1
|
Xu L, Ma L, Wei R, Ma Y, Ma T, Dang J, Chen Z, Li S, Ma S, Chen G. Effect of Continuous Cropping on Growth and Lobetyolin Synthesis of the Medicinal Plant Codonopsis pilosula (Franch.) Nannf. Based on the Integrated Analysis of Plant-Metabolite-Soil Factors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:19604-19617. [PMID: 39196612 DOI: 10.1021/acs.jafc.4c03664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
The integrated plant-metabolite-soil regulation model of C. Pilosula growth and lobetyolin synthesis in response to continuous cropping lacks systematic investigation. In this study, we investigated the regulatory mechanisms of growth and lobetyolin synthesis in C. pilosula under continuous cropping stress based on high-performance liquid chromatography, transcriptome, and microbial sequencing on the root system and rhizosphere soil of C. pilosula from one year of cultivation and five years of continuous cropping. The findings of this study revealed that continuous cropping significantly inhibited the growth of C. pilosula and led to a notable decrease in the lobetyolin content. An effort was made to propose a potential pathway for lobetyolin biosynthesis in C. pilosula, which is closely linked to the expression of genes responsible for glucoside and unsaturated fatty acid chain synthesis. In addition, soil physicochemical properties and soil microorganisms had strong correlations with root growth and synthesis of lobetyolin, suggesting that soil physicochemical properties and microorganisms are the main factors triggering the succession disorder in C. pilosula. This study provides an in-depth interpretation of the regulatory mechanism of acetylenic glycoside synthesis and offers new insights into the triggering mechanism of C. pilosula succession disorder, which will guide future cultivation and industrial development.
Collapse
Affiliation(s)
- Ling Xu
- College of Life Sciences and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Lei Ma
- Agronomy College, Gansu Agricultural University, Lanzhou 730070, China
| | - Ruonan Wei
- College of Life Sciences and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Yantong Ma
- College of Life Sciences and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Tingfeng Ma
- College of Life Sciences and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Junhong Dang
- College of Life Sciences and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Zhen Chen
- College of Life Sciences and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Sheng Li
- State Key Laboratory of Aridland Crop Science, College of Life Sciences and Technology, Gansu Agricultural University, Lanzhou 730070, China
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Shaoying Ma
- Laboratory and Base Management Center, Gansu Agricultural University, Lanzhou 730070, China
| | - Guiping Chen
- Agronomy College, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
2
|
Guo Z, Chen J, Lv Z, Huang Y, Tan H, Zhang L, Diao Y. Molecular cloning and functional characterization of BcTSA in the biosynthesis of indole alkaloids in Baphicacanthus cusia. FRONTIERS IN PLANT SCIENCE 2023; 14:1174582. [PMID: 37139111 PMCID: PMC10149986 DOI: 10.3389/fpls.2023.1174582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 04/03/2023] [Indexed: 05/05/2023]
Abstract
Baphicacanthus cusia (Nees) Bremek (B. cusia) is an essential traditional Chinese herb that is commonly used to treat colds, fever, and influenza. Indole alkaloids, such as indigo and indirubin, are the primary active constituents of B. cusia. The indole-producing reaction is crucial for regulating the flow of indole alkaloids metabolites along the pathways and coordinating primary and secondary product biosynthesis in plants. The tryptophan synthase alpha-subunit (TSA) can catalyse a process that produces indole, which is free to enter secondary metabolite pathways; however, the underlying potential mechanism of regulating indigo alkaloids synthesis remains unknown. Here, a BcTSA was cloned from the transcriptome of B. cusia. The BcTSA has a significant degree of similarity with other plant TSAs according to bioinformatics and phylogenetic analyses. Quantitative real-time PCR (RT-qPCR) research showed that BcTSA was dramatically enhanced in response to treatment with methyl jasmonate (MeJA), salicylic acid (SA), and abscisic acid (ABA), and was predominantly expressed in the stems as opposed to the leaves and rhizomes. Subcellular localization revealed that BcTSA is localized in chloroplasts, which is compatible with the fact that the conversion of indole-3-glycerol phosphate (IGP) to indole occurs in chloroplasts. The complementation assay results showed that BcTSA was functional, demonstrating that it was capable of catalyzing the conversion of IGP to indole. BcTSA was shown to stimulate the manufacture of indigo alkaloids including isatin, indigo, and indirubin when the gene was overexpressed in the hairy roots of Isatis indigotica. In conclusion, our research provides novel perspectives that might be applied to manipulating the indole alkaloid composition of B. cusia.
