the role of the gene flows from surrounding Han populations in shaping the genetic pool of Maoming Han cannot be ignored. From the perspectives of genetics, linguistics, and geographies, the genetic structures of Han populations correspond to the patterns of the geographical-scale spatial distributions and the relationships of language families. Nevertheless, no exact genetic evidence supports the intimate relationships between Maoming Han and Tai-Kadai language-speaking populations and Han populations of Central Plains in the present study.
Collapse
Affiliation(s)
- Haoliang Fan
- School of Forensic Medicine, Southern Medical University, Guangzhou, China
- Institute of Archaeological Science, Fudan University, Shanghai, China
- School of Basic Medicine and Life Science, Hainan Medical University, Haikou, China
| | - Qiqian Xie
- School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Yanning Li
- School of Forensic Medicine, Southern Medical University, Guangzhou, China
- School of Basic Medicine, Gannan Medical University, Ganzhou, China
| | - Lingxiang Wang
- Institute of Archaeological Science, Fudan University, Shanghai, China
| | - Shao-Qing Wen
- Institute of Archaeological Science, Fudan University, Shanghai, China
| | - Pingming Qiu
- School of Forensic Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
15
|
Luo C, Duan L, Li Y, Xie Q, Wang L, Ru K, Nazir S, Jawad M, Zhao Y, Wang F, Du Z, Peng D, Wen SQ, Qiu P, Fan H. Insights From Y-STRs: Forensic Characteristics, Genetic Affinities, and Linguistic Classifications of Guangdong Hakka and She Groups. Front Genet 2021; 12:676917. [PMID: 34108995 PMCID: PMC8181459 DOI: 10.3389/fgene.2021.676917] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 04/06/2021] [Indexed: 12/02/2022] Open
Abstract
Guangdong province is situated in the south of China with a population size of 113.46 million. Hakka is officially recognized as a branch of Han Chinese, and She is the official minority group in mainland China. There are approximately 25 million Hakka people who mainly live in the East and North regions of China, while there are only 0.7 million She people. The genetic characterization and forensic parameters of these two groups are poorly defined (She) or still need to be explored (Hakka). In this study, we have genotyped 475 unrelated Guangdong males (260 Hakka and 215 She) with Promega PowerPlex® Y23 System. A total of 176 and 155 different alleles were observed across all 23 Y-STRs for Guangdong Hakka (with a range of allele frequencies from 0.0038 to 0.7423) and Guangdong She (0.0047–0.8605), respectively. The gene diversity ranged from 0.4877 to 0.9671 (Guangdong Hakka) and 0.3277–0.9526 (Guangdong She), while the haplotype diversities were 0.9994 and 0.9939 for Guangdong Hakka and Guangdong She, with discrimination capacity values of 0.8885 and 0.5674, respectively. With reference to geographical and linguistic scales, the phylogenetic analyses showed us that Guangdong Hakka has a close relationship with Southern Han, and the genetic pool of Guangdong Hakka was influenced by surrounding Han populations. The predominant haplogroups of the Guangdong She group were O2-M122 and O2a2a1a2-M7, while Guangdong She clustered with other Tibeto-Burman language-speaking populations (Guizhou Tujia and Hunan Tujia), which shows us that the Guangdong She group is one of the branches of Tibeto-Burman populations and the Huonie dialect of She languages may be a branch of Tibeto-Burman language families.
