1
|
Kusza S, Bagi Z. A Global Comparative Genomic Analysis of Major Bacterial Pathogens in Bovine Mastitis and Lameness. Animals (Basel) 2025; 15:394. [PMID: 39943164 PMCID: PMC11815768 DOI: 10.3390/ani15030394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/16/2024] [Revised: 01/22/2025] [Accepted: 01/29/2025] [Indexed: 02/16/2025] Open
Abstract
This study presents a comprehensive genomic reanalysis of major bacterial pathogens causing bovine mastitis and lameness, focusing on Staphylococcus aureus, Escherichia coli, Fusobacterium necrophorum, and Treponema phagedenis. Through our analysis of 4326 bacterial genomes from global databases, we identified distinct patterns in genomic diversity, virulence factors and antimicrobial resistance genes across these species. E. coli showed the highest genomic diversity with 3779 isolates, of which 98% exhibited high-quality genome sequences. Similarly, S. aureus demonstrated significant genomic plasticity across 524 isolates, with 99.8% classified as high-quality genomes. Geographical analysis revealed distinct regional variations in strain distribution, with North America contributing 45.3% of all isolates, followed by Asia (21.2%) and Europe (18.1%). Furthermore, we identified novel virulence mechanisms and resistance patterns specific to each pathogen, with particular emphasis on the evolution of antimicrobial resistance genes. Our findings provide crucial insights into pathogen adaptation and host-microbe interactions, suggesting the need for region-specific intervention strategies. These results have significant implications for developing targeted therapeutic approaches and improving bovine health management practices.
Collapse
Affiliation(s)
- Szilvia Kusza
- Centre for Agricultural Genomics and Biotechnology, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary;
| | | |
Collapse
|
2
|
Rojas D, Estrada R, Romero Y, Figueroa D, Quilcate C, Ganoza-Roncal JJ, Maicelo JL, Coila P, Alvarado W, Cayo-Colca IS. Sex-Induced Changes in Microbial Eukaryotes and Prokaryotes in Gastrointestinal Tract of Simmental Cattle. BIOLOGY 2024; 13:932. [PMID: 39596887 PMCID: PMC11591695 DOI: 10.3390/biology13110932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 09/05/2024] [Revised: 11/04/2024] [Accepted: 11/08/2024] [Indexed: 11/29/2024]
Abstract
This study investigates gender-based differences in the gut microbiota of Simmental cattle, focusing on bacterial, archaeal, and fungal communities. Fecal samples were collected and analyzed using high-throughput sequencing, with taxonomic classification performed through the SILVA and UNITE databases. Alpha and beta diversity metrics were assessed, revealing significant differences in the diversity and composition of archaeal communities between males and females. Notably, females exhibited higher alpha diversity in archaea, while beta diversity analyses indicated distinct clustering of bacterial and archaeal communities by gender. The study also identified correlations between specific microbial taxa and hematological parameters, with Treponema and Methanosphaera showing gender-specific associations that may influence cattle health and productivity. These findings highlight the importance of considering gender in microbiota-related research and suggest that gender-specific management strategies could optimize livestock performance. Future research should explore the role of sex hormones in shaping these microbial differences.
Collapse
Affiliation(s)
- Diórman Rojas
- Dirección de Desarrollo Tecnológico Agrario, Instituto Nacional de Innovación Agraria (INIA), Lima 15024, Peru; (D.R.); (Y.R.); (D.F.); (C.Q.); (J.J.G.-R.)
| | - Richard Estrada
- Dirección de Desarrollo Tecnológico Agrario, Instituto Nacional de Innovación Agraria (INIA), Lima 15024, Peru; (D.R.); (Y.R.); (D.F.); (C.Q.); (J.J.G.-R.)
| | - Yolanda Romero
- Dirección de Desarrollo Tecnológico Agrario, Instituto Nacional de Innovación Agraria (INIA), Lima 15024, Peru; (D.R.); (Y.R.); (D.F.); (C.Q.); (J.J.G.-R.)
| | - Deyanira Figueroa
- Dirección de Desarrollo Tecnológico Agrario, Instituto Nacional de Innovación Agraria (INIA), Lima 15024, Peru; (D.R.); (Y.R.); (D.F.); (C.Q.); (J.J.G.-R.)
| | - Carlos Quilcate
- Dirección de Desarrollo Tecnológico Agrario, Instituto Nacional de Innovación Agraria (INIA), Lima 15024, Peru; (D.R.); (Y.R.); (D.F.); (C.Q.); (J.J.G.-R.)
| | - Jorge J. Ganoza-Roncal
- Dirección de Desarrollo Tecnológico Agrario, Instituto Nacional de Innovación Agraria (INIA), Lima 15024, Peru; (D.R.); (Y.R.); (D.F.); (C.Q.); (J.J.G.-R.)
| | - Jorge L. Maicelo
- Facultad de Ingeniería Zootecnista, Agronegocios y Biotecnología, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas (UNTRM), Cl. Higos Urco 342, Chachapoyas 01001, Peru; (J.L.M.); (W.A.); (I.S.C.-C.)
| | - Pedro Coila
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional del Altiplano de Puno, Puno 21001, Peru;
| | - Wigoberto Alvarado
- Facultad de Ingeniería Zootecnista, Agronegocios y Biotecnología, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas (UNTRM), Cl. Higos Urco 342, Chachapoyas 01001, Peru; (J.L.M.); (W.A.); (I.S.C.-C.)
| | - Ilse S. Cayo-Colca
- Facultad de Ingeniería Zootecnista, Agronegocios y Biotecnología, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas (UNTRM), Cl. Higos Urco 342, Chachapoyas 01001, Peru; (J.L.M.); (W.A.); (I.S.C.-C.)
| |
Collapse
|
3
|
Demirel MA, Şumlu E, Özercan İH, Şahin K, Tuzcu M, Bay V, Kurşun ÖED, Uludağ MO, Akar F. Impact of high-fructose diet and metformin on histomorphological and molecular parameters of reproductive organs and vaginal microbiota of female rat. Sci Rep 2024; 14:27463. [PMID: 39523383 PMCID: PMC11551161 DOI: 10.1038/s41598-024-76211-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/28/2024] [Accepted: 10/11/2024] [Indexed: 11/16/2024] Open
Abstract
There are limited data on the effects of a high-fructose diet on the female reproductive system. Although metformin has some functional effects on female fertility, its reproductive outcome on high fructose diet-induced metabolic syndrome is unclear. The aim of the present study is to evaluate the impact of a high fructose diet on histomorphological and molecular parameters of the reproductive organs and vaginal microbiota as well as the treatment potential of metformin. Wistar albino rats were used in the study. The metabolic syndrome model was induced by a high-fructose diet in rats for 15 weeks. Metformin was orally administered once a day for the last 6 weeks. The high-fructose diet increased blood glucose, triglycerides, insulin, and ovarian testosterone levels; however, it reduced ovarian aromatase levels and follicle numbers and caused uterine inflammation. The high-fructose diet-induced molecular abnormalities on ovarian tissue were demonstrated by the downregulation of ovarian insulin signaling pathway proteins and dysregulation of ovarian mitogenic and apoptotic pathway proteins. A high-fructose diet caused vaginal dysbiosis, metformin increased probiotic bacteria in the vaginal microbiota. Our results revealed that metformin improves ovarian impairments by modulating hormonal balance, insulin level, mapk, and apoptotic signaling molecules, as well as regulating the vaginal microbiota.
Collapse
Affiliation(s)
- Mürşide Ayşe Demirel
- Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Laboratory Animals Breeding, and Experimental Researches Center, Gazi University, Etiler, Ankara, 06330, Turkey.
| | - Esra Şumlu
- Department of Medical Pharmacology, Faculty of Medicine, KTO Karatay University, Konya, Turkey
| | - İbrahim Hanifi Özercan
- Department of Pathology, Medicine Faculty, Health Sciences Institution, University of Firat, Elazig, Turkey
| | - Kazım Şahin
- Department of Animal Nutrition, Faculty of Veterinary Medicine, Firat University, Elazig, Turkey
| | - Mehmet Tuzcu
- Department of Biology, Faculty of Science, Firat University, Elazig, Turkey
| | - Veysel Bay
- Department of Animal Science, Faculty of Agriculture, Ege University, 35100, İzmir, Turkey
| | | | - Mecit Orhan Uludağ
- Department of Clinical Pharmacy, Faculty of Pharmacy, Near East University, Nicosia, Turkey
| | - Fatma Akar
- Department of Pharmacology, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| |
Collapse
|
4
|
Urrutia-Angulo L, Ocejo M, Oporto B, Aduriz G, Lavín JL, Hurtado A. Unravelling the complexity of bovine milk microbiome: insights into mastitis through enterotyping using full-length 16S-metabarcoding. Anim Microbiome 2024; 6:58. [PMID: 39438939 PMCID: PMC11515664 DOI: 10.1186/s42523-024-00345-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/08/2024] [Accepted: 10/10/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND Mastitis, inflammation of the mammary gland, is a major disease of dairy cattle and the main cause for antimicrobial use. Although mainly caused by bacterial infections, the aetiological agent often remains unidentified by conventional microbiological culture methods. The aim of this study was to test whether shifts in the bovine mammary gland microbiota can result in initiation or progression of mastitis. METHODS Oxford-Nanopore long-read sequencing was used to generate full-length 16S rRNA gene reads (16S-metabarcoding) to characterise the microbial population of milk from healthy and diseased udder of cows classified into five groups based on their mastitis history and parity. RESULTS Samples were classified into six enterotypes, each characterised by a marker genus and several differentially-abundant genera. Two enterotypes were exclusively composed of clinical mastitis samples and displayed a marked dysbiosis, with a single pathogenic genus predominating and displacing the endogenous bacterial population. Other mastitis samples (all subclinical and half of the clinical) clustered with those from healthy animals into three enterotypes, probably reflecting intermediate states between health and disease. After an episode of clinical mastitis, clinical recovery and microbiome reconstitution do not always occur in parallel, indicating that the clinical definition of the udder health status does not consistently reflect the microbial profile. CONCLUSIONS These results show that mastitis is a dynamic process in which the udder microbiota constantly changes, highlighting the complexity of defining a unique microbiota profile indicative of mastitis.
