1
|
Yang S, Williams SJ, Courtney M, Burchill L. Warfare under the waves: a review of bacteria-derived algaecidal natural products. Nat Prod Rep 2025. [PMID: 39749862 DOI: 10.1039/d4np00038b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Covering: 1960s to 2024Harmful algal blooms pose a major threat to aquatic ecosystems and can impact human health. The frequency and intensity of these blooms has increased over recent decades, driven primarily by climate change and an increase in nutrient runoff. Algal blooms often produce toxins that contaminate water sources, disrupt fisheries, and harm human health. These blooms may also result in oxygen-deprived environments leading to mass fish deaths that threaten the survival of other aquatic life. In freshwater and estuarine ecosystems, traditional chemical strategies to mitigate algal blooms include the use of herbicides, metal salts, or oxidants. Though effective, these agents are non-selective, toxic to other species, and cause loss of biodiversity. They can persist in ecosystems, contaminating the food web and providing an impetus for cost-effective, targeted algal-control methods that protect ecosystems. In marine ecosystems, harmful algal blooms are even more challenging to treat due to the lack of scalable solutions and the challenge of dispersal of algal control agents in open ocean settings. Natural products derived from algae-bacteria interactions have led to the evolution of diverse bacteria-derived algaecidal natural products, which are highly potent, species specific and have potential for combating harmful algal blooms. They provide valuable starting points for the development of eco-friendly algae control methods. This review provides a comprehensive overview of all bacterial algaecides and their activities, categorized into two major groups: (1) algaecides produced in ecologically significant associations between bacteria and algae, and (2) algaecides with potentially coincidental activity but without an ecological role in specific bacteria-algae interactions. This review contributes to a better understanding of the chemical ecology of parasitic algal-bacterial interactions, "the warfare under the waves", and highlights the potential applications of bacteria-derived algaecides to provide solutions to harmful algal blooms.
Collapse
Affiliation(s)
- Shuxin Yang
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Spencer J Williams
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Myles Courtney
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Laura Burchill
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia.
| |
Collapse
|
2
|
Castro-Falcón G, Straetener J, Bornikoel J, Reimer D, Purdy TN, Berscheid A, Schempp FM, Liu DY, Linington RG, Brötz-Oesterhelt H, Hughes CC. Antibacterial Marinopyrroles and Pseudilins Act as Protonophores. ACS Chem Biol 2024; 19:743-752. [PMID: 38377384 PMCID: PMC10949930 DOI: 10.1021/acschembio.3c00773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 12/27/2023] [Indexed: 02/22/2024]
Abstract
Elucidating the mechanism of action (MoA) of antibacterial natural products is crucial to evaluating their potential as novel antibiotics. Marinopyrroles, pentachloropseudilin, and pentabromopseudilin are densely halogenated, hybrid pyrrole-phenol natural products with potent activity against Gram-positive bacterial pathogens like Staphylococcus aureus. However, the exact way they exert this antibacterial activity has not been established. In this study, we explore their structure-activity relationship, determine their spatial location in bacterial cells, and investigate their MoA. We show that the natural products share a common MoA based on membrane depolarization and dissipation of the proton motive force (PMF) that is essential for cell viability. The compounds show potent protonophore activity but do not appear to destroy the integrity of the cytoplasmic membrane via the formation of larger pores or interfere with the stability of the peptidoglycan sacculus. Thus, our current model for the antibacterial MoA of marinopyrrole, pentachloropseudilin, and pentabromopseudilin stipulates that the acidic compounds insert into the membrane and transport protons inside the cell. This MoA may explain many of the deleterious biological effects in mammalian cells, plants, phytoplankton, viruses, and protozoans that have been reported for these compounds.
Collapse
Affiliation(s)
- Gabriel Castro-Falcón
- Center
for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, California 92093, United States
| | - Jan Straetener
- Department
of Microbial Bioactive Compounds, Interfaculty Institute of Microbiology
and Infection Medicine, University of Tübingen, Tübingen 72076, Germany
| | - Jan Bornikoel
- Department
of Microbial Bioactive Compounds, Interfaculty Institute of Microbiology
and Infection Medicine, University of Tübingen, Tübingen 72076, Germany
| | - Daniela Reimer
- Center
for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, California 92093, United States
| | - Trevor N. Purdy
- Center
for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, California 92093, United States
| | - Anne Berscheid
- Department
of Microbial Bioactive Compounds, Interfaculty Institute of Microbiology
and Infection Medicine, University of Tübingen, Tübingen 72076, Germany
| | - Florence M. Schempp
- Center
for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, California 92093, United States
| | - Dennis Y. Liu
- Department
of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Roger G. Linington
- Department
of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Heike Brötz-Oesterhelt
- Department
of Microbial Bioactive Compounds, Interfaculty Institute of Microbiology
and Infection Medicine, University of Tübingen, Tübingen 72076, Germany
- Cluster
of Excellence EXC 2124: Controlling Microbes to Fight Infection, University of Tübingen, Tübingen 72076, Germany
- German
Center for Infection Research, Partner Site Tübingen, Tübingen 72076, Germany
| | - Chambers C. Hughes
- Center
for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, California 92093, United States
- Department
of Microbial Bioactive Compounds, Interfaculty Institute of Microbiology
and Infection Medicine, University of Tübingen, Tübingen 72076, Germany
- Cluster
of Excellence EXC 2124: Controlling Microbes to Fight Infection, University of Tübingen, Tübingen 72076, Germany
- German
Center for Infection Research, Partner Site Tübingen, Tübingen 72076, Germany
| |
Collapse
|
3
|
Kuhlisch C, Shemi A, Barak-Gavish N, Schatz D, Vardi A. Algal blooms in the ocean: hot spots for chemically mediated microbial interactions. Nat Rev Microbiol 2024; 22:138-154. [PMID: 37833328 DOI: 10.1038/s41579-023-00975-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/14/2023] [Indexed: 10/15/2023]
Abstract
The cycling of major nutrients in the ocean is affected by large-scale phytoplankton blooms, which are hot spots of microbial life. Diverse microbial interactions regulate bloom dynamics. At the single-cell level, interactions between microorganisms are mediated by small molecules in the chemical crosstalk that determines the type of interaction, ranging from mutualism to pathogenicity. Algae interact with viruses, bacteria, parasites, grazers and other algae to modulate algal cell fate, and these interactions are dependent on the environmental context. Recent advances in mass spectrometry and single-cell technologies have led to the discovery of a growing number of infochemicals - metabolites that convey information - revealing the ability of algal cells to govern biotic interactions in the ocean. The diversity of infochemicals seems to account for the specificity in cellular response during microbial communication. Given the immense impact of algal blooms on biogeochemical cycles and climate regulation, a major challenge is to elucidate how microscale interactions control the fate of carbon and the recycling of major elements in the ocean. In this Review, we discuss microbial interactions and the role of infochemicals in algal blooms. We further explore factors that can impact microbial interactions and the available tools to decipher them in the natural environment.