Collapse
Affiliation(s)
- Chunfang Luo
- School of Forensic Medicine, Southern Medical University, Guangzhou, China.,Heyuan Municipal Public Security Bureau, Heyuan, China
| | - Lizhong Duan
- Beijing Municipal Public Security Bureau, Beijing, China
| | - Yanning Li
- School of Forensic Medicine, Southern Medical University, Guangzhou, China.,School of Basic Medicine, Gannan Medical University, Ganzhou, China
| | - Qiqian Xie
- School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Lingxiang Wang
- Institute of Archaeological Science, Fudan University, Shanghai, China
| | - Kai Ru
- Institute of Archaeological Science, Fudan University, Shanghai, China
| | - Shahid Nazir
- Department of Forensic Sciences, University of Health Sciences, Lahore, Pakistan
| | - Muhammad Jawad
- Department of Forensic Sciences, University of Health Sciences, Lahore, Pakistan
| | - Yifeng Zhao
- Nanjing Zhenghong Judicial Identification Institute, Nanjing, China
| | - Fenfen Wang
- First Clinical Medical College, Hainan Medical University, Haikou, China
| | - Zhengming Du
- First Clinical Medical College, Hainan Medical University, Haikou, China
| | - Dehua Peng
- Heyuan Municipal Public Security Bureau, Heyuan, China
| | - Shao-Qing Wen
- Institute of Archaeological Science, Fudan University, Shanghai, China
| | - Pingming Qiu
- School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Haoliang Fan
- School of Forensic Medicine, Southern Medical University, Guangzhou, China.,Institute of Archaeological Science, Fudan University, Shanghai, China.,School of Basic Medicine and Life Science, Hainan Medical University, Haikou, China
| |
Collapse
|
16
|
Zhang Q, Qin Z, Yi S, Wei H, Zhou XZ, Su J. Clinical application of whole-exome sequencing: A retrospective, single-center study. Exp Ther Med 2021; 22:753. [PMID: 34035850 PMCID: PMC8135134 DOI: 10.3892/etm.2021.10185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 08/26/2020] [Indexed: 12/13/2022] Open
Abstract
The aim of the present study was to assess the practical diagnostic value of whole-exome sequencing (WES) in patients with different phenotypes and to explore possible strategies to increase the capability of WES in identifying disease-causing genes. A total of 1,360 patients (aged from 1 day to 42 years old) with manifestations of genetic diseases were genotyped using WES and statistical analysis was performed on the results obtained. Within this cohort, the overall positive rate of identification of a disease-causing gene alteration was 44.41%. The positive identification rate where trio-samples were used (from the proband and both parents) was higher than that where a single proband sample was used (50.00 vs. 43.71%), and 604 positive cases with 150 genetic syndromes, 510 genes and 718 mutations were detected. Missense mutations were the most common variations (n=335, 45.27%) and visual or auditory abnormalities (58.51%) had the highest rate of association with a genetic abnormality. The positive detection rate of WES was elevated with the increase in the number of clinical symptoms from 1 to 8. The present study indicated that WES may be used as a valuable tool in the clinic and the positive rate depends more on the professional experience of clinicians rather than on the analytical capabilities of the data analyst. At the same time, particular attention must be paid to certain possible factors (such as the age of the patients as well as possible exon deletions), which may affect the diagnostic rate while applying this process.