Collapse
Affiliation(s)
- Zhiying Guo
- School of Food and Bioengineering, Fujian Polytechnic Normal University, Fuqing, China
- School of Medicine, Huaqiao University, Quanzhou, China
| | - Junfeng Chen
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zongyou Lv
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuxiang Huang
- School of Medicine, Huaqiao University, Quanzhou, China
| | - Hexin Tan
- School of Pharmacy, Navy Medical University, Shanghai, China
- *Correspondence: Hexin Tan, ; Lei Zhang, ; Yong Diao,
| | - Lei Zhang
- School of Pharmacy, Navy Medical University, Shanghai, China
- *Correspondence: Hexin Tan, ; Lei Zhang, ; Yong Diao,
| | - Yong Diao
- School of Medicine, Huaqiao University, Quanzhou, China
- *Correspondence: Hexin Tan, ; Lei Zhang, ; Yong Diao,
| |
Collapse
|
3
|
Li L, Yang X, Tong B, Wang D, Tian X, Liu J, Chen J, Xiao X, Wang S. Rhizobacterial compositions and their relationships with soil properties and medicinal bioactive ingredients in Cinnamomum migao. Front Microbiol 2023; 14:1078886. [PMID: 36876061 PMCID: PMC9978227 DOI: 10.3389/fmicb.2023.1078886] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/30/2023] [Indexed: 02/18/2023] Open
Abstract
Introduction Rhizobacterial communities and their metabolites can affect plant growth, development, and stress resistance, as well as the biosynthesis and accumulation of bioactive compounds in medicinal plants. This relationship has been well-characterized in many medicinal herbs, although much less commonly in medicinal trees. Methods Here, we analyzed the composition and structure of Cinnamomum migao rhizobacterial communities across nine growing regions in Yunnan, Guizhou and Guangxi, China, as well as differences in soil properties and fruit bioactive compounds. Results Results showed that the C. migao rhizobacterial communities exhibited high species richness, but location-specific differences in structure. Site-specific differences in soil properties and bioactive compounds were also observed. Furthermore, rhizobacterial community compositions were correlated with both soil properties and fruit bioactive compounds, metabolism-related functions were most common in C. migao rhizobacteria. Discussion Several bacterial genera, including Acidothermus, Acidibacter, Bryobacter, Candidatus_Solibacter, and Acidimicrobiales, potentially promote the biosynthesis and accumulation of 1,8-cineole, cypressene, limonene, and α-terpineol, Nitrospira and Alphaproteobacteria may play an inhibitory role. Finally, our results emphasized the critical role that soil pH and nitrogen levels play in driving rhizobacterial community structure, and specific functional bacteria can also counteract with soil properties, Acidibacter and Nitrospira can affect soil pH and nitrogen effectiveness. Overall, this study provides additional insight into the complex correlation of rhizosphere microorganisms with bioactive ingredients and soil properties of medicinal plants.
Collapse
Affiliation(s)
- Lixia Li
- Forest Ecology Research Center, College of Forestry, Guizhou University, Guiyang, Guihzou, China
| | - Xuedong Yang
- Forest Ecology Research Center, College of Forestry, Guizhou University, Guiyang, Guihzou, China.,Guizhou Extension Station of Grassland Technology, Guiyang, Guizhou, China
| | - Bingli Tong
- School of Life Sciences, Guizhou Normal University, Guiyang, Guizhou, China
| | - Deng Wang
- College of Urban and Rural Construction, Shaoyang University, Shaoyang, China
| | - Xiu Tian
- Forest Ecology Research Center, College of Forestry, Guizhou University, Guiyang, Guihzou, China
| | - Jiming Liu
- Forest Ecology Research Center, College of Forestry, Guizhou University, Guiyang, Guihzou, China
| | - Jingzhong Chen
- Forest Ecology Research Center, College of Forestry, Guizhou University, Guiyang, Guihzou, China
| | - Xuefeng Xiao
- Forest Ecology Research Center, College of Forestry, Guizhou University, Guiyang, Guihzou, China
| | - Shu Wang
- Forest Ecology Research Center, College of Forestry, Guizhou University, Guiyang, Guihzou, China
| |
Collapse
|
4
|
Fan W, Tang F, Wang J, Dong J, Xing J, Shi F. Drought-induced recruitment of specific root-associated bacteria enhances adaptation of alfalfa to drought stress. Front Microbiol 2023; 14:1114400. [PMID: 36910228 PMCID: PMC9995459 DOI: 10.3389/fmicb.2023.1114400] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/06/2023] [Indexed: 02/25/2023] Open
Abstract