Collapse
Affiliation(s)
- Leire Urrutia-Angulo
- Animal Health Department, NEIKER - Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Bizkaia Science and Technology Park 812L, 48160, Derio, Bizkaia, Spain
| | - Medelin Ocejo
- Animal Health Department, NEIKER - Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Bizkaia Science and Technology Park 812L, 48160, Derio, Bizkaia, Spain
| | - Beatriz Oporto
- Animal Health Department, NEIKER - Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Bizkaia Science and Technology Park 812L, 48160, Derio, Bizkaia, Spain
| | - Gorka Aduriz
- Animal Health Department, NEIKER - Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Bizkaia Science and Technology Park 812L, 48160, Derio, Bizkaia, Spain
| | - José Luís Lavín
- Applied Mathematics Department, NEIKER - Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Bizkaia Science and Technology Park 812L, 48160, Derio, Bizkaia, Spain
| | - Ana Hurtado
- Animal Health Department, NEIKER - Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Bizkaia Science and Technology Park 812L, 48160, Derio, Bizkaia, Spain.
| |
Collapse
|
5
|
Espiritu HM, Valete EJP, Mamuad LL, Jung M, Paik MJ, Lee SS, Cho YI. Metabolic Footprint of Treponema phagedenis and Treponema pedis Reveals Potential Interaction Towards Community Succession and Pathogenesis in Bovine Digital Dermatitis. Pathogens 2024; 13:796. [PMID: 39338987 PMCID: PMC11435060 DOI: 10.3390/pathogens13090796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/16/2024] [Revised: 09/04/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Bovine digital dermatitis (BDD) is a cattle infection causing hoof lesions and lameness, with treponemes as key pathogens. We analyzed the metabolic activity of Treponema phagedenis and Treponema pedis using gas chromatography-mass spectrometry for organic acids (OAs), amino acids (AAs), and fatty acids (FAs), and high-performance liquid chromatography for short-chain fatty acids (SCFAs). Key findings include a 61.5% reduction in pyruvic acid in T. pedis and 81.0% in T. phagedenis. 2-hydroxybutyric acid increased by 493.8% in T. pedis, while succinic acid increased by 31.3%, potentially supporting T. phagedenis. Among AAs, glycine was reduced by 97.4% in T. pedis but increased by 64.1% in T. phagedenis. Proline increased by 76.6% in T. pedis but decreased by 13.6% in T. phagedenis. Methionine and glutamic acid were competitively utilized, with methionine reduced by 41.8% in T. pedis and 11.9% in T. phagedenis. Both species showed significant utilization of palmitic acid (reduced by 82.8% in T. pedis and 87.2% in T. phagedenis). Butyric acid production increased by 620.2% in T. phagedenis, and propionic acid increased by 932.8% in T. pedis and 395.6% in T. phagedenis. These reveal metabolic interactions between the pathogens, contributing to disease progression and offering insights to BDD pathogenesis.
Collapse
Affiliation(s)
- Hector M. Espiritu
- Department of Animal Science and Technology, Sunchon National University, Suncheon-si 57922, Jeollanam-do, Republic of Korea; (H.M.E.); (E.J.P.V.); (L.L.M.); (S.-S.L.)
| | - Edeneil Jerome P. Valete
- Department of Animal Science and Technology, Sunchon National University, Suncheon-si 57922, Jeollanam-do, Republic of Korea; (H.M.E.); (E.J.P.V.); (L.L.M.); (S.-S.L.)
| | - Lovelia L. Mamuad
- Department of Animal Science and Technology, Sunchon National University, Suncheon-si 57922, Jeollanam-do, Republic of Korea; (H.M.E.); (E.J.P.V.); (L.L.M.); (S.-S.L.)
| | - Myunghwan Jung
- Department of Microbiology, College of Medicine, Gyeongsang National University, Jinju 52727, Gyeongsangnam-do, Republic of Korea;
| | - Man-Jeong Paik
- College of Pharmacy, Sunchon National University, Suncheon-si 57922, Jeollanam-do, Republic of Korea;
| | - Sang-Suk Lee
- Department of Animal Science and Technology, Sunchon National University, Suncheon-si 57922, Jeollanam-do, Republic of Korea; (H.M.E.); (E.J.P.V.); (L.L.M.); (S.-S.L.)
| | - Yong-Il Cho
- Department of Animal Science and Technology, Sunchon National University, Suncheon-si 57922, Jeollanam-do, Republic of Korea; (H.M.E.); (E.J.P.V.); (L.L.M.); (S.-S.L.)
| |
Collapse
|
6
|
Scott C, Dias AP, De Buck J. Adherence and metal-ion acquisition gene expression increases during infection with Treponema phagedenis strains from bovine digital dermatitis. Infect Immun 2024; 92:e0011724. [PMID: 38940601 PMCID: PMC11320908 DOI: 10.1128/iai.00117-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/13/2024] [Accepted: 05/16/2024] [Indexed: 06/29/2024] Open
Abstract
Digital dermatitis (DD) is an ulcerative foot lesion on the heel bulbs of dairy cattle. DD is a polymicrobial disease with no precise etiology, although Treponema spirochetes are found disproportionally abundant in diseased tissue. Within Treponema, several different species are found in DD; however, the species Treponema phagedenis is uniformly found in copious quantities and deep within the skin layers of the active, ulcerative stages of disease. The pathogenic mechanisms these bacteria use to persist in the skin and the precise role they play in the pathology of DD are widely unknown. To explore the pathogenesis and virulence of Treponema phagedenis, newly isolated strains of this species were investigated in a subcutaneous murine abscess model. In the first trial, a dosage study was conducted to compare the pathogenicity of different strains across three different treponemes per inoculum (TPI) doses based on abscess volumes. In the second trial, the expression levels of 11 putative virulence genes were obtained to gain insight into their involvement in pathogenesis. During the RT-qPCR analysis, it was determined that genes encoding for two metal-ion import lipoproteins and two adherence genes were found highly upregulated during infection. Conversely, two genes involved in motility and chemotaxis were found to not be significantly upregulated or utilized during infection. These results were supported by gene expression data from natural M2 lesions of dairy cattle. This gene expression analysis could highlight the preference in strategy for T. phagedenis to persist and adhere in the host rather than engage in motility and disseminate.
Collapse
Affiliation(s)
- Colton Scott
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Angelica P. Dias
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Jeroen De Buck
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
7
|
Wong NST, Malmuthge N, Gellatly D, Nordi WM, Alexander TW, Ortega Polo R, Janzen E, Schwartzkopf-Genswein K, Jelinski M. Characterization of the hoof bacterial communities in feedlot cattle affected with digital dermatitis, foot rot or both using a surface swab technique. Anim Microbiome 2024; 6:2. [PMID: 38254160 PMCID: PMC10804539 DOI: 10.1186/s42523-023-00277-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/17/2023] [Accepted: 10/20/2023] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND Lameness is defined as altered or abnormal gait due to dysfunction of the locomotor system, and is a health issue of feedlot cattle, having major economic, labour, and welfare implications. Digital dermatitis (DD-a lesion of the plantar surface of the foot) and foot rot (FR-affects the interdigital cleft) are common infectious causes of lameness in feedlots. These hoof lesions can occur alone or in combination (DD + FR) in the same hoof. A total of 208 hoof swabs were collected from three commercial feedlots located in southern Alberta. Every lesion sample was matched with a corresponding control skin sample taken from a healthy contralateral foot. Control skin samples were also collected from cattle with no lesion on any feet. Bacterial communities of three types of hoof lesions (DD, DD + FR, FR) and healthy skin were profiled using 16S amplicon sequencing. RESULTS Alpha diversity analysis revealed a lower bacterial diversity on DD and FR lesions compared to control skin. Beta diversity analysis showed that bacterial communities of DD, FR, and DD + FR lesions were distinct from those of the control skin. While the impact of feedlot was minimal, lesion type contributed to 22% of the variation observed among bacterial communities (PERMANOVA-R = 0.22, P < 0.01). Compared to the corresponding control skin, there were 11, 12, and 3 differentially abundant (DA) bacterial genera in DD, DD + FR, and FR lesions, respectively. CONCLUSIONS The bacterial community description of a DD + FR lesion is a novel finding. Not only did lesions lead to altered bacterial communities when compared to healthy skin, but the composition of those communities also differed depending on the hoof lesion. The 16S amplicon sequencing of surface swabs has significant value as a research tool in separating different hoof lesions and can provide additional insights to the polybacterial etiology of DD and FR in feedlot cattle.
Collapse
Affiliation(s)
- Nicholas S T Wong
- Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, Canada
| | - Nilusha Malmuthge
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, Canada
| | - Désirée Gellatly
- Technology Access Centre for Livestock, Olds College of Agriculture and Technology, Olds, Canada
| | - Wiolene M Nordi
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, Canada
| | - Trevor W Alexander
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, Canada
| | - Rodrigo Ortega Polo
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, Canada
| | - Eugene Janzen
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada
| | - Karen Schwartzkopf-Genswein
- Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada.
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, Canada.
| | - Murray Jelinski
- Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada
| |
Collapse
|
8
|
Çömlekcioğlu U, Jezierska S, Opsomer G, Pascottini OB. Uterine microbial ecology and disease in cattle: A review. Theriogenology 2024; 213:66-78. [PMID: 37804686 DOI: 10.1016/j.theriogenology.2023.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/06/2023] [Revised: 09/19/2023] [Accepted: 09/21/2023] [Indexed: 10/09/2023]
Abstract
Due to the critical contribution of the uterine-associated microbiota in reproductive health, physiology, and performance, culture-independent methods have been increasingly employed to unravel key aspects of microbial ecology in the uterus of cattle. Nowadays, we know that bacterial diversity is crucial to maintain uterine health, however, there is still no consensus on the exact composition of a healthy uterine microbiota (or eubiosis). Generally, loss of bacterial diversity (or dysbiosis) contributes to the development of uterine infections, associated with increased relative abundances of Bacteroides, Fusobacterium, Trueperella, and Porphyromonas. Uterine infections are highly prevalent and gravely influence the profitability of cattle operations, animal welfare, and public health. Thus, understanding the dynamics of uterine microbial ecology is essential to develop effective strategies focused on preventing and mitigating the adverse effects of uterine dysbiosis as well as assisting in the process of restoring the core, healthy uterine microbiota. The aim of this review is to summarize research conducted in the microbial ecology of bovine uteri. We discuss the origin of the uterine microflora of healthy cows and the factors influencing its composition. In addition, we review the biology of specific pathogens that are known to increase in abundance during the occurrence of uterine disease. Lastly, we provide an overview of the bacterial biofilm in the bovine endometrium, and we briefly summarize the rationale for the use of probiotics to prevent uterine disease in cattle.