Collapse
Affiliation(s)
- Qiang Zhang
- Laboratory of Genetic and Metabolism, Department of Paediatric Endocrine and Metabolism, Maternal and Child Health Hospital of Guangxi, Nanning, Guangxi 530000, P.R. China
| | - Zailong Qin
- Laboratory of Genetic and Metabolism, Department of Paediatric Endocrine and Metabolism, Maternal and Child Health Hospital of Guangxi, Nanning, Guangxi 530000, P.R. China
| | - Shang Yi
- Laboratory of Genetic and Metabolism, Department of Paediatric Endocrine and Metabolism, Maternal and Child Health Hospital of Guangxi, Nanning, Guangxi 530000, P.R. China
| | - Hao Wei
- Laboratory of Genetic and Metabolism, Department of Paediatric Endocrine and Metabolism, Maternal and Child Health Hospital of Guangxi, Nanning, Guangxi 530000, P.R. China
| | - Xun Zhao Zhou
- Laboratory of Genetic and Metabolism, Department of Paediatric Endocrine and Metabolism, Maternal and Child Health Hospital of Guangxi, Nanning, Guangxi 530000, P.R. China
| | - Jiasun Su
- Laboratory of Genetic and Metabolism, Department of Paediatric Endocrine and Metabolism, Maternal and Child Health Hospital of Guangxi, Nanning, Guangxi 530000, P.R. China
| |
Collapse
|
17
|
Luo L, Gao H, Yao L, Long F, Zhang H, Zhang L, Liu Y, Yu J, Yu L, Chen P. Genetic diversity, forensic feature, and phylogenetic analysis of Guizhou Tujia population via 19 X-STRs. Mol Genet Genomic Med 2020; 8:e1473. [PMID: 32881358 PMCID: PMC7667307 DOI: 10.1002/mgg3.1473] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/21/2020] [Accepted: 08/04/2020] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND X-chromosome short tandem repeats (X-STRs) with unique sex-linkage inheritance models play a complementary role in forensic science. Guizhou is a multiethnic province located in southwest China and some genetic evidence focusing on X-STRs for various minorities was reported. However, population data of Guizhou Tujia are scarce. METHODS A total of 507 Guizhou Tujia individuals were profiled using the AGCU X-19 STR kit. Allele frequencies and forensic parameters were calculated. Additionally, population genetic relationships between Guizhou Tujia and other 19 populations were explored. RESULTS A total of 257 alleles with the allele frequencies ranged from 0.0013 to 0.6098 were found. The combined power of discrimination in males and females and mean exclusion chances in all case scenarios were all greater than 0.99999. Population comparisons showed Guizhou Tujia had a homogeneity with all Han populations from different administrative regions, and other ethnic populations residing in Guizhou, while had obviously genetic heterogeneity with the Altaic family populations except Xibe. CONCLUSION Nineteen X-STRs can afford a reliable and informative database of Guizhou Tujia population for human identification and paternity testing, especially in complex biological relations. The genetic relationships of Chinese are significantly influenced by the geographic position and ethnolinguistic origin.
Collapse
Affiliation(s)
- Li Luo
- Key Laboratory of Cell Engineering in Guizhou ProvinceAffiliated Hospital of Zunyi Medical UniversityZunyiChina
- Center of Forensic ExpertiseAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
- Shanghai Key Laboratory of Forensic MedicineShanghai Forensic Service PlatformAcademy of Forensic ScienceShanghaiChina
| | - Hongyan Gao
- Key Laboratory of Cell Engineering in Guizhou ProvinceAffiliated Hospital of Zunyi Medical UniversityZunyiChina
- Center of Forensic ExpertiseAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| | - Lilan Yao
- Key Laboratory of Cell Engineering in Guizhou ProvinceAffiliated Hospital of Zunyi Medical UniversityZunyiChina
- Center of Forensic ExpertiseAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| | - Fei Long
- Department of Forensic Biology EvidenceZunyi City Public Security BureauZunyiGuizhouChina
| | - Hao Zhang
- Key Laboratory of Cell Engineering in Guizhou ProvinceAffiliated Hospital of Zunyi Medical UniversityZunyiChina
- Center of Forensic ExpertiseAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| | - Lushun Zhang
- Department of Pathology and PathophysiologyChengdu Medical CollegeChengduChina
| | - Yong Liu
- Center of Forensic ExpertiseAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| | - Jian Yu
- Center of Forensic ExpertiseAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| | - Limei Yu
- Key Laboratory of Cell Engineering in Guizhou ProvinceAffiliated Hospital of Zunyi Medical UniversityZunyiChina
| | - Pengyu Chen
- Key Laboratory of Cell Engineering in Guizhou ProvinceAffiliated Hospital of Zunyi Medical UniversityZunyiChina
- Center of Forensic ExpertiseAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| |
Collapse
|
18
|
Ding J, Fan H, Zhou Y, Wang Z, Wang X, Song X, Zhu B, Qiu P. Genetic polymorphisms and phylogenetic analyses of the Ü-Tsang Tibetan from Lhasa based on 30 slowly and moderately mutated Y-STR loci. Forensic Sci Res 2020; 7:181-188. [PMID: 35784414 PMCID: PMC9245999 DOI: 10.1080/20961790.2020.1810882] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