Collapse
Affiliation(s)
- Constanze Kuhlisch
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Adva Shemi
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Noa Barak-Gavish
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | - Daniella Schatz
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Assaf Vardi
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
4
|
González-Pech RA, Li VY, Garcia V, Boville E, Mammone M, Kitano H, Ritchie KB, Medina M. The Evolution, Assembly, and Dynamics of Marine Holobionts. ANNUAL REVIEW OF MARINE SCIENCE 2024; 16:443-466. [PMID: 37552896 DOI: 10.1146/annurev-marine-022123-104345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
The holobiont concept (i.e., multiple living beings in close symbiosis with one another and functioning as a unit) is revolutionizing our understanding of biology, especially in marine systems. The earliest marine holobiont was likely a syntrophic partnership of at least two prokaryotic members. Since then, symbiosis has enabled marine organisms to conquer all ocean habitats through the formation of holobionts with a wide spectrum of complexities. However, most scientific inquiries have focused on isolated organisms and their adaptations to specific environments. In this review, we attempt to illustrate why a holobiont perspective-specifically, the study of how numerous organisms form a discrete ecological unit through symbiosis-will be a more impactful strategy to advance our understanding of the ecology and evolution of marine life. We argue that this approach is instrumental in addressing the threats to marine biodiversity posed by the current global environmental crisis.
Collapse
Affiliation(s)
- Raúl A González-Pech
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, USA; , , , , ,
| | - Vivian Y Li
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, USA; , , , , ,
| | - Vanessa Garcia
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, USA; , , , , ,
| | - Elizabeth Boville
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, USA; , , , , ,
| | - Marta Mammone
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, USA; , , , , ,
| | | | - Kim B Ritchie
- Department of Natural Sciences, University of South Carolina, Beaufort, South Carolina, USA;
| | - Mónica Medina
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, USA; , , , , ,
| |
Collapse
|
5
|
Turnlund AC, Vanwonterghem I, Botté ES, Randall CJ, Giuliano C, Kam L, Bell S, O'Brien P, Negri AP, Webster NS, Lurgi M. Linking differences in microbial network structure with changes in coral larval settlement. ISME COMMUNICATIONS 2023; 3:114. [PMID: 37865659 PMCID: PMC10590418 DOI: 10.1038/s43705-023-00320-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 09/27/2023] [Accepted: 10/06/2023] [Indexed: 10/23/2023]
Abstract
Coral cover and recruitment have decreased on reefs worldwide due to climate change-related disturbances. Achieving reliable coral larval settlement under aquaculture conditions is critical for reef restoration programmes; however, this can be challenging due to the lack of reliable and universal larval settlement cues. To investigate the role of microorganisms in coral larval settlement, we undertook a settlement choice experiment with larvae of the coral Acropora tenuis and microbial biofilms grown for different periods on the reef and in aquaria. Biofilm community composition across conditioning types and time was profiled using 16S and 18S rRNA gene sequencing. Co-occurrence networks revealed that strong larval settlement correlated with diverse biofilm communities, with specific nodes in the network facilitating connections between modules comprised of low- vs high-settlement communities. Taxa associated with high-settlement communities were identified as Myxoccales sp., Granulosicoccus sp., Alcanivoraceae sp., unassigned JTB23 sp. (Gammaproteobacteria), and Pseudovibrio denitrificans. Meanwhile, taxa closely related to Reichenbachiella agariperforans, Pleurocapsa sp., Alcanivorax sp., Sneathiella limmimaris, as well as several diatom and brown algae were associated with low settlement. Our results characterise high-settlement biofilm communities and identify transitionary taxa that may develop settlement-inducing biofilms to improve coral larval settlement in aquaculture.
Collapse
Affiliation(s)
- Abigail C Turnlund
- The University of Queensland, School of Chemistry and Molecular Biosciences, Australian Centre for Ecogenomics, St Lucia, QLD, 4072, Australia
| | - Inka Vanwonterghem
- The University of Queensland, School of Chemistry and Molecular Biosciences, Australian Centre for Ecogenomics, St Lucia, QLD, 4072, Australia
| | - Emmanuelle S Botté
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, Australia
- Australian Institute of Marine Science, Townsville, QLD, Australia
| | - Carly J Randall
- Australian Institute of Marine Science, Townsville, QLD, Australia
| | | | - Lisa Kam
- Australian Institute of Marine Science, Townsville, QLD, Australia
| | - Sara Bell
- Australian Institute of Marine Science, Townsville, QLD, Australia
| | - Paul O'Brien
- The University of Queensland, School of Chemistry and Molecular Biosciences, Australian Centre for Ecogenomics, St Lucia, QLD, 4072, Australia
| | - Andrew P Negri
- Australian Institute of Marine Science, Townsville, QLD, Australia
| | - Nicole S Webster
- The University of Queensland, School of Chemistry and Molecular Biosciences, Australian Centre for Ecogenomics, St Lucia, QLD, 4072, Australia
- Australian Institute of Marine Science, Townsville, QLD, Australia
- Department of Climate Change, Energy, the Environment and Water, Australian Antarctic Division, Kingston, ACT, Australia
| | - Miguel Lurgi
- Department of Biosciences, Swansea University, Swansea, SA2 8PP, UK.