Drought is a major abiotic stress that threatens crop production. Soil microbiomes are thought to play a role in enhancing plant adaptation to various stresses. However, it remains unclear whether soil microbiomes play a key role when plants are challenged by drought and whether different varieties are enriched with specific bacteria at the rhizosphere. In this study, we measured changes in growth phenotypes, physiological and biochemical characteristics of drought-tolerant alfalfa (AH) and drought-sensitive (QS) under sterilized and unsterilized soil conditions with adequate watering and with drought stress, and analyzed the rhizosphere bacterial community composition and changes using 16S rRNA high-throughput sequencing. We observed that the unsterilized treatment significantly improved the growth, and physiological and biochemical characteristics of alfalfa seedlings under drought stress compared to the sterilized treatment. Under drought stress, the fresh and dry weight of seedlings increased by 35.24, 29.04, and 11.64%, 2.74% for unsterilized AH and QS, respectively, compared to sterilized treatments. The improvement was greater for AH than for QS. AH and QS recruited different rhizosphere bacteria when challenged by drought. Interestingly, under well-watered conditions, the AH rhizosphere was already rich in drought-tolerant bacterial communities, mainly Proteobacteria and Bacteroidetes, whereas these bacteria started to increase only when QS was subjected to drought. When drought stress was applied, AH was enriched with more drought-tolerant bacteria, mainly Acidobacteria, while the enrichment was weaker in QS rhizosphere. Therefore, the increase in drought tolerance of the drought-tolerant variety AH was greater than that of the drought-sensitive variety QS. Overall, this study confirmed the key role of drought-induced rhizosphere bacteria in improving the adaptation of alfalfa to drought stress, and clarified that this process is significantly related to the variety (genotype). The results of this study provide a basis for improving drought tolerance in alfalfa by regulating the rhizosphere microbiome.
Collapse
Affiliation(s)
- Wenqiang Fan
- Key Laboratory of Grassland Resources of the Ministry of Education and Key Laboratory of Forage Cultivation, Processing and High-Efficiency Utilization of the Ministry of Agriculture, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
| | - Fang Tang
- Key Laboratory of Grassland Resources of the Ministry of Education and Key Laboratory of Forage Cultivation, Processing and High-Efficiency Utilization of the Ministry of Agriculture, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
| | - Jiani Wang
- Key Laboratory of Grassland Resources of the Ministry of Education and Key Laboratory of Forage Cultivation, Processing and High-Efficiency Utilization of the Ministry of Agriculture, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
| | - Jiaqi Dong
- Key Laboratory of Grassland Resources of the Ministry of Education and Key Laboratory of Forage Cultivation, Processing and High-Efficiency Utilization of the Ministry of Agriculture, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
| | - Jing Xing
- Key Laboratory of Grassland Resources of the Ministry of Education and Key Laboratory of Forage Cultivation, Processing and High-Efficiency Utilization of the Ministry of Agriculture, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
| | - Fengling Shi
- Key Laboratory of Grassland Resources of the Ministry of Education and Key Laboratory of Forage Cultivation, Processing and High-Efficiency Utilization of the Ministry of Agriculture, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
| |
Collapse
|
5
|
Jia W, Wang S, He X, Zhao X. Different factors drive the assembly of pine and Panax notoginseng-associated microbiomes in Panax notoginseng-pine agroforestry systems. Front Microbiol 2022; 13:1018989. [PMID: 36452920 PMCID: PMC9702986 DOI: 10.3389/fmicb.2022.1018989] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 10/24/2022] [Indexed: 09/06/2024] Open
Abstract
Land-use conversion affects the composition and assembly of plant-associated microbiomes, which in turn affects plant growth, development, and ecosystem functioning. However, agroforestry systems, as sustainable land types, have received little attention regarding the dynamics of different plant-associated microbes. In this study, we used high-throughput sequencing technology to analyze the assembly mechanisms and the driving factors of pine- and Panax notoginseng (P.n.)-associated microbiomes during the conversion of different pine forests (Pinus kesiya var. langbianensis and Pinus armandii) into P.n.-pine agroforestry systems. The results showed that the conversion of pure pine forest into P.n.-pine agroforestry systems significantly altered the diversity of pine-associated fungi rather than the community structure, and the community structure of P.n.-associated fungi rather than the diversity. Additionally, plant-associated fungi were more responsive to land-use change than bacteria. Main effect analysis revealed that compartment rather than genotype was the driving factor of pine- and P.n.-associated microbiomes, but P.n. cultivation also significantly affected the assembly of pine-associated microbiomes. In addition, there was a transfer of P.n. endophytes to pine trees in agroforestry systems and the beneficial microbiomes (Massilia, Marmoricola, Herbaspirillum, etc.) were enlarged in pine roots. Therefore, the diversity of the assembly mechanisms of P.n.- and pine-associated microbiomes played an important role in the P.n.--pine agroforestry systems and were the basis for the sustainable development of the P.n.--pine agroforestry systems.