As a result of the expansion of old Tibet on the Qinghai-Tibet Plateau, Tibetans diverged into three main branches, Ü-Tsang, Amdo, and Kham Tibetan. Ü-Tsang Tibetans are geographically distributed across the wide central and western portions of the Qinghai-Tibet Plateau while Lhasa is the central gathering place for Tibetan culture. The AGCU Y30, a 6-dye fluorescence kit including 30 slowly and moderately mutated Y-STR loci, has been validated for its stability and sensitivity in different biomaterials and diverse Chinese populations (Han and other minorities), and widely used in the practical work of forensic science. However, the 30 Y-STR profiling of Tibetan, especially for Ü-Tsang Tibetan, were insufficient. We utilized the AGCU Y30 to genotype 577 Ü-Tsang Tibetan unrelated males from Lhasa in the Tibet Autonomous Region of China to fill up the full and accurate Y-STR profiles. A total of 552 haplotypes were observed, 536 (97.10%) of which were unique. One hundred and ninety-four alleles were observed at 26 single copy loci and the allelic frequencies ranged from 0.0017 to 0.8180. For the two multi-copy loci DYS385a/b and DYS527a/b, 64 and 36 allelic combinations were observed, respectively. The gene diversity (GD) values ranged from 0.3079 at DYS391 to 0.9142 at DYS385a/b and the overall haplotype diversity (HD) was 0.9998, and its discrimination capacity (DC) was 0.9567. The population genetic analyses demonstrated that Lhasa Ü-Tsang Tibetan had close relationships with other Tibetan populations from Tibet and Qinghai, especially with Ü-Tsang Tibetan. From the perspective of Y haplogroups, the admixture of the southward Qiang people with dominant haplogroup O-M122 and the northward migrations of the initial settlers of East Asia with haplogroup D-M175 hinted the Sino-Tibetan homologous, thus, we could not ignore the gene flows with other Sino-Tibetan populations, especially for Han Chinese, to characterize the forensic genetic landscape of Tibetan.
Collapse
Affiliation(s)
- Jiuyang Ding
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Science, Shanghai, China
- School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Haoliang Fan
- School of Forensic Medicine, Southern Medical University, Guangzhou, China
- School of Basic Medicine and Life Science, Hainan Medical University, Haikou, China
- Multi-Omics Innovative Research Center of Forensic Identification, Department of Forensic Genetics, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Yongsong Zhou
- School of Forensic Medicine, Southern Medical University, Guangzhou, China
- Multi-Omics Innovative Research Center of Forensic Identification, Department of Forensic Genetics, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Zhuo Wang
- School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Xiao Wang
- Department of Psychiatry, The First Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Xuheng Song
- School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Bofeng Zhu
- School of Forensic Medicine, Southern Medical University, Guangzhou, China
- Multi-Omics Innovative Research Center of Forensic Identification, Department of Forensic Genetics, School of Forensic Medicine, Southern Medical University, Guangzhou, China
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an, China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi’an Jiaotong University, Xi’an, China
| | - Pingming Qiu
- School of Forensic Medicine, Southern Medical University, Guangzhou, China
- Multi-Omics Innovative Research Center of Forensic Identification, Department of Forensic Genetics, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
19
|
Tang J, Yang M, Wang X, Wang Q, Wang Q, Zhang H, Qian E, Zhang H, Ji J, Ren Z, Wu Y, Huang J. Genetic structure and forensic characterisation of 36 Y-chromosomal STR loci in Hmong-Mien-speaking Miao population. Ann Hum Biol 2020; 47:541-548. [PMID: 32597239 DOI: 10.1080/03014460.2020.1788159] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
BACKGROUND Y-chromosomal short tandem repeats (Y-STRs) are widely used in paternity identification, pedigree investigation, and human population genetic history. AIM To investigate the Y-STR polymorphisms in a typical Miao population, and explore the genetic differentiation between the Miao population and reference groups. SUBJECTS AND METHODS We detected 36 Y-STRs genotyping in 455 unrelated Miao individuals from Guizhou province, and analysed genetic differentiation between the Miao population and 76 reference groups. RESULTS A total of 369 alleles were obtained, and the allele frequencies ranged from 0.0022 to 0.9802. In addition, the haplotype diversity, random match probability, and discrimination capacity values were 0.99997, 0.0022, and 0.9934, respectively. Moreover, the genetic relationships between Guizhou Miao and 76 ethnic populations showed that the population stratification was almost consistent with geographic distribution and language-family. CONCLUSIONS The 36 Y-STR loci in this study have good polymorphism distributions in the Guizhou Miao population, and therefore would be a useful tool in forensic identification and male parentage testing and even pedigree investigation.