Collapse
Affiliation(s)
- Uğur Çömlekcioğlu
- Department of Biology, Osmaniye Korkut Ata University, 8000, Osmaniye, Turkiye; Department of Internal Medicine, Reproduction and Population Medicine, Ghent University, 9820, Merelbeke, Belgium.
| | | | - Geert Opsomer
- Department of Internal Medicine, Reproduction and Population Medicine, Ghent University, 9820, Merelbeke, Belgium
| | - Osvaldo Bogado Pascottini
- Department of Internal Medicine, Reproduction and Population Medicine, Ghent University, 9820, Merelbeke, Belgium.
| |
Collapse
|
9
|
Son H, Moon J, Ha EJ, Kim N, Kim EY, Lee HS, Koh EJ, Phi JH, Park CK, Kim JE, Kim SK, Lee ST, Jung KH, Lee SK, Cho WS, Chu K. Identification of bacterial pathogens in brain abscesses by metagenomic approach using nanopore 16S amplicon sequencing. Diagn Microbiol Infect Dis 2023; 107:116041. [PMID: 37741170 DOI: 10.1016/j.diagmicrobio.2023.116041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/09/2023] [Revised: 06/30/2023] [Accepted: 07/22/2023] [Indexed: 09/25/2023]
Abstract
Brain abscess is medically challenging. In this study, we applied nanopore sequencing for 16S rRNA analysis and investigated its efficacy and diagnostic value for patients with brain abscesses. Genomic DNA was extracted from the pus samples (n = 27) of brain abscess, and 16S rRNA genes were amplified by PCR. Sequencing libraries were generated using a rapid barcoding kit, and the generated reads were analyzed using the EPI2ME16S workflow. A conventional culture study was performed. More sensitive identification of pathogens was made by 16S sequencing, faster than the culture study. The proportion of anaerobic bacteria identified by 16S sequencing was higher (75%) than that obtained by culturing (32%). Polymicrobial infections were identified in 10 cases (40%) by 16S sequencing, while the culture study identified multiple bacteria in only 2 cases (8%). 16S sequencing was useful for identifying the composition of polymicrobial infections, including rare pathogens, and for the initial diagnosis of space-occupying lesions.
Collapse
Affiliation(s)
- Hyoshin Son
- Department of Neurology, Laboratory for Neurotherapeutics, Biomedical Research Institute, College of Medicine Seoul National University, Seoul National University Hospital, Seoul, South Korea; Department of Neurology, Eunpyeong St. Mary's Hospital, The Catholic University of Korea, Seoul, South Korea
| | - Jangsup Moon
- Department of Neurology, Laboratory for Neurotherapeutics, Biomedical Research Institute, College of Medicine Seoul National University, Seoul National University Hospital, Seoul, South Korea; Department of Genomic Medicine, Seoul National University Hospital, Seoul, South Korea
| | - Eun Jin Ha
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, South Korea
| | - Narae Kim
- Department of Neurology, Laboratory for Neurotherapeutics, Biomedical Research Institute, College of Medicine Seoul National University, Seoul National University Hospital, Seoul, South Korea
| | - Eun-Young Kim
- Department of Neurology, Laboratory for Neurotherapeutics, Biomedical Research Institute, College of Medicine Seoul National University, Seoul National University Hospital, Seoul, South Korea; Department of Neurology, Chungnam National University Sejong Hospital, Sejong, Korea
| | - Han Sang Lee
- Department of Neurology, Laboratory for Neurotherapeutics, Biomedical Research Institute, College of Medicine Seoul National University, Seoul National University Hospital, Seoul, South Korea; Center of Hospital Medicine, Seoul National University Hospital, Seoul, South Korea
| | - Eun Jung Koh
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, South Korea; Division of Pediatric Neurosurgery, Seoul National University Children's Hospital, Seoul, South Korea; Center of Hospital Medicine, Seoul National University Hospital, Seoul, South Korea
| | - Ji Hoon Phi
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, South Korea; Division of Pediatric Neurosurgery, Seoul National University Children's Hospital, Seoul, South Korea
| | - Chul-Kee Park
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, South Korea
| | - Jeong Eun Kim
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, South Korea
| | - Seung-Ki Kim
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, South Korea; Division of Pediatric Neurosurgery, Seoul National University Children's Hospital, Seoul, South Korea
| | - Soon-Tae Lee
- Department of Neurology, Laboratory for Neurotherapeutics, Biomedical Research Institute, College of Medicine Seoul National University, Seoul National University Hospital, Seoul, South Korea
| | - Keun-Hwa Jung
- Department of Neurology, Laboratory for Neurotherapeutics, Biomedical Research Institute, College of Medicine Seoul National University, Seoul National University Hospital, Seoul, South Korea
| | - Sang Kun Lee
- Department of Neurology, Laboratory for Neurotherapeutics, Biomedical Research Institute, College of Medicine Seoul National University, Seoul National University Hospital, Seoul, South Korea
| | - Won-Sang Cho
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, South Korea
| | - Kon Chu
- Department of Neurology, Laboratory for Neurotherapeutics, Biomedical Research Institute, College of Medicine Seoul National University, Seoul National University Hospital, Seoul, South Korea.
| |
Collapse
|
10
|
Walker KE, Middleton JR, Gull T, Payne CA, Adkins PRF. Bacterial culture and susceptibility of samples taken from septic foot lesions of adult beef cattle. J Vet Intern Med 2023; 37:757-765. [PMID: 36772950 DOI: 10.1111/jvim.16645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/20/2022] [Accepted: 01/27/2023] [Indexed: 02/12/2023] Open
Abstract
BACKGROUND Lameness is an economically important and common disease of cattle, and foot disease is the most common cause of lameness in cattle. Limited data is available regarding lameness in cow-calf operations. OBJECTIVES Describe the bacteria most commonly isolated from septic lesions of the feet of adult beef cattle and the antimicrobial susceptibility patterns of the isolated bacteria. ANIMALS Fifty-four adult cattle from cow-calf operations and diagnosed with a sole abscess or distal interphalangeal joint sepsis were enrolled. METHODS Prospective observational study. Abscess fluid from a convenience sample of clinical cases was cultured. Isolated bacteria were identified using matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry or 16s rRNA gene sequencing. Antimicrobial susceptibility profiling was performed on isolates when a bacterial species was identified from ≥5 samples. RESULTS Fifty of the 54 samples were polymicrobial. Trueperella pyogenes (22/54), Streptococcus uberis (16/54), and Bacteroides pyogenes (14/54) were the most commonly isolated bacteria. Eighty-one of 96 tested isolates were resistant to at least 1 antimicrobial; multidrug resistance was identified in 37/96 isolates. Oxytetracycline (50/96), tylosin (40/96), and florfenicol (37/96) resistance was commonly identified. Resistance to ceftiofur (5/96) was rare. CONCLUSIONS AND CLINICAL IMPORTANCE Septic processes of the foot in these adult beef cattle frequently were polymicrobial. Most of the isolated bacteria were resistant to at least 1 antimicrobial with over one-third being multidrug resistant. Although simple sole abscesses do not require antimicrobial treatment, deep septic processes of the foot often are treated with antimicrobials. Culture and susceptibility of deep septic lesions may guide judicious antimicrobial usage.
Collapse
Affiliation(s)
- Kelsey E Walker
- Department of Veterinary Medicine and Surgery, University of Missouri, Columbia, Missouri, USA
| | - John R Middleton
- Department of Veterinary Medicine and Surgery, University of Missouri, Columbia, Missouri, USA
| | - Tamara Gull
- Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri, USA
| | - Craig A Payne
- University of Missouri Extension, University of Missouri, Columbia, Missouri, USA
| | - Pamela R F Adkins
- Department of Veterinary Medicine and Surgery, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
11
|
Bay V, Gillespie A, Ganda E, Evans NJ, Carter SD, Lenzi L, Lucaci A, Haldenby S, Barden M, Griffiths BE, Sánchez-Molano E, Bicalho R, Banos G, Darby A, Oikonomou G. The bovine foot skin microbiota is associated with host genotype and the development of infectious digital dermatitis lesions. MICROBIOME 2023; 11:4. [PMID: 36624507 PMCID: PMC9830885 DOI: 10.1186/s40168-022-01440-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Academic Contribution Register] [Received: 02/10/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Bovine Digital Dermatitis (BDD) is a prevalent infectious disease, causing painful foot skin lesions and lameness in cattle. We describe herein the bovine foot skin microbiota and its associations with BDD using 16S rRNA gene amplicon and shotgun metagenomic sequencing on samples from 259 dairy cows from three UK dairy farms. RESULTS We show evidence of dysbiosis, and differences in taxonomy and functional profiles in the bovine foot skin microbiome of clinically healthy animals that subsequently develop BDD lesions, compared to those that do not. Our results suggest that taxonomical and functional differences together with alterations in ecological interactions between bacteria in the normal foot skin microbiome may predispose an animal to develop BDD lesions. Using genome-wide association and regional heritability mapping approaches, we provide first evidence for interactions between host genotype and certain members of the foot skin microbiota. We show the existence of significant genetic variation in the relative abundance of Treponema spp. and Peptoclostridium spp. and identify regions in the bovine genome that explain a significant proportion of this variation. CONCLUSIONS Collectively this work shows early changes in taxonomic and functional profiles of the bovine foot-skin microbiota in clinically healthy animals which are associated with subsequent development of BDD and could be relevant to prevention of disease. The description of host genetic control of members of the foot skin microbiota, combined with the association of the latter with BDD development offer new insights into a complex relationship that can be exploited in selective breeding programmes. Video Abstract.