Collapse
Affiliation(s)
- Weijia Jia
- College of Landscape Architecture and Horticulture Sciences, Southwest Forestry University, Kunming, China
| | - Shu Wang
- Ministry of Education Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Southwest Forestry University, Kunming, China
| | - Xiahong He
- Ministry of Education Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Southwest Forestry University, Kunming, China
| | - Xiaoyan Zhao
- College of Landscape Architecture and Horticulture Sciences, Southwest Forestry University, Kunming, China
| |
Collapse
|
6
|
Nwachukwu BC, Ayangbenro AS, Babalola OO. Comparative study of microbial structure and functional profile of sunflower rhizosphere grown in two fields. BMC Microbiol 2021; 21:337. [PMID: 34886803 PMCID: PMC8656072 DOI: 10.1186/s12866-021-02397-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 11/24/2021] [Indexed: 12/28/2022] Open
Abstract
Background Microbial communities inhabiting the rhizosphere play pivotal roles in determining plant health and yield. Manipulation of the rhizosphere microbial community is a promising means to enhance the productivity of economically viable and important agricultural crops such as sunflower (Helianthus annuus). This study was designed to gain insights into the taxonomic and functional structures of sunflower rhizosphere and bulk soil microbiome at two different locations (Sheila and Itsoseng) in South Africa. Results Microbial DNA extracted from the sunflower rhizosphere and bulk soils was subjected to next-generation sequencing using 16S amplicon sequencing technique. Firmicutes, Actnobacteria and Proteobacteria predominated sunflower rhizosphere soils. Firmicutes, Cyanobacteria, Deinococcus-Thermus and Fibrobacteres were positively influenced by Na+ and clay content, while Actinobacteria, Thaumarchaeota, Bacteroidetes, Planctomycetes, Aquificae and Chloroflexi were positively influenced by soil resistivity (Res) and Mg2+. The community-level physiological profiling (CLPP) analysis showed that the microbial communities in SHR and ITR used the amino acids tryptophan and malic acid efficiently. The metabolisms of these carbon substrates may be due to the dominant nature of some of the organisms, such as Actinobacteria in the soils. Conclusion The CLPP measurements of soil from sunflower rhizosphere were different from those of the bulk soil and the degree of the variations were based on the type of carbon substrates and the soil microbial composition. This study has shown the presence of certain taxa of rhizobacteria in sunflower rhizosphere which were positively influenced by Na+ and Mg2+, and taxa obtained from SHR and ITR were able to effectively utilized tryptophan and malic acid. Many unclassified microbial groups were also discovered and it is therefore recommended that efforts should further be made to isolate, characterize and identify these unclassified microbial species, as it might be plausible to discover new microbial candidates that can further be harnessed for biotechnological purpose.
Collapse
Affiliation(s)
- Blessing Chidinma Nwachukwu
- Food Security and Safety Niche, Faculty of Natural and Agricultural Science, Private Mail Bag X2046, North-West University, Mmabatho, 2735, South Africa
| | - Ayansina Segun Ayangbenro
- Food Security and Safety Niche, Faculty of Natural and Agricultural Science, Private Mail Bag X2046, North-West University, Mmabatho, 2735, South Africa
| | - Olubukola Oluranti Babalola
- Food Security and Safety Niche, Faculty of Natural and Agricultural Science, Private Mail Bag X2046, North-West University, Mmabatho, 2735, South Africa.