Collapse
Affiliation(s)
- Jing Tang
- Guiyang Judicial Expertise Center of Public Security, Guiyang, Guizhou, China
| | - Meiqing Yang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, Guizhou, China
| | - Xiaojuan Wang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, Guizhou, China
| | - Qian Wang
- Guiyang Judicial Expertise Center of Public Security, Guiyang, Guizhou, China
| | - Qiyan Wang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, Guizhou, China
| | - Hongling Zhang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, Guizhou, China
| | - Enfang Qian
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, Guizhou, China
| | - Han Zhang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, Guizhou, China
| | - Jingyan Ji
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, Guizhou, China
| | - Zheng Ren
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, Guizhou, China
| | - Yan Wu
- Guiyang Judicial Expertise Center of Public Security, Guiyang, Guizhou, China
| | - Jiang Huang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, Guizhou, China
| |
Collapse
|
20
|
Adnan A, Kasimu K, Rakha A, He G, Yang T, Wang C, Lu J, Xuan J. Comprehensive genetic structure analysis of Han population from Dalian City revealed by 20 Y-STRs. Mol Genet Genomic Med 2020; 8:e1149. [PMID: 31989793 PMCID: PMC7057124 DOI: 10.1002/mgg3.1149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 11/15/2019] [Accepted: 01/08/2020] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Dalian is a city formed in the 1880s in Liaoning province, Northeastern China with a population of 6.69 million now. Han is the largest ethnic group not only across Mainland China (92%) and Taiwan (97%) but also considered to be the largest ethnic group of the world contributing to above 18% of world's population. METHODS In the current study, we genotyped Goldeneye® 20Y System loci in 879 unrelated male individuals from the Han ethnic group in Dalian city and calculated the forensic parameters of the 20 Y-STR loci. RESULTS In total, we observed 855 haplotypes, among which 835 (94.99%) were unique. The discrimination capacity (DC) of overall Goldeneye® 20Y System is 97.27% and it slightly reduces to 96.93% when only Y-filer® set of 17 Y-STRs were used, which mitigates using the extended set of markers in this population. We found DYS388 showed the lowest gene diversity (0.5151), whereas DYS389II showed the highest gene diversity (0.7621) in single copy Y-STR, and DYS385 showed the highest gene diversity (0.9683) among all. CONCLUSION Multidimensional scaling (MDS) analysis based upon pairwise Rst genetic distance showed difference among Han population from the east to the west and from the north to the south. We also predicted haplogroups using Y-STR haplotypes, which showed the dominance of Haplogroup O (65.2%) followed by Haplogroup C (14.5%) in Dalian Han population. Moreover, we found 10 individuals showed a null allele at the DYS448 in our samples. We also performed linear discriminatory analysis (LDA) between Han and other prominent Chinese minority ethnic groups. We presented Y-STRs data in the Y-Chromosome Haplotype Reference Database (YHRD) for the future forensic and other usage.