| |
Collapse
|
6
|
Alker AT, Farrell MV, Demko AM, Purdy TN, Adak S, Moore BS, Sneed JM, Paul VJ, Shikuma NJ. Linking bacterial tetrabromopyrrole biosynthesis to coral metamorphosis. ISME COMMUNICATIONS 2023; 3:98. [PMID: 37726481 PMCID: PMC10509201 DOI: 10.1038/s43705-023-00309-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 08/30/2023] [Accepted: 09/11/2023] [Indexed: 09/21/2023]
Abstract
An important factor dictating coral fitness is the quality of bacteria associated with corals and coral reefs. One way that bacteria benefit corals is by stimulating the larval to juvenile life cycle transition of settlement and metamorphosis. Tetrabromopyrrole (TBP) is a small molecule produced by bacteria that stimulates metamorphosis with and without attachment in a range of coral species. A standing debate remains, however, about whether TBP biosynthesis from live Pseudoalteromonas bacteria is the primary stimulant of coral metamorphosis. In this study, we create a Pseudoalteromonas sp. PS5 mutant lacking the TBP brominase gene, bmp2. Using this mutant, we confirm that the bmp2 gene is critical for TBP biosynthesis in Pseudoalteromonas sp. PS5. Mutation of this gene ablates the bacterium's ability in live cultures to stimulate the metamorphosis of the stony coral Porites astreoides. We further demonstrate that expression of TBP biosynthesis genes is strongest in stationary and biofilm modes of growth, where Pseudoalteromonas sp. PS5 might exist within surface-attached biofilms on the sea floor. Finally, we create a modular transposon plasmid for genomic integration and fluorescent labeling of Pseudoalteromonas sp. PS5 cells. Our results functionally link a TBP biosynthesis gene from live bacteria to a morphogenic effect in corals. The genetic techniques established here provide new tools to explore coral-bacteria interactions and could help to inform future decisions about utilizing marine bacteria or their products for coral restoration.
Collapse
Affiliation(s)
- Amanda T Alker
- Department of Biology and Viral Information Institute, San Diego State University, San Diego, CA, 92182, USA
| | - Morgan V Farrell
- Department of Biology and Viral Information Institute, San Diego State University, San Diego, CA, 92182, USA
| | | | - Trevor N Purdy
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Sanjoy Adak
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Bradley S Moore
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, 92093, USA
| | | | | | - Nicholas J Shikuma
- Department of Biology and Viral Information Institute, San Diego State University, San Diego, CA, 92182, USA.
| |
Collapse
|
7
|
Alker AT, Farrell MV, Demko AM, Purdy TN, Adak S, Moore BS, Sneed JM, Paul VJ, Shikuma NJ. Linking bacterial tetrabromopyrrole biosynthesis to coral metamorphosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.08.539906. [PMID: 37214991 PMCID: PMC10197590 DOI: 10.1101/2023.05.08.539906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
An important factor dictating coral fitness is the quality of bacteria associated with corals and coral reefs. One way that bacteria benefit corals is by stimulating the larval to juvenile life cycle transition of settlement and metamorphosis. Tetrabromopyrrole (TBP) is a small molecule produced by bacteria that stimulates metamorphosis in a range of coral species. A standing debate remains, however, about whether TBP biosynthesis from live Pseudoalteromonas bacteria is the primary stimulant of coral metamorphosis. In this study, we create a Pseudoalteromonas sp. PS5 mutant lacking the TBP brominase gene, bmp2 . Using this mutant, we confirm that the bmp2 gene is critical for TBP biosynthesis in Pseudoalteromonas sp. PS5. Mutation of this gene ablates the bacterium's ability in live cultures to stimulate the metamorphosis of the stony coral Porites astreoides . We further demonstrate that expression of TBP biosynthesis genes is strongest in stationary and biofilm modes of growth, where Pseudoalteromonas sp. PS5 might exist within surface-attached biofilms on the sea floor. Finally, we create a modular transposon plasmid for genomic integration and fluorescent labeling of Pseudoalteromonas sp. PS5 cells. Our results functionally link a TBP biosynthesis gene from live bacteria to a morphogenic effect in corals. The genetic techniques established here provide new tools to explore coral-bacteria interactions and could help to inform future decisions about utilizing marine bacteria or their products for restoring degraded coral reefs.
Collapse
|
8
|
Ushijima B, Gunasekera SP, Meyer JL, Tittl J, Pitts KA, Thompson S, Sneed JM, Ding Y, Chen M, Jay Houk L, Aeby GS, Häse CC, Paul VJ. Chemical and genomic characterization of a potential probiotic treatment for stony coral tissue loss disease. Commun Biol 2023; 6:248. [PMID: 37024599 PMCID: PMC10079959 DOI: 10.1038/s42003-023-04590-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 02/14/2023] [Indexed: 04/08/2023] Open
Abstract
Considered one of the most devastating coral disease outbreaks in history, stony coral tissue loss disease (SCTLD) is currently spreading throughout Florida's coral reefs and the greater Caribbean. SCTLD affects at least two dozen different coral species and has been implicated in extensive losses of coral cover. Here we show Pseudoalteromonas sp. strain McH1-7 has broad-spectrum antibacterial activity against SCTLD-associated bacterial isolates. Chemical analyses indicated McH1-7 produces at least two potential antibacterials, korormicin and tetrabromopyrrole, while genomic analysis identified the genes potentially encoding an L-amino acid oxidase and multiple antibacterial metalloproteases (pseudoalterins). During laboratory trials, McH1-7 arrested or slowed disease progression on 68.2% of diseased Montastraea cavernosa fragments treated (n = 22), and it prevented disease transmission by 100% (n = 12). McH1-7 is the most chemically characterized coral probiotic that is an effective prophylactic and direct treatment for the destructive SCTLD as well as a potential alternative to antibiotic use.