| |
Collapse
|
7
|
Liu Q, Xie S, Zhao X, Liu Y, Xing Y, Dao J, Wei B, Peng Y, Duan W, Wang Z. Drought Sensitivity of Sugarcane Cultivars Shapes Rhizosphere Bacterial Community Patterns in Response to Water Stress. Front Microbiol 2021; 12:732989. [PMID: 34745035 PMCID: PMC8568056 DOI: 10.3389/fmicb.2021.732989] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/16/2021] [Indexed: 12/13/2022] Open
Abstract
Rhizosphere bacteria, the main functional microorganisms inhabiting the roots of terrestrial plants, play important roles in regulating plant growth and environmental stress resistance. However, limited information is available regarding changes occurring within the structure of the root microbial community and the response mechanisms of host plants that improve adaptability to drought stress. In this study, we conducted an experiment on two sugarcane varieties with different drought tolerance levels under drought and control treatments and analyzed the rhizosphere bacterial communities using 16S rRNA high-throughput sequencing. Correlation analysis results clarified the influence of various factors on the rhizosphere bacterial community structure. Drought stress reduced the diversity of the bacterial community in the rhizosphere of sugarcane. Interestingly, the bacterial community of the drought-sensitive sugarcane cultivar GT39 changed more than that of the drought-tolerant cultivar ZZ9. In addition, ZZ9 had a high abundance of drought-resistant bacteria in the rhizosphere under optimal soil water conditions, whereas GT39 accumulated a large number of drought-resistant bacteria only under drought stress. GT39 mainly relied on Actinobacteria in its response to drought stress, and the abundance of this phylum was positively correlated with soil acid phosphatase and protease levels. In contrast, ZZ9 mainly relied on Bacilli in its response to drought stress, and the abundance of this class was positively correlated with only soil acid phosphatase levels. In conclusion, drought stress can significantly reduce the bacterial diversity and increase the abundance of drought-resistant bacteria in the sugarcane rhizosphere. The high abundance of drought-resistant bacteria in the rhizosphere of drought-tolerant cultivars under non-drought conditions is an important factor contributing to the high drought adaptability of these cultivars. Moreover, the core drought-resistant bacteria of the sugarcane rhizosphere and root exudates jointly affect the resistance of sugarcane to drought.
Collapse
Affiliation(s)
- Qi Liu
- Guangxi Key Laboratory of Sugarcane Biology, Nanning, China.,State Key Laboratory for Conservation & Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China.,College of Agronomy, Guangxi University, Nanning, China
| | - Sasa Xie
- Guangxi Key Laboratory of Sugarcane Biology, Nanning, China.,State Key Laboratory for Conservation & Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China.,College of Agronomy, Guangxi University, Nanning, China
| | - Xiaowen Zhao
- Guangxi Key Laboratory of Sugarcane Biology, Nanning, China.,State Key Laboratory for Conservation & Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China.,College of Agronomy, Guangxi University, Nanning, China
| | - Yue Liu
- Guangxi Key Laboratory of Sugarcane Biology, Nanning, China.,State Key Laboratory for Conservation & Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China.,College of Agronomy, Guangxi University, Nanning, China
| | - Yuanjun Xing
- Guangxi Key Laboratory of Sugarcane Biology, Nanning, China.,State Key Laboratory for Conservation & Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China.,College of Agronomy, Guangxi University, Nanning, China
| | - Jicao Dao
- Guangxi Key Laboratory of Sugarcane Biology, Nanning, China.,State Key Laboratory for Conservation & Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China.,College of Agronomy, Guangxi University, Nanning, China
| | - Beilei Wei
- Guangxi Key Laboratory of Sugarcane Biology, Nanning, China.,State Key Laboratory for Conservation & Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China.,College of Agronomy, Guangxi University, Nanning, China
| | - Yunchang Peng
- Guangxi Key Laboratory of Sugarcane Biology, Nanning, China.,State Key Laboratory for Conservation & Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China.,College of Agronomy, Guangxi University, Nanning, China
| | - Weixing Duan
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Ziting Wang
- Guangxi Key Laboratory of Sugarcane Biology, Nanning, China.,State Key Laboratory for Conservation & Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China.,College of Agronomy, Guangxi University, Nanning, China
| |
Collapse
|
8
|