Collapse
Affiliation(s)
- Atif Adnan
- Department of Forensic Genetics and BiologySchool of Forensic MedicineChina Medical UniversityShenyangP.R. China
- Department of Human AnatomyCollege of Basic Medical ScienceChina Medical UniversityShenyangP.R. China
| | - Kaidirina Kasimu
- School of Clinical MedicineChina Medical UniversityShenyangP.R. China
| | - Allah Rakha
- Department of Forensic SciencesUniversity of Health Sciences LahoreLahorePakistan
| | - Guanglin He
- Department of Anthropology and EthnologyXiamen UniversityXiamenChina
| | - Tongya Yang
- Department of Human AnatomyCollege of Basic Medical ScienceChina Medical UniversityShenyangP.R. China
| | - Chuan‐Chao Wang
- Department of Anthropology and EthnologyXiamen UniversityXiamenChina
| | - Jie Lu
- Department of Human AnatomyCollege of Basic Medical ScienceChina Medical UniversityShenyangP.R. China
| | - Jin‐feng Xuan
- Department of Forensic Genetics and BiologySchool of Forensic MedicineChina Medical UniversityShenyangP.R. China
| |
Collapse
|
21
|
Ren Z, Guo J, He G, Zhang H, Zou X, Zhang H, Wang Q, Ji J, Yang M, Zhang J, Zhang Z, Nabijiang Y, Huang J, Wang CC. Forensic genetic polymorphisms and population structure of the Guizhou Bouyei people based on 19 X-STR loci. Ann Hum Biol 2019; 46:574-580. [PMID: 31795774 DOI: 10.1080/03014460.2019.1697362] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Background: Guizhou province is located in southwest China with abundant genetic, linguistic and cultural diversity. The Bouyei is one of the 18 officially recognised minority groups in Guizhou, accounting for about 97% of the total Bouyei population in China. However, the genetic history and forensic characterisation of the Bouyei people is largely unknown due to a lack of genetic data.Aim: We aim to investigate genetic polymorphisms and forensic characterisation of the Guizhou Bouyei population, as well as the relationships between the Bouyei and other East Asian populations.Subjects and methods: We genotyped 19 X-STRs in 188 males and 165 females of Guizhou Bouyei using the AGCU X19 STR Kit. We estimated allele frequencies, forensic parameters and genetic distances between the Bouyei and other East Asian populations. We presented the genetic distances in a phylogenetic tree, an MDS plot and a PCA plot.Results: In Guizhou Bouyei individuals, we observed 216 alleles with corresponding frequencies ranging from 0.0019 to 0.6757. All of the six combined powers of PDm, PDf, MEC Krüger, MEC Kishida, MEC Desmarais and MEC Desmarais in allele diversity and haplotype diversity are larger than 0.99999995. We found genetic affinities among the Bouyei people and their geographical neighbouring populations in Guizhou, such as the Sui, Miao and Han.Conclusions: The highly polymorphic and informative forensic parameters of the 19 X-STRs in Bouyei people show the powerful potential of those markers in forensic identification and parentage tests. The genetic relationships of the Bouyei with other East Asian populations correspond well with geographic affiliations as well as linguistic classifications.