Collapse
Affiliation(s)
- V Bay
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
- Faculty of Agriculture, Ege University, İzmir, Turkey
| | - A Gillespie
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - E Ganda
- Department of Animal Science, Penn State University, State College, PA, USA
| | - N J Evans
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - S D Carter
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - L Lenzi
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - A Lucaci
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - S Haldenby
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - M Barden
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - B E Griffiths
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | | | - R Bicalho
- FERA Diagnostics and Biologicals, College Station, TX, USA
| | - G Banos
- Scotland's Rural College (SRUC), Easter Bush, Midlothian, UK
| | - A Darby
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - G Oikonomou
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK.
| |
Collapse
|
12
|
Alsaaod M, Schmid RM, Zwahlen N, Soto S, Wildi N, Seuberlich T, Steiner A. First description of interdigital hyperplasia associated with contagious ovine digital dermatitis in two sheep. Front Vet Sci 2023; 9:1028880. [PMID: 36686194 PMCID: PMC9849560 DOI: 10.3389/fvets.2022.1028880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/26/2022] [Accepted: 12/12/2022] [Indexed: 01/06/2023] Open
Abstract
Interdigital hyperplasia (IH) is a fold of fibrous tissue protruding into the interdigital space that rarely occurs in sheep. Interdigital hyperplasia secondary infected with bovine digital dermatitis (BDD) treponemes has been reported in cattle in the course of the increasing spread of classical BDD lesions. In this report, we describe proliferative/ulcerative interdigital lesions associated with contagious ovine digital dermatitis (CODD) treponemes and clinically scored as (IH+CODD), occurring in both hind limbs of a ram and the left hindlimb of a ewe. Both cases exhibited epidermal hyperplasia, parakeratosis and focal-extensive areas of epidermal necrosis with numerous infiltrating neutrophils. Treponema PCR and fluorescence in situ hybridization (FISH) were positive for Treponema phylotype 1 (PT1). In addition, Dichelobacter (D.) nodosus and Porphyromonas (P.) levii were detected in the biopsy by PCR. In three slaughter sheep, without claw lesions, which were kept together with both affected sheep, Treponema spp. were detected neither with PCR nor FISH; the PCRs for D. nodosus and P. levii were also negative. Complete clinical healing occurred in the ewe within 6 weeks after three local applications of a chlortetracycline spray in 2 weeks intervals. This report is the first description of IH+CODD in sheep as demonstrated by a combination of histopathological and molecular analyses.
Collapse
Affiliation(s)
- Maher Alsaaod
- Clinic for Ruminants, Department of Clinical Veterinary Science, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Robin Michael Schmid
- Clinic for Ruminants, Department of Clinical Veterinary Science, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Nathalie Zwahlen
- Clinic for Ruminants, Department of Clinical Veterinary Science, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Sara Soto
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, Institute of Animal Pathology, University of Bern, Bern, Switzerland
| | - Nicole Wildi
- Division of Neurological Sciences, Vetsuisse Faculty Bern, University of Bern, Bern, Switzerland
| | - Torsten Seuberlich
- Division of Neurological Sciences, Vetsuisse Faculty Bern, University of Bern, Bern, Switzerland
| | - Adrian Steiner
- Clinic for Ruminants, Department of Clinical Veterinary Science, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
13
|
Hori K, Taniguchi T, Elpita T, Khemgaew R, Sasaki S, Gotoh Y, Yasutomi I, Misawa N. Comprehensive Analyses of the Bacterial Population in Non-Healing Claw Lesions of Dairy Cattle. Animals (Basel) 2022; 12:ani12243584. [PMID: 36552504 PMCID: PMC9774328 DOI: 10.3390/ani12243584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/10/2022] [Revised: 12/07/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022] Open
Abstract
Non-healing claw lesions (NHCLs) are a newly characterized disorder affecting the deep dermis of the hoof in dairy cattle. Although NHCLs are thought to be associated with bovine digital dermatitis (BDD), their precise etiology is not yet understood. To investigate the bacterial populations present in each type of NHCL (toe necrosis: TN, non-healing white line disease: nhWLD, and a non-healing sole ulcer: nhSU), and the newly added entity non-healing verrucous-like lesions (nhVLL), 16S rRNA-based metagenomic analysis with next-generation sequencing (NGS) was employed. Twelve cases of NHCLs (3 TN, 3 nhWLD, 4 nhSU, and 2 nhVLL) were collected from five dairy farms in two prefectures in Japan. Three samples of healthy hoof dermis collected from two farms and a slaughterhouse were used as controls. Furthermore, culture-dependent and -independent approaches were conducted for detecting Treponema species and Fusobacterium necrophorum. As reported in BDD, Treponema species and F. necrophorum were detected frequently from NHCLs by PCR and immunohistochemistry, but NGS showed that these bacterial genera were not predominant in NHCLs. The predominant bacterial genera in NHCLs differed among the lesions examined, suggesting that Treponema species present predominantly in BDD were not predominant in NHCLs and that the bacterial population in NHCLs may vary among individual cattle and/or farms.
Collapse
Affiliation(s)
- Kaoru Hori
- Graduate School of Medicine and Veterinary Medicine, University of Miyazaki, 5200 Kihara-kiyotake-cho, Miyazaki 889-1692, Japan
- Fuchu Veterinary Clinical Center, Hiroshima Agricultural Mutual Aid Association, 396-1 Fukae, Jyoge-cho, Fuchu, Hiroshima 729-3421, Japan
| | - Takako Taniguchi
- Center for Animal Disease Control, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki 889-2192, Japan
| | - Trigan Elpita
- Center for Animal Disease Control, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki 889-2192, Japan
| | - Rathanon Khemgaew
- Graduate School of Medicine and Veterinary Medicine, University of Miyazaki, 5200 Kihara-kiyotake-cho, Miyazaki 889-1692, Japan
| | - Satomi Sasaki
- Center for Animal Disease Control, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki 889-2192, Japan
| | - Yasuhiro Gotoh
- Department of Bacteriology, Faculty of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Ichiro Yasutomi
- Yubetsu Herd Management Service Ltd., 450-3 Baro, Mombetsu-gun, Yubetsu-cho 093-0731, Hokkaido, Japan
| | - Naoaki Misawa
- Graduate School of Medicine and Veterinary Medicine, University of Miyazaki, 5200 Kihara-kiyotake-cho, Miyazaki 889-1692, Japan
- Center for Animal Disease Control, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki 889-2192, Japan
- Correspondence: ; Tel./Fax: +81-985-58-7284
| |
Collapse
|
14
|
Plant-derived tormentic acid alters the gut microbiota of the silkworm (Bombyx mori). Sci Rep 2022; 12:13005. [PMID: 35906393 PMCID: PMC9338012 DOI: 10.1038/s41598-022-17478-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/20/2022] [Accepted: 07/26/2022] [Indexed: 11/09/2022] Open
Abstract
In recent years, phytochemicals have started to attract more attention due to their contribution to health and bioactivity. Microorganisms in the intestines of organisms contribute to the processing, function, and biotransformation of these substances. The silkworm (Bombyx mori) is one of the organisms used for the biotransformation of phytochemicals due to its controlled reproduction and liability to microbial manipulation. In this study, a bioactive compound, tormentic acid (TA), extracted from Sarcopoterium spinosum was used in the silkworm diet, and the alterations of intestinal microbiota of the silkworm were assessed. To do this, silkworms were fed on a diet with various tormentic acid content, and 16S metagenomic analysis was performed to determine the alterations in the gut microbiota profile of these organisms. Diet with different TA content did not cause a change in the bacterial diversity of the samples. A more detailed comparison between different feeding groups indicated increased abundance of bacteria associated with health, i.e., Intestinibacter spp., Flavonifractor spp., Senegalimassilia spp., through the utilization of bioactive substances such as flavonoids. In conclusion, it might be said that using TA as a supplementary product might help ameliorate the infected gut, promote the healthy gut, and relieve the undesirable effects of medicines on the gastrointestinal system.
Collapse
|
15
|
SURVEILLANCE FOR AN EMERGENT HOOF DISEASE IN ELK (CERVUS ELAPHUS) IN THE US PACIFIC WEST SUPPLEMENTED BY 16S RRNA GENE AMPLICON SEQUENCING. J Wildl Dis 2022; 58:487-499. [PMID: 35417921 DOI: 10.7589/jwd-d-21-00119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/08/2021] [Accepted: 12/17/2021] [Indexed: 11/20/2022]
Abstract
A novel hoof disease of elk (Cervus elaphus) was described in southwestern Washington, US, in 2008 and was subsequently diagnosed in an adjacent area in northwestern Oregon in 2014. The disease, currently referred to as treponeme-associated hoof disease (TAHD), is characterized by lesions ranging from mild erosions, to severe ulcers with underrunning of the hoof capsule and heel-sole junction, to overgrown and avulsed hoof capsules. Histologically, lesions exhibit epithelial erosion or ulceration, suppurative inflammation, and the presence of argyrophilic spirochetes. We used data collected by the Washington Department of Fish and Wildlife and Oregon Department of Fish and Wildlife from 2008 to 2017 as reference for disease distribution. We then conducted enhanced surveillance in 2018-20 by obtaining 164 submissions from four US Pacific West states. We detected TAHD for the first time in Idaho and northern California, as well as in multiple counties in Washington and Oregon where it had not been previously reported. Given the unexpectedly broad disease distribution, continued surveillance is warranted to determine the full geographic extent of TAHD. From samples of 22 elk, we investigated 16S rRNA gene amplicon sequencing as a technique that could be used to supplement TAHD surveillance. Operational taxonomic units of the family Spirochaetaceae were identified in 10 of 12 histologically diagnosed TAHD-positive cases and two of 10 TAHD-negative cases. Phyla Spirochaetae (P<0.008), Fusobacteria (P<0.006), and Tenericutes (P<0.01) were overrepresented in samples from TAHD-positive feet when compared with TAHD-negative elk. A unique spirochete, PT19, was detected in hooves of 11 elk and from at least one elk in each state. Results support the use of 16S rRNA gene amplicon sequencing as a reliable and informative tool to supplement investigations into distribution and etiology of this presumed polybacterial disease.