Dong C, Zhang Z, Shao Q, Yao T, Liang Z, Han Y. Mycobiota of Eucommia ulmoides bark: Diversity, rare biosphere and core taxa. FUNGAL ECOL 2021. [DOI: 10.1016/j.funeco.2021.101090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
9
|
Dutta S, Na CS, Lee YH. Features of Bacterial Microbiota in the Wild Habitat of Pulsatilla tongkangensis, the Endangered "Long-Sepal Donggang Pasque-Flower Plant," Endemic to Karst Topography of Korea. Front Microbiol 2021; 12:656105. [PMID: 34305828 PMCID: PMC8297415 DOI: 10.3389/fmicb.2021.656105] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 06/14/2021] [Indexed: 12/26/2022] Open
Abstract
Microbes associated with plants significantly influence the development and health of the plants. The diversity and function of microbiomes associated with the long-sepal Donggang pasque-flower (DPF) plant, an endemic and endangered species in karst ecosystems, remain unexplored. In this study, we investigated the features of bacterial communities associated with the rhizosphere and roots of DPF plants and their functions in plant growth promotion. The DPF plants were collected from natural and cultivated habitats, and their 16S rDNA was sequenced to assess the bacterial community structures. The bacterial microbiota was more diverse in wild than in cultivated plants. The core bacterial microbiota commonly functioned as endophytes in both wild and cultivated DPF plants, although there were some differences. The identified bacterial strains benefited plants through nitrogen fixation, phosphate solubilization, or phytohormone production, inducing measurable growth differences in Arabidopsis thaliana. To the best of our knowledge, this study is the first to report the bacterial community structures associated with the rhizosphere soil and roots of DPF plants in karst ecosystems. The bacterial strains isolated in this study could be used to aid sustainable growth and restoration of rare plants in karst ecosystems. Our systematic research on the microbiomes associated with these endangered plants will contribute to their conservation as well as development of better cultivation.
Collapse
Affiliation(s)
- Swarnalee Dutta
- Division of Biotechnology, Jeonbuk National University, Iksan, South Korea
| | - Chae Sun Na
- Seed Viability Research Team, Baekdudaegan National Arboretum, Bonghwa-gun, South Korea
| | - Yong Hoon Lee
- Division of Biotechnology, Jeonbuk National University, Iksan, South Korea.,Plant Medical Research Center, Advanced Institute of Environment and Bioscience, and Institute of Bio-industry, Jeonbuk National University, Jeonju, South Korea
| |
Collapse
|
10
|
Feng WM, Liu P, Yan H, Zhang S, Shang EX, Yu G, Jiang S, Qian DW, Ma JW, Duan JA. Impact of Bacillus on Phthalides Accumulation in Angelica sinensis (Oliv.) by Stoichiometry and Microbial Diversity Analysis. Front Microbiol 2021; 11:611143. [PMID: 33488552 PMCID: PMC7819887 DOI: 10.3389/fmicb.2020.611143] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/10/2020] [Indexed: 11/13/2022] Open
Abstract
Plant-microorganism interaction in the rhizosphere is thought to play an important role in the formation of soil fertility, transformation and absorption of nutrients, growth and development of medicinal plants, and accumulation of medicinal ingredients. Yet, the role that they play in the phthalides accumulation of Angelica sinensis (Oliv.) Diels remains unclear. In the present study, we report a correlative analysis between rhizosphere microorganisms and phthalides accumulation in A. sinensis from Gansu, China where was the major production areas. Meanwhile, Bacillus was explored the potential functions in the plant growth and phthalide accumulation. Results revealed that the common bacterial species detected in six samples comprised 1150 OTUs which were involved in 368 genera, and predominant taxa include Actinobacteria, Acidobacteria, and Proteobacteria. The average contents of the six phthalides were 4.0329 mg/g. The correlation analysis indicated that 20 high abundance strains showed positive or negative correlations with phthalides accumulation. Flavobacterium, Nitrospira, Gaiella, Bradyrhizobium, Mycobacterium, Bacillus, RB41, Blastococcus, Nocardioides, and Solirubrobacter may be the key strains that affect phthalides accumulation on the genus level. By the plant-bacterial co-culture and fermentation, Bacillus which were isolated from rhizosphere soils can promote the plant growth, biomass accumulation and increased the contents of the butylidenephthalide (36∼415%) while the ligustilide (12∼67%) was decreased. Altogether, there is an interaction between rhizosphere microorganisms and phthalides accumulation in A. sinensis, Bacillus could promote butylidenephthalide accumulation while inhibiting ligustilide accumulation.