Collapse
Affiliation(s)
- Zheng Ren
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, China
| | - Jianxin Guo
- Department of History, Department of Anthropology and Ethnology, Institute of Anthropology, National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China
| | - Guanglin He
- Department of History, Department of Anthropology and Ethnology, Institute of Anthropology, National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China.,Institute of Forensic Medicine, West China School of Basic Science and Forensic Medicine, Sichuan University, Chengdu, China
| | - Han Zhang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, China
| | - Xing Zou
- Institute of Forensic Medicine, West China School of Basic Science and Forensic Medicine, Sichuan University, Chengdu, China
| | - Hongling Zhang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, China
| | - Qiyan Wang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, China
| | - Jingyan Ji
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, China
| | - Meiqing Yang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, China
| | - Jing Zhang
- Department of History, Department of Anthropology and Ethnology, Institute of Anthropology, National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China
| | - Ziqian Zhang
- Department of History, Department of Anthropology and Ethnology, Institute of Anthropology, National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China
| | - Yilizhati Nabijiang
- Department of History, Department of Anthropology and Ethnology, Institute of Anthropology, National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China
| | - Jiang Huang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, China
| | - Chuan-Chao Wang
- Department of History, Department of Anthropology and Ethnology, Institute of Anthropology, National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
22
|
Luo Y, Wu Y, Qian E, Wang Q, Wang Q, Zhang H, Wang X, Zhang H, Yang M, Ji J, Ren Z, Zhang Y, Tang J, Huang J. Population genetic analysis of 36 Y-chromosomal STRs yields comprehensive insights into the forensic features and phylogenetic relationship of Chinese Tai-Kadai-speaking Bouyei. PLoS One 2019; 14:e0224601. [PMID: 31703068 PMCID: PMC6839857 DOI: 10.1371/journal.pone.0224601] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 10/17/2019] [Indexed: 11/18/2022] Open
Abstract
Male-specifically inherited Y-STRs, harboring the features of haploidy and lack of crossing over, have gained considerable attention in population genetics and forensic investigations. Goldeneye® Y-PLUS kit was a recently developed amplification system focused on the genetic diversity of 36 Y-chromosomal short tandem repeats (Y-STRs) in East Asians. However, no population data and corresponding forensic features were reported in China. Here, 36 Y-STRs were first genotyped in 400 unrelated healthy Tai-Kadai-speaking Bouyei male individuals. A total of 371 alleles and 396 haplotypes could be detected, and the allelic frequencies ranged from 0.0025 to 0.9875. The haplotype diversity, random match probability and discrimination capacity values were 0.9999, 0.0026 and 0.9900, respectively. The gene diversity (GD) of 36 Y-STR loci in the studied group ranged from 0.0248 (DYS645) to 0.9601 (DYS385a/b). Population comparisons between the Guizhou Bouyei and 80 reference groups were performed via the AMOVA, MDS, and phylogenetic relationship reconstruction. The results showed that the population stratification was almost consistent with the geographic distribution and language-family, both among Chinese and worldwide ethnic groups. Our newly genotyped Bouyei samples show a close affinity with other Tai-Kadai-speaking groups in China and Southeast Asia. Our data may provide useful information for paternal lineage in the forensic application and population genetics, as well as evidence for archaeological and historical research.
Collapse
Affiliation(s)
- Ya Luo
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, Guizhou, China
| | - Yan Wu
- Guiyang Judicial Expertise Center of Public Security, Guiyang, Guizhou, China
| | - Enfang Qian
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, Guizhou, China
| | - Qian Wang
- Guiyang Judicial Expertise Center of Public Security, Guiyang, Guizhou, China
| | - Qiyan Wang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, Guizhou, China
| | - Hongling Zhang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, Guizhou, China
| | - Xiaojuan Wang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, Guizhou, China
| | - Han Zhang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, Guizhou, China