Collapse
Affiliation(s)
- Blake Ushijima
- Department of Biology & Marine Biology, University of North Carolina Wilmington, Wilmington, NC, 28403, USA.
- Smithsonian Marine Station at Fort Pierce, Fort Piece, FL, 34949, USA.
| | | | - Julie L Meyer
- Department of Soil, Water, and Ecosystem Sciences Department, University of Florida, Gainesville, FL, 32611, USA
| | - Jessica Tittl
- Department of Soil, Water, and Ecosystem Sciences Department, University of Florida, Gainesville, FL, 32611, USA
| | - Kelly A Pitts
- Smithsonian Marine Station at Fort Pierce, Fort Piece, FL, 34949, USA
| | - Sharon Thompson
- Smithsonian Marine Station at Fort Pierce, Fort Piece, FL, 34949, USA
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, 32611, USA
| | - Jennifer M Sneed
- Smithsonian Marine Station at Fort Pierce, Fort Piece, FL, 34949, USA
| | - Yousong Ding
- Department of Medicinal Chemistry, University of Florida, Gainesville, FL, 32611, USA
| | - Manyun Chen
- Department of Medicinal Chemistry, University of Florida, Gainesville, FL, 32611, USA
| | - L Jay Houk
- Smithsonian Marine Station at Fort Pierce, Fort Piece, FL, 34949, USA
| | - Greta S Aeby
- Smithsonian Marine Station at Fort Pierce, Fort Piece, FL, 34949, USA
| | - Claudia C Häse
- Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR, 97331, USA
| | - Valerie J Paul
- Smithsonian Marine Station at Fort Pierce, Fort Piece, FL, 34949, USA.
| |
Collapse
|
9
|
Bartolek Z, Creveld SGV, Coesel S, Cain KR, Schatz M, Morales R, Virginia Armbrust E. Flavobacterial exudates disrupt cell cycle progression and metabolism of the diatom Thalassiosira pseudonana. THE ISME JOURNAL 2022; 16:2741-2751. [PMID: 36104452 PMCID: PMC9666458 DOI: 10.1038/s41396-022-01313-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 08/22/2022] [Accepted: 08/24/2022] [Indexed: 12/15/2022]
Abstract
Phytoplankton and bacteria form the base of marine ecosystems and their interactions drive global biogeochemical cycles. The effects of bacteria and bacteria-produced compounds on diatoms range from synergistic to pathogenic and can affect the physiology and transcriptional patterns of the interacting diatom. Here, we investigate physiological and transcriptional changes in the marine diatom Thalassiosira pseudonana induced by extracellular metabolites of a known antagonistic bacterium Croceibacter atlanticus. Mono-cultures of C. atlanticus released compounds that inhibited diatom cell division and elicited a distinctive morphology of enlarged cells with increased chloroplast content and enlarged nuclei, similar to what was previously observed when the diatom was co-cultured with live bacteria. The extracellular C. atlanticus metabolites induced transcriptional changes in diatom pathways that include recognition and signaling pathways, cell cycle regulation, carbohydrate and amino acid production, as well as cell wall stability. Phenotypic analysis showed a disruption in the diatom cell cycle progression and an increase in both intra- and extracellular carbohydrates in diatom cultures after bacterial exudate treatment. The transcriptional changes and corresponding phenotypes suggest that extracellular bacterial metabolites, produced independently of direct bacterial-diatom interaction, may modulate diatom metabolism in ways that support bacterial growth.
Collapse
Affiliation(s)
- Zinka Bartolek
- School of Oceanography, University of Washington, Seattle, WA, 98195, USA
| | | | - Sacha Coesel
- School of Oceanography, University of Washington, Seattle, WA, 98195, USA
| | - Kelsy R Cain
- School of Oceanography, University of Washington, Seattle, WA, 98195, USA
| | - Megan Schatz
- School of Oceanography, University of Washington, Seattle, WA, 98195, USA
| | - Rhonda Morales
- School of Oceanography, University of Washington, Seattle, WA, 98195, USA
| | | |
Collapse
|
10
|
Eliason O, Segev E. Coccolith Sr/Ca is a robust temperature and growth rate indicator that withstands dynamic microbial interactions. GEOBIOLOGY 2022; 20:435-443. [PMID: 35048494 PMCID: PMC9305965 DOI: 10.1111/gbi.12487] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 12/06/2021] [Accepted: 01/06/2022] [Indexed: 06/14/2023]
Abstract
Coccolithophores are a diverse group of calcifying microalgae that have left a prominent fossil record on Earth. Various coccolithophore relics, both organic and inorganic, serve as proxies for reconstruction of past oceanic conditions. Emiliania huxleyi is the most widely distributed representative of the coccolithophores in modern oceans and is known to engage in dynamic interactions with bacteria. Algal-bacterial interactions influence various aspects of algal physiology and alter algal alkenone unsaturation (UK'37 ), a frequently used organic coccolithophore-derived paleo-temperature proxy. Whether algal-bacterial interactions influence inorganic coccolithophore-derived paleo-proxies is yet unknown. A commonly used inorganic proxy for past productivity and sea surface temperature is the Sr/Ca ratio of the coccolith calcite. Interestingly, during interactions between bacteria and a population of calcifying algae, bacteria were shown to physically attach only to non-calcified algal cells, suggesting an influence on algal calcification. In this study, we explore the effects of algal-bacterial interactions on calcification and coccolith Sr/Ca ratios. We find that while bacteria attach only to non-calcified algal cells, coccolith cell coverage and overall calcite production in algal populations with and without bacteria is similar. Furthermore, we find that Sr/Ca values are impacted only by water temperature and algal growth rate, regardless of bacterial influences on algal physiology. Our observations reinforce the robustness of coccolith Sr/Ca ratios as a paleo-proxy independent of microbial interactions and highlight a fundamental difference between organic and inorganic paleo-proxies.