Collapse
|
16
|
Ferrini S, Grego E, Ala U, Cagnotti G, Valentini F, Di Muro G, Iulini B, Stella MC, Bellino C, D'Angelo A. Feasibility of 16S rRNA sequencing for cerebrospinal fluid microbiome analysis in cattle with neurological disorders: a pilot study. Vet Res Commun 2022; 47:373-383. [PMID: 35759164 DOI: 10.1007/s11259-022-09949-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/30/2021] [Accepted: 05/31/2022] [Indexed: 10/17/2022]
Abstract
Bacterial infection of the central nervous system (CNS) in cattle requires prompt and adequate antimicrobial treatment. The current gold standard for antemortem etiological diagnosis is cerebrospinal fluid (CSF) culture, which often yields false negative results. CSF has long been considered a sterile district in healthy patients, but this notion has been recently challenged. For this pilot study, we used 16S rRNA gene sequencing to investigate the microbial composition of CSF of cattle presenting with CNS disorders and to compare it between subjects with CNS infections and with CNS disorders of other nature. The study sample was 10 animals: 4 presenting with CNS infectious-inflammatory diseases and 6 with other CNS disorders, based on definitive diagnosis. Since the initial round of a standard 16S rRNA PCR did not yield sufficient genetic material for sequencing in any of the samples, the protocol was modified to increase its sensitivity. Bacterial genetic material was identified in 6 animals and 2 groups were formed: an infectious inflammatory (n = 3) and a noninfectious inflammatory group (n = 3). The most frequently expressed bacterial families were Pseudomonadaceae (44.61%), Moraxellaceae (19.54%), Mycobacteriaceae (11.80%); the genera were Pseudomonas (45.42%), Acinetobacter (19.91%), Mycobacterium (12.01%). There were no detectable differences in the CSF microbial composition of the samples from the two groups. Sequencing of bacterial DNA present in the CSF was possible only after increasing PCR sensitivity. The results of 16S rRNA sequencing showed the presence of a microbial community in the CSF in cattle with neurological disorders. Further studies, in which CSF samples from healthy animals and samples from the environment are included as controls, are needed.
Collapse
Affiliation(s)
- Sara Ferrini
- Department of Veterinary Sciences, Clinical section, University of Turin, Largo Paolo Braccini 2, 10095, Grugliasco, TO, Italy
| | - Elena Grego
- Department of Veterinary Sciences, Clinical section, University of Turin, Largo Paolo Braccini 2, 10095, Grugliasco, TO, Italy
| | - Ugo Ala
- Department of Veterinary Sciences, Clinical section, University of Turin, Largo Paolo Braccini 2, 10095, Grugliasco, TO, Italy
| | - Giulia Cagnotti
- Department of Veterinary Sciences, Clinical section, University of Turin, Largo Paolo Braccini 2, 10095, Grugliasco, TO, Italy.
| | - Flaminia Valentini
- Department of Veterinary Sciences, Clinical section, University of Turin, Largo Paolo Braccini 2, 10095, Grugliasco, TO, Italy
| | - Giorgia Di Muro
- Department of Veterinary Sciences, Clinical section, University of Turin, Largo Paolo Braccini 2, 10095, Grugliasco, TO, Italy
| | - Barbara Iulini
- Istituto Zooprofilattico del Piemonte Liguria e Valle d'Aosta, Turin, Italy
| | - Maria Cristina Stella
- Department of Veterinary Sciences, Clinical section, University of Turin, Largo Paolo Braccini 2, 10095, Grugliasco, TO, Italy
| | - Claudio Bellino
- Department of Veterinary Sciences, Clinical section, University of Turin, Largo Paolo Braccini 2, 10095, Grugliasco, TO, Italy
| | - Antonio D'Angelo
- Department of Veterinary Sciences, Clinical section, University of Turin, Largo Paolo Braccini 2, 10095, Grugliasco, TO, Italy
| |
Collapse
|
17
|
Wilson-Welder JH, Mansfield K, Han S, Bayles DO, Alt DP, Olsen SC. Lesion Material From Treponema-Associated Hoof Disease of Wild Elk Induces Disease Pathology in the Sheep Digital Dermatitis Model. Front Vet Sci 2022; 8:782149. [PMID: 35097043 PMCID: PMC8790030 DOI: 10.3389/fvets.2021.782149] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/23/2021] [Accepted: 11/29/2021] [Indexed: 12/26/2022] Open
Abstract
A hoof disease among wild elk (Cervus elaphus) in the western United States has been reported since 2008. Now present in Washington, Oregon, Idaho, and California, this hoof disease continues to spread among elk herds suggesting an infectious etiology. Causing severe lesions at the hoof-skin junction, lesions can penetrate the hoof-horn structure causing severe lameness, misshapen hooves, and in some cases, sloughed hooves leaving the elk prone to infection, malnutrition, and premature death. Isolated to the feet, this disease has been termed treponeme-associated hoof disease due to the numerous Treponema spp. found within lesions. In addition to the Treponema spp., treponeme-associated hoof disease shares many similarities with digital dermatitis of cattle and livestock including association with several groups of anaerobic bacteria such as Bacteroides, Clostridia, and Fusobacterium, neutrophilic inflammatory infiltrate, and restriction of the disease to the foot and hoof tissues. To determine if there was a transmissible infectious component to this disease syndrome, elk lesion homogenate was used in a sheep model of digital dermatitis. Ten animals were inoculated with lesion material and lesion development was followed over 7 weeks. Most inoculated feet developed moderate to severe lesions at 2- or 4-weeks post-inoculation timepoints, with 16 of 18 feet at 4 weeks also had spirochetes associated within the lesions. Histopathology demonstrated spirochetes at the invading edge of the lesions along with other hallmarks of elk hoof disease, neutrophilic inflammatory infiltrates, and keratinocyte erosion. Treponema-specific PCR demonstrated three phylotypes associated with elk hoof disease and digital dermatitis were present. Serum of infected sheep had increased anti-Treponema IgG when compared to negative control sheep and pre-exposure samples. Analysis of the bacterial microbiome by sequencing of the bacterial 16S rRNA gene showed a community structure in sheep lesions that was highly similar to the elk lesion homogenate used as inoculum. Bacteroidies, Fusobacterium, and Clostridia were among the bacterial taxa overrepresented in infected samples as compared to negative control samples. In conclusion, there is a highly transmissible, infectious bacterial component to elk treponeme-associated hoof disease which includes several species of Treponema as well as other bacteria previously associated with digital dermatitis.
Collapse
Affiliation(s)
- Jennifer H. Wilson-Welder
- Infectious Bacterial Diseases of Livestock Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture (USDA), Ames, IA, United States
- *Correspondence: Jennifer H. Wilson-Welder
| | - Kristin Mansfield
- Washington Department of Fish and Wildlife, Spokane Valley, WA, United States
| | - Sushan Han
- Colorado State University Diagnostic Medicine Center, Fort Collins, CO, United States
| | - Darrell O. Bayles
- Infectious Bacterial Diseases of Livestock Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture (USDA), Ames, IA, United States
| | - David P. Alt
- Infectious Bacterial Diseases of Livestock Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture (USDA), Ames, IA, United States
| | - Steven C. Olsen
- Infectious Bacterial Diseases of Livestock Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture (USDA), Ames, IA, United States
| |
Collapse
|
18
|
Identification of Bull Semen Microbiome by 16S Sequencing and Possible Relationships with Fertility. Microorganisms 2021; 9:microorganisms9122431. [PMID: 34946031 PMCID: PMC8705814 DOI: 10.3390/microorganisms9122431] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/09/2021] [Revised: 11/22/2021] [Accepted: 11/22/2021] [Indexed: 01/04/2023] Open
Abstract
Reports on the use of 16S sequencing for the identification of bacteria in healthy animals are lacking. Bacterial contamination of bull semen can have a negative effect on the sperm quality. The aims of this study were threefold: to identify bacteria in the semen of healthy bulls using 16S sequencing; to investigate the differences in the bacterial community between individual bulls; and to establish if there was a relationship between the bacteria isolated and bull fertility. Semen from 18 bulls of known fertility was used for the DNA extraction and 16S sequencing; 107 bacterial genera were identified. The differences in the amplicon sequence variants (ASVs) and the numbers of genera between bulls were noted. Negative correlations (p < 0.05) between several bacterial genera with Curvibacter, Rikenellaceae RC9-gut-group and Dyella spp. were seen. Other negatively correlated bacteria were Cutibacterium, Ruminococcaceae UCG-005, Ruminococcaceae UCG-010 and Staphylococcus, all within the top 20 genera. Two genera, W5053 and Lawsonella, were enriched in bulls of low fertility; this is the first time that these bacteria have been reported in bull semen samples. The majority of the bacteria were environmental organisms or were species originating from the mucous membranes of animals and humans. The results of this study indicate that differences in the seminal microbiota of healthy bulls occur and might be correlated with fertility.
Collapse
|
19
|
Blanchard AM, Staley CE, Shaw L, Wattegedera SR, Baumbach CM, Michler JK, Rutland C, Back C, Newbold N, Entrican G, Tötemeyer S. A Trifecta of New Insights into Ovine Footrot for Infection Drivers, Immune Response, and Host-Pathogen Interactions. Infect Immun 2021; 89:e0027021. [PMID: 34227837 PMCID: PMC8445190 DOI: 10.1128/iai.00270-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/13/2021] [Accepted: 06/16/2021] [Indexed: 12/02/2022] Open
Abstract
Footrot is a polymicrobial infectious disease in sheep causing severe lameness, leading to one of the industry's largest welfare problems. The complex etiology of footrot makes in situ or in vitro investigations difficult. Computational methods offer a solution to understanding the bacteria involved and how they may interact with the host, ultimately providing a way to identify targets for future hypothesis-driven investigative work. Here, we present the first combined global analysis of bacterial community transcripts together with the host immune response in healthy and diseased ovine feet during a natural polymicrobial infection state using metatranscriptomics. The intratissue and surface bacterial populations and the most abundant bacterial transcriptomes were analyzed, demonstrating that footrot-affected skin has reduced diversity and increased abundances of not only the causative bacterium Dichelobacter nodosus but also other species such as Mycoplasma fermentans and Porphyromonas asaccharolytica. Host transcriptomics reveals the suppression of biological processes related to skin barrier function, vascular functions, and immunosurveillance in unhealthy interdigital skin, supported by histological findings that type I collagen (associated with scar tissue formation) is significantly increased in footrot-affected interdigital skin compared to outwardly healthy skin. Finally, we provide some interesting indications of host and pathogen interactions associated with virulence genes and the host spliceosome, which could lead to the identification of future therapeutic targets.