| | - Meiqing Yang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, Guizhou, China
| | - Jingyan Ji
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, Guizhou, China
| | - Zheng Ren
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, Guizhou, China
| | - Ying Zhang
- Guiyang Judicial Expertise Center of Public Security, Guiyang, Guizhou, China
| | - Jing Tang
- Guiyang Judicial Expertise Center of Public Security, Guiyang, Guizhou, China
- * E-mail: (JT); (JH)
| | - Jiang Huang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, Guizhou, China
- * E-mail: (JT); (JH)
| |
Collapse
|
23
|
Population genetics, diversity and forensic characteristics of Tai–Kadai-speaking Bouyei revealed by insertion/deletions markers. Mol Genet Genomics 2019; 294:1343-1357. [DOI: 10.1007/s00438-019-01584-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Accepted: 05/30/2019] [Indexed: 12/13/2022]
|
24
|
Haplotypes of 27 Y-STRs analyzed in Gelao and Miao ethnic minorities from Guizhou Province, Southwest China. Forensic Sci Int Genet 2019; 40:e264-e267. [DOI: 10.1016/j.fsigen.2019.03.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 02/18/2019] [Accepted: 03/02/2019] [Indexed: 11/17/2022]
|
25
|
Chen P, He G, Xing H, Gao H, Wang M, Zhao M, Luo L, Wu J, Yu J, Han Y. Forensic characteristics and phylogenetic analysis of 23 Y-STR loci in the Miao population from Guizhou province, southwest China. Ann Hum Biol 2019; 46:84-87. [PMID: 30782017 DOI: 10.1080/03014460.2019.1583374] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
BACKGROUND Investigation of haplotype/allele frequency data of Y-STR loci in ethnically diverse populations is essential for forensic reference database construction and genetic application. However, the population genetic characteristics of the Chinese Miao minority from Guizhou Province remain uncharacterised. AIM To assess forensic characteristics for 23 Y-Chromosomal STR loci in Guizhou Miao and explore population genetic relationships with geographically neighbouring populations. SUBJECTS AND METHODS Twenty-three Y-Chromosomal STRs were genotyped using the Powerplex® Y23 system in 103 unrelated Chinese Miao males from Guizhou Province, southwest China. Haplotypes and forensic parameters were obtained. Population relationships of Guizhou Miao with others were revealed using AMOVA and an MDS plot. RESULTS A total of 96 haplotypes were identified with overall haplotype diversity (HD) and discrimination capacity (DC) of 0.9985 and 0.9320, respectively. Genetic differentiation was observed with most of the comparison populations, prominently for Guizhou Shui. CONCLUSION The 23 Y-STR loci were highly polymorphic and discriminating in the Guizhou Miao population and could be used for forensic practice and population genetic studies. Population relationship analysis revealed Guizhou Miao had a close genetic relationship with geographically close Guizhou Gelao, as well as Han majorities derived from different regions.
Collapse
Affiliation(s)
- Pengyu Chen
- a Center of Forensic Expertise , Affiliated Hospital of Zunyi Medical University , Zunyi , China.,b Department of Forensic Medicine , Zunyi Medical University , Zunyi , China
| | - Guanglin He
- c Institute of Forensic Medicine, West China School of Basic Science and Forensic Medicine , Sichuan University , Sichuan , China
| | - Hao Xing
- b Department of Forensic Medicine , Zunyi Medical University , Zunyi , China
| | - Hongyan Gao
- a Center of Forensic Expertise , Affiliated Hospital of Zunyi Medical University , Zunyi , China.,b Department of Forensic Medicine , Zunyi Medical University , Zunyi , China
| | - Menge Wang
- c Institute of Forensic Medicine, West China School of Basic Science and Forensic Medicine , Sichuan University , Sichuan , China
| | - Min Zhao
- a Center of Forensic Expertise , Affiliated Hospital of Zunyi Medical University , Zunyi , China.,b Department of Forensic Medicine , Zunyi Medical University , Zunyi , China
| | - Li Luo
- a Center of Forensic Expertise , Affiliated Hospital of Zunyi Medical University , Zunyi , China.,b Department of Forensic Medicine , Zunyi Medical University , Zunyi , China
| | - Jian Wu
- a Center of Forensic Expertise , Affiliated Hospital of Zunyi Medical University , Zunyi , China.,b Department of Forensic Medicine , Zunyi Medical University , Zunyi , China
| | - Jian Yu
- a Center of Forensic Expertise , Affiliated Hospital of Zunyi Medical University , Zunyi , China.,b Department of Forensic Medicine , Zunyi Medical University , Zunyi , China
| | - Yanyan Han
- d Department of Nutrition and Food Hygiene, School of Public Health , Zunyi Medical University , Zunyi , China
| |
Collapse
|