Collapse
Affiliation(s)
- Or Eliason
- Department of Plant and Environmental SciencesWeizmann Institute of ScienceRehovotIsrael
| | - Einat Segev
- Department of Plant and Environmental SciencesWeizmann Institute of ScienceRehovotIsrael
| |
Collapse
|
11
|
Coyne KJ, Wang Y, Johnson G. Algicidal Bacteria: A Review of Current Knowledge and Applications to Control Harmful Algal Blooms. Front Microbiol 2022; 13:871177. [PMID: 35464927 PMCID: PMC9022068 DOI: 10.3389/fmicb.2022.871177] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/01/2022] [Indexed: 12/19/2022] Open
Abstract
Interactions between bacteria and phytoplankton in aqueous ecosystems are both complex and dynamic, with associations that range from mutualism to parasitism. This review focuses on algicidal interactions, in which bacteria are capable of controlling algal growth through physical association or the production of algicidal compounds. While there is some evidence for bacterial control of algal growth in the field, our understanding of these interactions is largely based on laboratory culture experiments. Here, the range of these algicidal interactions is discussed, including specificity of bacterial control, mechanisms for activity, and insights into the chemical and biochemical analysis of these interactions. The development of algicidal bacteria or compounds derived from bacteria for control of harmful algal blooms is reviewed with a focus on environmentally friendly or sustainable methods of application. Potential avenues for future research and further development and application of bacterial algicides for the control of algal blooms are presented.
Collapse
Affiliation(s)
- Kathryn J. Coyne
- College of Earth, Ocean, and Environment, University of Delaware, Lewes, DE, United States
| | | | | |
Collapse
|
12
|
Font-Muñoz JS, Sourisseau M, Cohen-Sánchez A, Tuval I, Basterretxea G. Pelagic diatoms communicate through synchronized beacon natural fluorescence signaling. SCIENCE ADVANCES 2021; 7:eabj5230. [PMID: 34910521 PMCID: PMC8673755 DOI: 10.1126/sciadv.abj5230] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 10/27/2021] [Indexed: 06/14/2023]
Abstract
Communication between conspecific individuals is an essential part of life both in terrestrial and marine realms. Until recently, social behavior in marine phytoplankton was assumed to rely mainly on the secretion of a variety of infochemicals that allowed population-scale collective responses. Here, we demonstrate that pelagic diatoms also use Sun-stimulated fluorescence signals for synchronizing their behavior. These unicellular microorganisms, playing a key biogeochemical role in the ocean, use photoreceptor proteins and red–far-red fluorescent radiation to communicate. A characteristic beaconing signal is generated by rhythmic organelle displacement within the cell cytoplasm, triggering coordinated population behavior. These light-based communication networks could critically determine major facets of diatom ecology and fitness and regulate the dynamics of larger-scale ocean processes.
Collapse
Affiliation(s)
- Joan S. Font-Muñoz
- IFREMER, French Institute for Sea Research, DYNECO PELAGOS, 29280 Plouzané, France
- Université de Brest-UBO/CNRS/IFREMER/IRD, 29238 Brest, France
| | - Marc Sourisseau
- IFREMER, French Institute for Sea Research, DYNECO PELAGOS, 29280 Plouzané, France
| | - Amanda Cohen-Sánchez
- Mediterranean Institute for Advanced Studies, IMEDEA (UIB-CSIC), Miquel Marques 21, 07190 Esporles, Balearic Islands, Spain
| | - Idan Tuval
- Mediterranean Institute for Advanced Studies, IMEDEA (UIB-CSIC), Miquel Marques 21, 07190 Esporles, Balearic Islands, Spain
- Department of Physics, University of the Balearic Islands, Ctra. Valldemossa Km. 7.5, 07122 Palma, Balearic Islands, Spain
| | - Gotzon Basterretxea
- Mediterranean Institute for Advanced Studies, IMEDEA (UIB-CSIC), Miquel Marques 21, 07190 Esporles, Balearic Islands, Spain
| |
Collapse
|
13
|
Zheng J, Antrobus S, Feng W, Purdy TN, Moore BS, Pessah IN. Marine and Anthropogenic Bromopyrroles Alter Cellular Ca 2+ Dynamics of Murine Cortical Neuronal Networks by Targeting the Ryanodine Receptor and Sarco/Endoplasmic Reticulum Ca 2+-ATPase. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:16023-16033. [PMID: 34788016 PMCID: PMC8813095 DOI: 10.1021/acs.est.1c05214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Bromopyrroles (BrPyr) are synthesized naturally by marine sponge symbionts and produced anthropogenically as byproducts of wastewater treatment. BrPyr interact with ryanodine receptors (RYRs) and sarco/endoplasmic reticulum (SR/ER) Ca2+-ATPase (SERCA). Influences of BrPyr on the neuronal network activity remain uncharted. BrPyr analogues with differing spectra of RYR/SERCA activities were tested using RYR-null or RYR1-expressing HEK293 and murine cortical neuronal/glial cocultures (NGCs) loaded with Fluo-4 to elucidate their mechanisms altering Ca2+ dynamics. The NGC electrical spike activity (ESA) was measured from NGCs plated on multielectrode arrays. Nanomolar tetrabromopyrrole (TBP, 1) potentiated caffeine-triggered Ca2+ release independent of extracellular [Ca2+] in RYR1-HEK293, whereas higher concentrations produce slow and sustained rise in cytoplasmic [Ca2+] independent of RYR1 expression. TBP, 2,3,5-tribromopyrrole (2), pyrrole (3), 2,3,4-tribromopyrrole (4), and ethyl 4-bromopyrrole-2-carboxylate (5) added acutely to NGC showed differential potency; rank order TBP (IC50 ≈ 220 nM) > 2 ≫ 5, whereas 3 and 4 were inactive at 10 μM. TBP >2 μM elicited sustained elevation of cytoplasmic [Ca2+] and loss of neuronal viability. TBP did not alter network ESA. BrPyr from marine and anthropogenic sources are ecological signaling molecules and emerging anthropogenic pollutants of concern to environmental and human health that potently alter ER Ca2+ dynamics and warrant further investigation in vivo.