Collapse
Affiliation(s)
- Adam M. Blanchard
- School of Veterinary Medicine and Science, University of Nottingham, Loughborough, Leicestershire, United Kingdom
| | - Ceri E. Staley
- School of Veterinary Medicine and Science, University of Nottingham, Loughborough, Leicestershire, United Kingdom
| | - Laurence Shaw
- School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Sean R. Wattegedera
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Midlothian, Scotland
| | - Christina-Marie Baumbach
- Institute of Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
| | - Jule K. Michler
- Institute of Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
| | - Catrin Rutland
- School of Veterinary Medicine and Science, University of Nottingham, Loughborough, Leicestershire, United Kingdom
| | - Charlotte Back
- School of Veterinary Medicine and Science, University of Nottingham, Loughborough, Leicestershire, United Kingdom
| | - Nerissa Newbold
- School of Veterinary Medicine and Science, University of Nottingham, Loughborough, Leicestershire, United Kingdom
| | - Gary Entrican
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Midlothian, Scotland
| | - Sabine Tötemeyer
- School of Veterinary Medicine and Science, University of Nottingham, Loughborough, Leicestershire, United Kingdom
| |
Collapse
|
20
|
Poole RK, Ault-Seay TB, Payton RR, Myer PR, Lear AS, Pohler KG. Evaluation of Reproductive Tract Cytokines in Post-partum Beef Cows Relating to Reproductive Microbiota and Fertility Outcomes. FRONTIERS IN ANIMAL SCIENCE 2021. [DOI: 10.3389/fanim.2021.704714] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/29/2022] Open
Abstract
The activity of the immune system in the reproductive tract has been proven to be crucial in the response to uterine diseases, normal reproductive functions, and tolerance to the allogeneic fetus during pregnancy. The objectives of the current study were to (1) evaluate uterine and vaginal cytokine concentrations in postpartum cows undergoing estrus synchronization followed by timed artificial insemination (TAI) and (2) correlate bacterial communities with cytokine concentrations. Postpartum Angus cows (n = 20) were subjected to a 7-Day Co-Synch protocol with pre-synchronization beginning 21 days prior (d −21) to TAI (d 0). Uterine and vaginal flushes were collected on d −21 and −2. Pregnancy was determined by transrectal ultrasound on d 30. Cytokines include interleukin (IL)-1b, IL-6, IL-10, transforming growth factor beta (TGF-β), and immunoglobin A (IgA) and concentrations were determined by commercial ELISA kits. No differences by day or pregnancy status in cytokine concentrations were detected in vaginal samples. No differences by day or pregnancy status in IgA, IL-10, or IL-1b concentrations were detected in uterine samples. Overall TGF-β concentrations in the uterus were greater in resulting pregnant than non-pregnant cows (44.0 ± 13.4 pg/mL vs. 14.7 ± 4.9 pg/mL; P = 0.047). Uterine TGF-β was correlated with the relative abundance of genera Treponema (r = −0.668; P = 0.049) in resulting non-pregnant cows on d −21 and with the relative abundance of genera Ureaplasma (r = 0.901; P = 0.0004) in resulting pregnant cows on d −2. In resulting pregnant animals, a tendency for a strong correlation was detected between d −2 progesterone concentrations and uterine TGF-β concentrations (r = 0.591, P = 0.07). Overall IL-6 concentrations in the uterus were greater in resulting non-pregnant than pregnant cows (198.7 ± 21.8 pg/mL vs. 144.3 ± 16.1 pg/mL; P = 0.045). A correlation was also detected between uterine IL-6 concentrations and the relative abundance of genera Butyrivibrio (r = 0.742; P = 0.022) in resulting non-pregnant cows on d −21. These results suggest possible relationships between different bacterial communities and cytokine concentrations within the uterus of beef cattle prior to TAI that may ultimately affect fertility outcomes.
Collapse
|
21
|
Duncan JS, Angell JW, Richards P, Lenzi L, Staton GJ, Grove-White D, Clegg S, Oikonomou G, Carter SD, Evans NJ. The dysbiosis of ovine foot microbiome during the development and treatment of contagious ovine digital dermatitis. Anim Microbiome 2021; 3:19. [PMID: 33597028 PMCID: PMC7888161 DOI: 10.1186/s42523-021-00078-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/19/2020] [Accepted: 01/15/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Contagious Ovine Digital Dermatitis (CODD) is an emerging and common infectious foot disease of sheep which causes severe welfare and economic problems for the sheep industry. The aetiology of the disease is not fully understood and control of the disease is problematic. The aim of this study was to investigate the polybacterial aetiopathogenesis of CODD and the effects of antibiotic treatment, in a longitudinal study of an experimentally induced disease outbreak using a 16S rRNA gene amplicon sequencing approach. RESULTS CODD was induced in 15/30 experimental sheep. During the development of CODD three distinct phenotypic lesion stages were observed. These were an initial interdigital dermatitis (ID) lesion, followed by a footrot (FR) lesion, then finally a CODD lesion. Distinct microbiota were observed for each lesion in terms of microbial diversity, clustering and composition. Porphyromonadaceae, Family XI, Veillonellaceae and Fusobacteriaceae were significantly associated with the diseased feet. Veillonellaceae and Fusobacteriaceae were most associated with the earlier stages of ID and footrot rather than CODD. Following antibiotic treatment of the sheep, the foot microbiota showed a strong tendency to return to the composition of the healthy state. The microbiota composition of CODD lesions collected by swab and biopsy methods were different. In particular, the Spirochaetaceae family were more abundant in samples collected by the biopsy method, suggesting that these bacteria are present in deeper tissues of the diseased foot. CONCLUSION In this study, CODD presented as part of a spectrum of poly-bacterial foot disease strongly associated with bacterial families Porphyromonadaceae, Family XI (a family in Clostridiales also known as Clostridium cluster XI), Veillonellaceae and Fusobacteriaceae which are predominately Gram-negative anaerobes. Following antibiotic treatment, the microbiome showed a strong tendency to return to the composition of the healthy state. The composition of the healthy foot microbiome does not influence susceptibility to CODD. Based on the data presented here and that CODD appears to be the severest end stage of sheep infectious foot disease lesions, better control of the initial ID and FR lesions would enable better control of CODD and enable better animal welfare.
Collapse
Affiliation(s)
- J. S. Duncan
- Department of Livestock and One Health, Institute of Infection, Veterinary and Ecological Science, University of Liverpool, Leahurst Campus, Neston, Wirral CH64 7TE UK
| | - J. W. Angell
- Wern Veterinary Surgeons, Department of Research and Innovation, Unit 11, Lon Parcwr Industrial Estate, Ruthin, LL15 1NJ UK
| | - P. Richards
- Department of Veterinary Pathology, Institute of Infection, Veterinary and Ecological Science, University of Liverpool, Leahurst Campus, Neston, Wirral CH64 7TE UK
| | - L. Lenzi
- Centre for Genomic Research, Department of Evolution, Ecology and Behaviour, Institute of Infection, Veterinary and Ecological Science, University of Liverpool, Liverpool, L69 7ZB UK
| | - G. J. Staton
- Department of Infection Biology & Microbiomes, Institute of Infection, Veterinary and Ecological Science, The University of Liverpool, Leahurst Campus, Neston, Wirral CH64 7TE UK
| | - D. Grove-White
- Department of Livestock and One Health, Institute of Infection, Veterinary and Ecological Science, University of Liverpool, Leahurst Campus, Neston, Wirral CH64 7TE UK
| | - S. Clegg
- School of Life Sciences, College of Science, University of Lincoln, Brayford Pool Campus, Lincoln, LN6 7TS UK
| | - G. Oikonomou
- Department of Livestock and One Health, Institute of Infection, Veterinary and Ecological Science, University of Liverpool, Leahurst Campus, Neston, Wirral CH64 7TE UK
| | - S. D. Carter
- Department of Infection Biology & Microbiomes, Institute of Infection, Veterinary and Ecological Science, The University of Liverpool, Leahurst Campus, Neston, Wirral CH64 7TE UK
| | - N. J. Evans
- Department of Infection Biology & Microbiomes, Institute of Infection, Veterinary and Ecological Science, The University of Liverpool, Leahurst Campus, Neston, Wirral CH64 7TE UK
| |
Collapse
|
22
|
Li H, Wang X, Wu Y, Zhang D, Xu H, Xu H, Xing X, Qi Z. Relationships among bedding materials, bedding bacterial composition and lameness in dairy cows. Anim Biosci 2020; 34:1559-1568. [PMID: 33171032 PMCID: PMC8495337 DOI: 10.5713/ajas.20.0565] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/11/2020] [Accepted: 10/27/2020] [Indexed: 12/29/2022] Open
Abstract
Objective Bedding materials directly contact hooves of dairy cows and they may serve as environmental sources of lameness-associated pathogen. However, the specific composition of bacteria hidden in bedding materials is still not clear. The aim of this study was to determine the effect bedding material and its bacterial composition has on lameness of Holstein heifers. Methods Forty-eight Holstein heifers with similar body weights were randomly assigned into three groups including sand bedding (SB), concrete floor (CF), and compost bedding (CB). Hock injuries severity and gait performance of dairy cows were scored individually once a week. Blood samples were collected at the end of the experiment and bedding material samples were collected once a week for Illumina sequencing. Results The CF increased visible hock injuries severity and serum biomarkers of joint damage in comparison to SB and CB groups. Besides, Illumina sequencing and analysis showed that the bacterial community of CB samples had higher similarity to that of SB samples than CF samples. Bacteria in three bedding materials were dominated by gastrointestinal bacteria and organic matter-degrading bacteria, such as Actinobacteria, Firmicutes, and norank JG30-KF-cM45. Lameness-associated Spirochaetaceae and Treponeme were only detected in SB and CB samples with a very low relative abundance (0% to 0.08%). Conclusion The bacterial communities differed among bedding materials. However, the treponemes pathogens involved in the pathogenesis of lameness may not be a part of microbiota in bedding materials of dairy cows.