Collapse
Affiliation(s)
- Jing Zheng
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, California 95616, United States
| | - Shane Antrobus
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, California 95616, United States
| | - Wei Feng
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, California 95616, United States
| | - Trevor N Purdy
- Center for Marine Biotechnology and Biomedicine, University of California, San Diego, California 92037, United States
- Scripps Institution of Oceanography, University of California, San Diego, California 92037, United States
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, California 92037, United States
| | - Bradley S Moore
- Center for Marine Biotechnology and Biomedicine, University of California, San Diego, California 92037, United States
- Scripps Institution of Oceanography, University of California, San Diego, California 92037, United States
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, California 92037, United States
| | - Isaac N Pessah
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, California 95616, United States
| |
Collapse
|
14
|
Resolving the microalgal gene landscape at the strain level: A novel hybrid transcriptome of Emiliania huxleyi CCMP3266. Appl Environ Microbiol 2021; 88:e0141821. [PMID: 34757817 DOI: 10.1128/aem.01418-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Microalgae are key ecological players with a complex evolutionary history. Genomic diversity, in addition to limited availability of high-quality genomes, challenge studies that aim to elucidate molecular mechanisms underlying microalgal ecophysiology. Here, we present a novel and comprehensive transcriptomic hybrid approach to generate a reference for genetic analyses, and resolve the microalgal gene landscape at the strain level. The approach is demonstrated for a strain of the coccolithophore microalga Emiliania huxleyi, which is a species complex with considerable genome variability. The investigated strain is commonly studied as a model for algal-bacterial interactions, and was therefore sequenced in the presence of bacteria to elicit the expression of interaction-relevant genes. We applied complementary PacBio Iso-Seq full-length cDNA, and poly(A)-independent Illumina total RNA sequencing, which resulted in a de novo assembled, near complete hybrid transcriptome. In particular, hybrid sequencing improved the reconstruction of long transcripts and increased the recovery of full-length transcript isoforms. To use the resulting hybrid transcriptome as a reference for genetic analyses, we demonstrate a method that collapses the transcriptome into a genome-like dataset, termed "synthetic genome" (sGenome). We used the sGenome as a reference to visually confirm the robustness of the CCMP3266 gene assembly, to conduct differential gene expression analysis, and to characterize novel E. huxleyi genes. The newly-identified genes contribute to our understanding of E. huxleyi genome diversification, and are predicted to play a role in microbial interactions. Our transcriptomic toolkit can be implemented in various microalgae to facilitate mechanistic studies on microalgal diversity and ecology. Importance Microalgae are key players in the ecology and biogeochemistry of our oceans. Efforts to implement genomic and transcriptomic tools in laboratory studies involving microalgae suffer from the lack of published genomes. In the case of coccolithophore microalgae, the problem has long been recognized; the model species Emiliania huxleyi is a species complex with genomes composed of a core, and a large variable portion. To study the role of the variable portion in niche adaptation, and specifically in microbial interactions, strain-specific genetic information is required. Here we present a novel transcriptomic hybrid approach, and generated strain-specific genome-like information. We demonstrate our approach on an E. huxleyi strain that is co-cultivated with bacteria. By constructing a "synthetic genome", we generated comprehensive gene annotations that enabled accurate analyses of gene expression patterns. Importantly, we unveiled novel genes in the variable portion of E. huxleyi that play putative roles in microbial interactions.
Collapse
|
15
|
Eliseikina MG, Beleneva IA, Kukhlevsky AD, Shamshurina EV. Identification and analysis of the biological activity of the new strain of Pseudoalteromonas piscicida isolated from the hemal fluid of the bivalve Modiolus kurilensis (F. R. Bernard, 1983). Arch Microbiol 2021; 203:4461-4473. [PMID: 34142183 DOI: 10.1007/s00203-021-02432-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 06/06/2021] [Accepted: 06/09/2021] [Indexed: 10/21/2022]
Abstract
A cultivated form of bacteria (strain 2202) was isolated from the hemal fluid of the bivalve mollusk Modiolus kurilensis. Based on the set of data collected by genetic and physiological/biochemical analyses, the strain was identified as the species Pseudoalteromonas piscicida. Strain 2202 exhibits antimicrobial activity against Staphylococcus aureus, Candida albicans, and Bacillus subtilis but not against Escherichia coli and Pseudomonas aeruginosa. These activities characterize the behavior of strain 2202 as predator-like and classify it as a facultative predator. Being part of the normal microflora in the hemolymph of M. kurilensis, when external conditions change, strain 2202 shows features of opportunistic microflora. The strain 2202 exhibits selective toxicity towards larvae of various invertebrates: it impairs the early development of Mytilus edulis, but not of Strongylocentrotus nudus. Thus, the selective manner in which P. piscicida strains interact with various species of microorganisms and eukaryotes should be taken into consideration when using their biotechnological potential as a probiotic in aquaculture, source of antimicrobial substances, and factors that prevent fouling.
Collapse
Affiliation(s)
- Marina G Eliseikina
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, ul. Palchevskogo 17, Vladivostok, 690041, Russia.
| | - Irina A Beleneva
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, ul. Palchevskogo 17, Vladivostok, 690041, Russia
| | - Andrey D Kukhlevsky
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, ul. Palchevskogo 17, Vladivostok, 690041, Russia
| | - Ekaterina V Shamshurina
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, ul. Palchevskogo 17, Vladivostok, 690041, Russia
| |
Collapse
|
16
|
Paulsen SS, Isbrandt T, Kirkegaard M, Buijs Y, Strube ML, Sonnenschein EC, Larsen TO, Gram L. Production of the antimicrobial compound tetrabromopyrrole and the Pseudomonas quinolone system precursor, 2-heptyl-4-quinolone, by a novel marine species Pseudoalteromonas galatheae sp. nov. Sci Rep 2020; 10:21630. [PMID: 33303891 PMCID: PMC7730127 DOI: 10.1038/s41598-020-78439-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 11/25/2020] [Indexed: 01/23/2023] Open
Abstract
Novel antimicrobials are urgently needed due to the rapid spread of antibiotic resistant bacteria. In a genome-wide analysis of Pseudoalteromonas strains, one strain (S4498) was noticed due to its potent antibiotic activity. It did not produce the yellow antimicrobial pigment bromoalterochromide, which was produced by several related type strains with which it shared less than 95% average nucleotide identity. Also, it produced a sweet-smelling volatile not observed from other strains. Mining the genome of strain S4498 using the secondary metabolite prediction tool antiSMASH led to eight biosynthetic gene clusters with no homology to known compounds, and synteny analyses revealed that the yellow pigment bromoalterochromide was likely lost during evolution. Metabolome profiling of strain S4498 using HPLC-HRMS analyses revealed marked differences to the type strains. In particular, a series of quinolones known as pseudanes were identified and verified by NMR. The characteristic odor of the strain was linked to the pseudanes. The highly halogenated compound tetrabromopyrrole was detected as the major antibacterial component by bioassay-guided fractionation. Taken together, the polyphasic analysis demonstrates that strain S4498 belongs to a novel species within the genus Pseudoalteromonas, and we propose the name Pseudoalteromonas galatheae sp. nov. (type strain S4498T = NCIMB 15250T = LMG 31599T).
Collapse
Affiliation(s)
- Sara Skøtt Paulsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 221, 2800, Kgs. Lyngby, Denmark
| | - Thomas Isbrandt
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 221, 2800, Kgs. Lyngby, Denmark
| | - Markus Kirkegaard
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 221, 2800, Kgs. Lyngby, Denmark
| | - Yannick Buijs
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 221, 2800, Kgs. Lyngby, Denmark
| | - Mikael Lenz Strube
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 221, 2800, Kgs. Lyngby, Denmark
| | - Eva C Sonnenschein
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 221, 2800, Kgs. Lyngby, Denmark
| | - Thomas O Larsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 221, 2800, Kgs. Lyngby, Denmark
| | - Lone Gram
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 221, 2800, Kgs. Lyngby, Denmark.
| |
Collapse
|
17
|
Alker AT, Delherbe N, Purdy TN, Moore BS, Shikuma NJ. Genetic examination of the marine bacterium Pseudoalteromonas luteoviolacea and effects of its metamorphosis-inducing factors. Environ Microbiol 2020; 22:4689-4701. [PMID: 32840026 PMCID: PMC8214333 DOI: 10.1111/1462-2920.15211] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/14/2020] [Accepted: 08/22/2020] [Indexed: 12/13/2022]
Abstract
Pseudoalteromonas luteoviolacea is a globally distributed marine bacterium that stimulates the metamorphosis of marine animal larvae, an important bacteria-animal interaction that can promote the recruitment of animals to benthic ecosystems. Recently, different P. luteoviolacea isolates have been shown to produce two stimulatory factors that can induce tubeworm and coral metamorphosis; Metamorphosis-Associated Contractile structures (MACs) and tetrabromopyrrole (TBP) respectively. However, it remains unclear what proportion of P. luteoviolacea isolates possess the genes encoding MACs, and what phenotypic effect MACs and TBP have on other larval species. Here, we show that 9 of 19 sequenced P. luteoviolacea genomes genetically encode both MACs and TBP. While P. luteoviolacea biofilms producing MACs stimulate the metamorphosis of the tubeworm Hydroides elegans, TBP biosynthesis genes had no effect under the conditions tested. Although MACs are lethal to larvae of the cnidarian Hydractinia symbiologicarpus, P. luteoviolacea mutants unable to produce MACs are capable of stimulating metamorphosis. Our findings reveal a hidden complexity of interactions between a single bacterial species, the factors it produces and two species of larvae belonging to different phyla.
Collapse
Affiliation(s)
- Amanda T. Alker
- Department of Biology and Viral Information Institute, San Diego State University, San Diego, CA, 92182
| | - Nathalie Delherbe
- Department of Biology and Viral Information Institute, San Diego State University, San Diego, CA, 92182
| | - Trevor N. Purdy
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, 92093
| | - Bradley S. Moore
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, 92093
| | - Nicholas J. Shikuma
- Department of Biology and Viral Information Institute, San Diego State University, San Diego, CA, 92182
| |
Collapse
|
18
|
Bidleman TF, Andersson A, Haglund P, Tysklind M. Will Climate Change Influence Production and Environmental Pathways of Halogenated Natural Products? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:6468-6485. [PMID: 32364720 DOI: 10.1021/acs.est.9b07709] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Thousands of halogenated natural products (HNPs) pervade the terrestrial and marine environment. HNPs are generated by biotic and abiotic processes and range in complexity from low molecular mass natural halocarbons (nHCs, mostly halomethanes and haloethanes) to compounds of higher molecular mass which often contain oxygen and/or nitrogen atoms in addition to halogens (hHNPs). nHCs have a key role in regulating tropospheric and stratospheric ozone, while some hHNPs bioaccumulate and have toxic properties similar those of anthropogenic-persistent organic pollutants (POPs). Both chemical classes have common sources: biosynthesis by marine bacteria, phytoplankton, macroalgae, and some invertebrate animals, and both may be similarly impacted by alteration of production and transport pathways in a changing climate. The nHCs scientific community is advanced in investigating sources, atmospheric and oceanic transport, and forecasting climate change impacts through modeling. By contrast, these activities are nascent or nonexistent for hHNPs. The goals of this paper are to (1) review production, sources, distribution, and transport pathways of nHCs and hHNPs through water and air, pointing out areas of commonality, (2) by analogy to nHCs, argue that climate change may alter these factors for hHNPs, and (3) suggest steps to improve linkage between nHCs and hHNPs science to better understand and predict climate change impacts.