Collapse
Affiliation(s)
- Han Li
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiangming Wang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yan Wu
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Dingran Zhang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Hongyang Xu
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Hongrun Xu
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaoguang Xing
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhili Qi
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
23
|
Espiritu HM, Mamuad LL, Kim SH, Jin SJ, Lee SS, Kwon SW, Cho YI. Microbiome Shift, Diversity, and Overabundance of Opportunistic Pathogens in Bovine Digital Dermatitis Revealed by 16S rRNA Amplicon Sequencing. Animals (Basel) 2020; 10:ani10101798. [PMID: 33022998 PMCID: PMC7599724 DOI: 10.3390/ani10101798] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/27/2020] [Revised: 09/22/2020] [Accepted: 09/30/2020] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Bovine digital dermatitis (BDD) is a foot infection known as the primary cause of lameness in cattle due to painful lesions, posing serious impacts on the productivity and welfare of affected animals. Members of the bacterial group Treponema have long been considered as the main causative agents because previous investigations by bacterial isolation, tissue analyses, and high molecular sequencing have persistently identified this group in BDD. However, other studies indicated that the presence of several bacteria on the lesion due to the slurry environment the cattle foot are exposed to, suggests an interdependent polybacterial nature which could also play a role in disease development and progression. Therefore, we analyzed the diversity and relationship of the diverse microbiome in BDD lesions compared to normal skin from cattle foot by using next-generation high throughput sequencing. Based on the results obtained, we concluded that the shift in microbial composition which leads to richer diversity in BDD, and the overabundance of opportunistic bacterial pathogens could be associated with BDD pathogenesis. Abstract This study analyzed the diversity and phylogenetic relationship of the microbiome of bovine digital dermatitis (BDD) lesions and normal skin from cattle foot by using 16S rRNA amplicon sequencing. Three BDD samples and a normal skin sample were pre-assessed for analysis. The Illumina Miseq platform was used for sequencing and sequences were assembled and were categorized to operational taxonomic units (OTUs) based on similarity, then the core microbiome was visualized. The phylogeny was inferred using MEGA7 (Molecular evolutionary genetics analysis version 7.0). A total of 129 and 185 OTUs were uniquely observed in normal and in BDD samples, respectively. Of the 47 shared OTUs, 15 species presented increased abundance in BDD. In BDD and normal samples, Spirochetes and Proteobacteria showed the most abundant phyla, respectively, suggesting the close association of observed species in each sample group. The phylogeny revealed the evolutionary relationship of OTUs and the Euclidean distance suggested a high sequence divergence between OTUs. We concluded that a shift in the microbiome leads to richer diversity in BDD lesions, and the overabundance of opportunistic pathogens and its synergistic relationship with commensal bacteria could serve as factors in disease development. The influence of these factors should be thoroughly investigated in future studies to provide deeper insights on the pathogenesis of BDD.
Collapse
Affiliation(s)
- Hector M. Espiritu
- Department of Animal Science and Technology, Sunchon National University, Suncheon, Jeonnam 57922, Korea; (H.M.E.); (L.L.M.); (S.-h.K.); (S.-j.J.); (S.-s.L.)
| | - Lovelia L. Mamuad
- Department of Animal Science and Technology, Sunchon National University, Suncheon, Jeonnam 57922, Korea; (H.M.E.); (L.L.M.); (S.-h.K.); (S.-j.J.); (S.-s.L.)
| | - Seon-ho Kim
- Department of Animal Science and Technology, Sunchon National University, Suncheon, Jeonnam 57922, Korea; (H.M.E.); (L.L.M.); (S.-h.K.); (S.-j.J.); (S.-s.L.)
| | - Su-jeong Jin
- Department of Animal Science and Technology, Sunchon National University, Suncheon, Jeonnam 57922, Korea; (H.M.E.); (L.L.M.); (S.-h.K.); (S.-j.J.); (S.-s.L.)
| | - Sang-suk Lee
- Department of Animal Science and Technology, Sunchon National University, Suncheon, Jeonnam 57922, Korea; (H.M.E.); (L.L.M.); (S.-h.K.); (S.-j.J.); (S.-s.L.)
| | - Seok-won Kwon
- Woosarang Animal Hospital, Yongin, Gyeonggi 17026, Korea;
| | - Yong-il Cho
- Department of Animal Science and Technology, Sunchon National University, Suncheon, Jeonnam 57922, Korea; (H.M.E.); (L.L.M.); (S.-h.K.); (S.-j.J.); (S.-s.L.)
- Correspondence: ; Tel.: +82-61-750-3234
| |
Collapse
|
24
|
Gillespie AV, Carter SD, Blowey RW, Staton GJ, Evans NJ. Removal of bovine digital dermatitis-associated treponemes from hoof knives after foot-trimming: a disinfection field study. BMC Vet Res 2020; 16:330. [PMID: 32917195 PMCID: PMC7488572 DOI: 10.1186/s12917-020-02552-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/04/2020] [Accepted: 08/31/2020] [Indexed: 12/15/2022] Open
Abstract
Background Bovine digital dermatitis (BDD) is an infectious foot disease found commonly in dairy herds. Foot-trimming is an important husbandry procedure for reducing the ensuing lameness; however, epidemiological, and microbiological studies have identified this as a risk activity for transmitting BDD. Three disinfectants have previously been identified in laboratory work as effective for removing viable BDD-associated Treponema spp., from hoof knife blades. The present study enrolled 133 dairy cattle with BDD lesions, and swabbed hoof knife blades before and after foot-trimming, and after knife disinfection with one of three disinfectants (1:100 FAM30®, 2% Virkon® and 2% sodium hypochlorite) to assess their efficacy under field conditions. Results Detection of BDD treponeme phylogroup DNA was undertaken by direct PCR of swabs, and viable treponemes were detected by PCR of swab cultures after 6 weeks’ incubation. Where hoof knives did not contact the lesion, BDD-associated treponemes were detected after foot-trimming in 12/22 (54.5%) cases by direct PCR and 1/22 (4.5%) cases by PCR of cultured organisms. Where contact was made with the lesion, 111/111 (100%) samples taken after trimming were positive by direct PCR and 47/118 (39.8%) were positive by culture PCR. Viable organisms were identified in cultures from lesion stages M2, M3, M4 and M4.1. No viable organisms were detected after disinfection of hoof knives. Conclusions Hoof knives post-trimming were frequently contaminated with BDD-associated treponeme DNA. Viable organisms were identified in cultures whether contact had been made between hoof knife and lesion or not, although contact clearly increased the frequency of detection of viable organisms. The three disinfectants tested were effective for removing viable organisms. The disinfection protocol used in this study should therefore be considered reliable for adoption as standard industry practice.
Collapse
Affiliation(s)
- A V Gillespie
- Department of Infection Biology, Institute of Infection and Global Health, University of Liverpool, Merseyside, UK.
| | - S D Carter
- Department of Infection Biology, Institute of Infection and Global Health, University of Liverpool, Merseyside, UK
| | - R W Blowey
- Wood Veterinary Group, 125 Bristol Road, Gloucester, GL2 4NB, UK
| | - G J Staton
- Department of Infection Biology, Institute of Infection and Global Health, University of Liverpool, Merseyside, UK
| | - N J Evans
- Department of Infection Biology, Institute of Infection and Global Health, University of Liverpool, Merseyside, UK
| |
Collapse
|
25
|
Sadiq MB, Ramanoon SZ, Mansor R, Syed-Hussain SS, Shaik Mossadeq WM. Claw Trimming as a Lameness Management Practice and the Association with Welfare and Production in Dairy Cows. Animals (Basel) 2020; 10:E1515. [PMID: 32867064 PMCID: PMC7552284 DOI: 10.3390/ani10091515] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/13/2020] [Revised: 07/26/2020] [Accepted: 08/05/2020] [Indexed: 01/31/2023] Open
Abstract
Lameness resulting from claw lesions remains a pressing welfare issue in dairy cows. Claw trimming (CT) is a common practice for prevention and management of clinically lame cows. This review summarizes the results of studies that have investigated various claw trimming (CT) methods, their application in lameness management, and associations with the welfare and production of dairy cows. The papers included in this review fulfilled the following inclusion criteria: published in peer review journal or book chapter within the last 20 years (1999-2019), written in English, and focused on the application of CT for lameness management and the association with either welfare or production variables. Databases used included Google scholar, Web of Science and PubMed. A total of 748 records were assessed and 61 papers were eligible for inclusion and the main objectives and results were used to categorize the results under six topics: CT techniques, association between CT and claw overgrowth/specific claw lesions, timing and frequency of CT, association between CT and behavioral variables, association between CT and physiological parameters, and association between CT and production. The literature findings showed the existence of various CT methods with the common types including the Dutch Five-step, White Line, White Line Atlas, and Kansas techniques. There is data paucity on the efficacy of these techniques in lameness management; however, the slight procedural difference yields varying sole thicknesses and presentations which may influence their prophylactic use. Results regarding the impact of CT on welfare and production were discussed in relation to potential short and long-term benefits. Depending on the lesion type and severity level, CT may induce immediate painful sensation, stress, changes in lying down activities and reduction in milk yield, but the positive impacts were more evident at later stages of lactation following improvement in locomotion score. The majority of the reviewed studies were lacking a detailed description of CT techniques and claw health of the studied animals; thus, reducing the strength of demonstrating CT-related benefits. However, electronic recording of claw health data during every CT visit provides the basis for monitoring hoof health and could assist in curtailing some of these challenges. To elucidate CT-related benefits, certain areas requiring further research were highlighted such as ascertaining the appropriate timing for preventive CT and identifying cows that will benefit more from such intervention during lactation.
Collapse
Affiliation(s)
- Mohammed Babatunde Sadiq
- Department of Farm and Exotic Animal Medicine and Surgery, Faculty of Veterinary Medicine, Universiti Putra Malaysia, UPM Serdang 43400, Malaysia; (M.B.S.); (R.M.)
- Centre of Excellence (Ruminant), Faculty of Veterinary Medicine, Universiti Putra Malaysia, UPM Serdang 43400, Malaysia;
| | - Siti Zubaidah Ramanoon
- Department of Farm and Exotic Animal Medicine and Surgery, Faculty of Veterinary Medicine, Universiti Putra Malaysia, UPM Serdang 43400, Malaysia; (M.B.S.); (R.M.)
- Centre of Excellence (Ruminant), Faculty of Veterinary Medicine, Universiti Putra Malaysia, UPM Serdang 43400, Malaysia;
| | - Rozaihan Mansor
- Department of Farm and Exotic Animal Medicine and Surgery, Faculty of Veterinary Medicine, Universiti Putra Malaysia, UPM Serdang 43400, Malaysia; (M.B.S.); (R.M.)