Collapse
Affiliation(s)
- Terry F Bidleman
- Department of Chemistry, Umeå University (UmU), SE-901 87 Umeå, Sweden
| | - Agneta Andersson
- Department of Ecology & Environmental Science, UmU, SE-901 87 Umeå, Sweden
- Umeå Marine Sciences Centre, UmU, SE-905 71 Hörnefors, Sweden
| | - Peter Haglund
- Department of Chemistry, Umeå University (UmU), SE-901 87 Umeå, Sweden
| | - Mats Tysklind
- Department of Chemistry, Umeå University (UmU), SE-901 87 Umeå, Sweden
| |
Collapse
|
19
|
Whalen KE, Becker JW, Schrecengost AM, Gao Y, Giannetti N, Harvey EL. Bacterial alkylquinolone signaling contributes to structuring microbial communities in the ocean. MICROBIOME 2019; 7:93. [PMID: 31208456 PMCID: PMC6580654 DOI: 10.1186/s40168-019-0711-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 06/05/2019] [Indexed: 05/27/2023]
Abstract
BACKGROUND Marine bacteria form complex relationships with eukaryotic hosts, from obligate symbioses to pathogenic interactions. These interactions can be tightly regulated by bioactive molecules, creating a complex system of chemical interactions through which these species chemically communicate thereby directly altering the host's physiology and community composition. Quorum sensing (QS) signals were first described in a marine bacterium four decades ago, and since then, we have come to discover that QS mediates processes within the marine carbon cycle, affects the health of coral reef ecosystems, and shapes microbial diversity and bacteria-eukaryotic host relationships. Yet, only recently have alkylquinolone signals been recognized for their role in cell-to-cell communication and the orchestration of virulence in biomedically relevant pathogens. The alkylquinolone, 2-heptyl-4-quinolone (HHQ), was recently found to arrest cell growth without inducing cell mortality in selected phytoplankton species at nanomolar concentrations, suggesting QS molecules like HHQ can influence algal physiology, playing pivotal roles in structuring larger ecological frameworks. RESULTS To understand how natural communities of phytoplankton and bacteria respond to HHQ, field-based incubation experiments with ecologically relevant concentrations of HHQ were conducted over the course of a stimulated phytoplankton bloom. Bulk flow cytometry measurements indicated that, in general, exposure to HHQ caused nanoplankton and prokaryotic cell abundances to decrease. Amplicon sequencing revealed HHQ exposure altered the composition of particle-associated and free-living microbiota, favoring the relative expansion of both gamma- and alpha-proteobacteria, and a concurrent decrease in Bacteroidetes. Specifically, Pseudoalteromonas spp., known to produce HHQ, increased in relative abundance following HHQ exposure. A search of representative bacterial genomes from genera that increased in relative abundance when exposed to HHQ revealed that they all have the genetic potential to bind HHQ. CONCLUSIONS This work demonstrates HHQ has the capacity to influence microbial community organization, suggesting alkylquinolones have functions beyond bacterial communication and are pivotal in driving microbial community structure and phytoplankton growth. Knowledge of how bacterial signals alter marine communities will serve to deepen our understanding of the impact these chemical interactions have on a global scale.
Collapse
Affiliation(s)
| | - Jamie W Becker
- Department of Biology, Haverford College, Haverford, PA, USA.
| | | | - Yongjie Gao
- Department of Biology, Haverford College, Haverford, PA, USA
| | | | - Elizabeth L Harvey
- Skidaway Institute of Oceanography, University of Georgia, Savannah, GA, USA
| |
Collapse
|
20
|
Affiliation(s)
- Jia Zeng
- Department of Molecular BioscienceUniversity of Texas at Austin Austin, Texas 89812 United States
| | - Jixun Zhan
- Department of Biological EngineeringUtah State University Logan, Utah 84321 United States
| |
Collapse
|
21
|
Thapa HR, Robbins JM, Moore BS, Agarwal V. Insights into Thiotemplated Pyrrole Biosynthesis Gained from the Crystal Structure of Flavin-Dependent Oxidase in Complex with Carrier Protein. Biochemistry 2019; 58:918-929. [PMID: 30620182 DOI: 10.1021/acs.biochem.8b01177] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Sequential enzymatic reactions on substrates tethered to carrier proteins (CPs) generate thiotemplated building blocks that are then delivered to nonribosomal peptide synthetases (NRPSs) to generate peptidic natural products. The underlying diversity of these thiotemplated building blocks is the principal driver of the chemical diversity of NRPS-derived natural products. Structural insights into recognition of CPs by tailoring enzymes that generate these building blocks are sparse. Here we present the crystal structure of a flavin-dependent prolyl oxidase that furnishes thiotemplated pyrrole as the product, in complex with its cognate CP in the holo and product-bound states. The thiotemplated pyrrole is an intermediate that is well-represented in natural product biosynthetic pathways. Our results delineate the interactions between the CP and the oxidase while also providing insights into the stereospecificity of the enzymatic oxidation of the prolyl heterocycle to the aromatic pyrrole. Biochemical validation of the interaction between the CP and the oxidase demonstrates that NRPSs recognize and bind to their CPs using interactions quite different from those of fatty acid and polyketide biosynthetic enzymes. Our results posit that structural diversity in natural product biosynthesis can be, and is, derived from subtle modifications of primary metabolic enzymes.
Collapse
Affiliation(s)
- Hem R Thapa
- School of Chemistry and Biochemistry , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| | - John M Robbins
- School of Chemical and Biomolecular Engineering , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States.,Krone Engineered Biosystems Building , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| | - Bradley S Moore
- Center for Oceans and Human Health, Scripps Institution of Oceanography , University of California, San Diego , La Jolla , California 92093 , United States.,Skaggs School of Pharmacy and Pharmaceutical Sciences , University of California, San Diego , La Jolla , California 92093 , United States
| | - Vinayak Agarwal
- School of Chemistry and Biochemistry , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States.,School of Biological Sciences , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| |
Collapse
|