- Centre of Excellence (Ruminant), Faculty of Veterinary Medicine, Universiti Putra Malaysia, UPM Serdang 43400, Malaysia;
| | - Sharifah Salmah Syed-Hussain
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, UPM Serdang 43400, Malaysia;
| | - Wan Mastura Shaik Mossadeq
- Centre of Excellence (Ruminant), Faculty of Veterinary Medicine, Universiti Putra Malaysia, UPM Serdang 43400, Malaysia;
- Department of Veterinary Pre-Clinical Sciences, Faculty of Veterinary Medicine, Universiti Putra Malaysia, UPM Serdang 43400, Malaysia
| |
Collapse
|
26
|
Visseren T, Fuhler GM, Erler NS, Nossent YRA, Metselaar HJ, IJzermans JNM, Darwish Murad S, Peppelenbosch MP. Recurrence of primary sclerosing cholangitis after liver transplantation is associated with specific changes in the gut microbiome pretransplant - a pilot study. Transpl Int 2020; 33:1424-1436. [PMID: 33617049 PMCID: PMC7689804 DOI: 10.1111/tri.13692] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/25/2020] [Revised: 04/22/2020] [Accepted: 07/01/2020] [Indexed: 12/12/2022]
Abstract
Primary sclerosing cholangitis (PSC) is a common indication for liver transplantation (LT). Up to 25% of patients experience recurrence of PSC (rPSC) after LT, which is associated with significant morbidity and mortality. To date, it is not possible to predict which patients are at risk for rPSC. The aetiology of PSC is complex and is speculated to involve translocation of intestinal bacteria to the liver, because of its frequent co‐occurrence with inflammatory bowel diseases (IBD). Here, we investigate whether the mucosal intestinal microbiome of PSC patients (n = 97) at time of first LT can identify those patients who will develop rPSC. 16S gene sequencing of bacterial DNA isolated from formalin‐fixed paraffin‐embedded biopsies showed that PSC patients with Crohn’s disease (n = 15) have a reduced microbial diversity and that inflammation of the mucosa is associated with beta‐diversity changes and feature differences. No differences in alpha‐ or beta diversity were observed between patients with rPSC (n = 14) and without rPSC (n = 83). However, many over‐represented bacterial features were detected in patients with rPSC, while surprisingly, those without recurrence of disease were characterized by an increased presence of the Gammaproteobacteria Shigella. This pilot study warrants further investigation into bacterial differences between rPSC and non‐rPSC patients.
Collapse
Affiliation(s)
- Thijmen Visseren
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands.,Department of Surgery, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Gwenny Manel Fuhler
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Nicole Stephanie Erler
- Department of Biostatistics, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Yoena Roos Anna Nossent
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Herold Johnny Metselaar
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | | | - Sarwa Darwish Murad
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Maikel Petrus Peppelenbosch
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
27
|
Afshar P, Mohammadi A, Tyrrell PN, Cheung P, Sigiuk A, Plataniotis KN, Nguyen ET, Oikonomou A. [Formula: see text]: deep learning-based radiomics for the time-to-event outcome prediction in lung cancer. Sci Rep 2020; 10:12366. [PMID: 32703973 PMCID: PMC7378058 DOI: 10.1038/s41598-020-69106-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/07/2019] [Accepted: 06/26/2020] [Indexed: 12/24/2022] Open
Abstract
Hand-crafted radiomics has been used for developing models in order to predict time-to-event clinical outcomes in patients with lung cancer. Hand-crafted features, however, are pre-defined and extracted without taking the desired target into account. Furthermore, accurate segmentation of the tumor is required for development of a reliable predictive model, which may be objective and a time-consuming task. To address these drawbacks, we propose a deep learning-based radiomics model for the time-to-event outcome prediction, referred to as DRTOP that takes raw images as inputs, and calculates the image-based risk of death or recurrence, for each patient. Our experiments on an in-house dataset of 132 lung cancer patients show that the obtained image-based risks are significant predictors of the time-to-event outcomes. Computed Tomography (CT)-based features are predictors of the overall survival (OS), with the hazard ratio (HR) of 1.35, distant control (DC), with HR of 1.06, and local control (LC), with HR of 2.66. The Positron Emission Tomography (PET)-based features are predictors of OS and recurrence free survival (RFS), with hazard ratios of 1.67 and 1.18, respectively. The concordance indices of [Formula: see text], [Formula: see text], and [Formula: see text] for predicting the OS, DC, and RFS show that the deep learning-based radiomics model is as accurate or better in predicting predefined clinical outcomes compared to hand-crafted radiomics, with concordance indices of [Formula: see text], [Formula: see text], and [Formula: see text], for predicting the OS, DC, and RFS, respectively. Deep learning-based radiomics has the potential to offer complimentary predictive information in the personalized management of lung cancer patients.
Collapse
Affiliation(s)
- Parnian Afshar
- Concordia Institute for Information Systems Engineering, Montreal, QC Canada
| | - Arash Mohammadi
- Concordia Institute for Information Systems Engineering, Montreal, QC Canada
| | - Pascal N. Tyrrell
- Department of Medical Imaging, University of Toronto, Toronto, Canada
- Department of Statistical Sciences, University of Toronto, Toronto, Canada
| | - Patrick Cheung
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada
| | - Ahmed Sigiuk
- Department of Medical Imaging, University of Toronto, Toronto, Canada
- Department of Statistical Sciences, University of Toronto, Toronto, Canada
| | | | - Elsie T. Nguyen
- Cardiothoracic Imaging Division, Joint Department of Medical Imaging, Toronto General Hospital, Toronto, Canada
| | - Anastasia Oikonomou
- Department of Medical Imaging, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada
| |
Collapse
|
28
|
Zhang X, Swalve HH, Pijl R, Rosner F, Wensch-Dorendorf M, Brenig B. Interdigital Hyperplasia in Holstein Cattle Is Associated With a Missense Mutation in the Signal Peptide Region of the Tyrosine-Protein Kinase Transmembrane Receptor Gene. Front Genet 2019; 10:1157. [PMID: 31798639 PMCID: PMC6863962 DOI: 10.3389/fgene.2019.01157] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/13/2019] [Accepted: 10/22/2019] [Indexed: 01/31/2023] Open
Abstract
Bovine interdigital hyperplasia (IH) is a typical disease of the foot with varying prevalence depending on age, breed, and environmental factors resulting in different degrees of lameness. In studies based on assessments of claw health status at time of hoof trimming and applying genetic-statistical models to analyze this data, IH consistently exhibits high estimates of heritability in the range of 0.30–0.40. Although some studies have identified chromosomal regions that could possibly harbor causative genes, a clear identification of molecular causes for IH is lacking. While analyzing the large database of claw health status as documented at time of hoof trimming, we identified one herd with extreme prevalence of IH of > 50% of affected Holstein dairy cows. This herd subsequently was chosen as the object of a detailed study. A total of n = 91 cows was assessed and revealed a prevalence of 59.3% and 38.5% for IH cases, documented as “one-sided” or “two-sided”, respectively. Cows were genotyped using the BovineSNP50 BeadChip. A genome wide association study revealed two significantly associated chromosomal positions (-log10P = 5.57) on bovine chromosome 8 (BTA8) located in intron 5 and downstream of the receptor tyrosine kinase-like orphan receptor 2 (ROR2) gene. As ROR2 plays a key role in ossification of the distal limbs and is associated with brachydactylies in humans, it was a reasonable candidate for IH. A comparative sequencing of the ROR2 gene between cases and controls revealed two missense variants in exon 1 (NC_037335.1:g.85,905,534T > A, ARS-UCD1.2) and exon 9 (NC_037335.1:g.86,140,379A > G, ARS-UCD1.2), respectively. Genotyping of both variants in the cohort of 91 cattle showed that the exon 1 variant (rs377953295) remained significantly associated with IH (p < 0.0001) as a risk factor of the disease. This variant resulted in an amino acid exchange (ENSBTAP00000053765.2:p.Trp9Arg) in the N-terminal region of the ROR2 signal peptide which is necessary for proper topology of the polypeptide during translocation. Quantification of ROR2 mRNA and ROR2 protein showed that the variant resulted in a significant suppression of ROR2 expression in homozygous affected compared to wild type and carrier cows.
Collapse
Affiliation(s)
- Xuying Zhang
- Institute of Veterinary Medicine, University of Göttingen, Göttingen, Germany
| | - Hermann H Swalve
- Animal Breeding, Institute of Agricultural and Nutritional Sciences, Martin-Luther-University Halle-Wittenberg, Halle/Saale, Germany
| | - René Pijl
- Independent Researcher, Jever, Germany
| | - Frank Rosner
- Animal Breeding, Institute of Agricultural and Nutritional Sciences, Martin-Luther-University Halle-Wittenberg, Halle/Saale, Germany
| | - Monika Wensch-Dorendorf
- Animal Breeding, Institute of Agricultural and Nutritional Sciences, Martin-Luther-University Halle-Wittenberg, Halle/Saale, Germany
| | - Bertram Brenig
- Institute of Veterinary Medicine, University of Göttingen, Göttingen, Germany
| |
Collapse
|
29
|
Pathogenicity and Virulence of Trueperella pyogenes: A Review. Int J Mol Sci 2019; 20:ijms20112737. [PMID: 31167367 PMCID: PMC6600626 DOI: 10.3390/ijms20112737] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/16/2019] [Revised: 05/31/2019] [Accepted: 05/31/2019] [Indexed: 12/19/2022] Open
Abstract
Bacteria from the species Trueperella pyogenes are a part of the biota of skin and mucous membranes of the upper respiratory, gastrointestinal, or urogenital tracts of animals, but also, opportunistic pathogens. T. pyogenes causes a variety of purulent infections, such as metritis, mastitis, pneumonia, and abscesses, which, in livestock breeding, generate significant economic losses. Although this species has been known for a long time, many questions concerning the mechanisms of infection pathogenesis, as well as reservoirs and routes of transmission of bacteria, remain poorly understood. Pyolysin is a major known virulence factor of T. pyogenes that belongs to the family of cholesterol-dependent cytolysins. Its cytolytic activity is associated with transmembrane pore formation. Other putative virulence factors, including neuraminidases, extracellular matrix-binding proteins, fimbriae, and biofilm formation ability, contribute to the adhesion and colonization of the host tissues. However, data about the pathogen–host interactions that may be involved in the development of T. pyogenes infection are still limited. The aim of this review is to present the current knowledge about the pathogenic potential and virulence of T. pyogenes.
Collapse
|