Collapse
Affiliation(s)
- Wei-Meng Feng
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, China
| | - Pei Liu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hui Yan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, China
| | - Sen Zhang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, China
| | - Er-Xin Shang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, China
| | - Guang Yu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, China
| | - Shu Jiang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, China
| | - Da-Wei Qian
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jun-Wei Ma
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jin-Ao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
11
|
Song L, Pan Z, Dai Y, Chen L, Zhang L, Liao Q, Yu X, Guo H, Zhou G. Characterization and comparison of the bacterial communities of rhizosphere and bulk soils from cadmium-polluted wheat fields. PeerJ 2020; 8:e10302. [PMID: 33194446 PMCID: PMC7648459 DOI: 10.7717/peerj.10302] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/14/2020] [Indexed: 12/13/2022] Open
Abstract
Cadmium pollution is becoming a serious problem due to its nondegradability and substantial negative influence on the normal growth of crops, thereby harming human health through the food chain. Rhizospheric bacteria play important roles in crop tolerance. However, there is little experimental evidence which demonstrates how various cadmium concentrations affect the bacterial community in wheat fields including rhizosphere microorganisms and nonrhizosphere (bulk) microorganisms. In this study, 16S rRNA amplicon sequencing technology was used to investigate bacterial communities in rhizosphere and bulk soils under different levels of pollution in terms of cadmium concentration. Both the richness and diversity of the rhizosphere microorganism community were higher under nonpolluted soil and very mild and mild cadmium-contaminated soils than compared with bulk soil, with a shift in community profile observed under severe cadmium pollution. Moreover, cadmium at various concentrations had greater influence on bacterial composition than for the nonpolluted site. In addition, redundancy analysis (RDA) and Spearman’s analysis elucidated the impact of exchangeable Cd and total Cd on bacterial community abundance and composition. This study suggests that cadmium imposes a distinct effect on bacterial community, both in bulk and rhizosphere soils of wheat fields. This study increases our understanding of how bacterial communities in wheat fields shaped under different concentrations of cadmium.
Collapse
Affiliation(s)
- Li Song
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, Jiangsu, China
| | - Zhenzhi Pan
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yi Dai
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, Jiangsu, China
| | - Lin Chen
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, Jiangsu, China.,College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Li Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing Univerity, Nanjing, Jiangsu, China
| | - Qilin Liao
- Geological Survey of Jiangsu Province, Nanjing, Jiangsu, China
| | - Xiezhi Yu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing Univerity, Nanjing, Jiangsu, China
| | - Hongyan Guo
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing Univerity, Nanjing, Jiangsu, China
| | - Guisheng Zhou
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
12
|
Vermeulen M, Cason ED, Swart WJ. The rhizobiome of herbaceous plants in Clovelly and Sterkspruit soils of the Stevenson–Hamilton supersite. KOEDOE: AFRICAN PROTECTED AREA CONSERVATION AND SCIENCE 2020. [DOI: 10.4102/koedoe.v62i2.1596] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
13
|
Zheng J, Zhang J, Gao L, Kong F, Shen G, Wang R, Gao J, Zhang J. The Effects of Tetracycline Residues on the Microbial Community Structure of Tobacco Soil in Pot Experiment. Sci Rep 2020; 10:8804. [PMID: 32472015 PMCID: PMC7260358 DOI: 10.1038/s41598-020-65203-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 04/27/2020] [Indexed: 01/15/2023] Open
Abstract
To evaluate the micro-ecological effects of tetracycline residues on tobacco soil, high-throughput sequencing technology was used to study the effects of the addition of different concentrations (0, 5, 50, and 500 mg·kg-1) of tetracycline on the abundance, diversity, and structure of bacterial and fungal communities in the rhizosphere and non-rhizosphere soil of flue-cured tobacco in China. Results showed that the presence of tetracycline had an important but varying effect on soil bacterial and fungal community richness, diversity, and structure. Changes in the diversity indices (Chao index and Shannon index) of soil bacterial and fungal communities showed a similar pattern after the addition of tetracycline; however, a few differences were found in the effects of tetracycline in the rhizosphere and non-rhizosphere soil, suggesting an evident rhizosphere-specific effect. The bacterial community at the phylum level in the rhizosphere closely clustered into one group, which might be the result of tobacco root secretions and rhizodeposition. Tetracycline showed a concentration-dependent effect on the soil bacterial community structure. The soil bacterial community structures observed after treatments with higher concentrations of tetracycline (50 and 500 mg·kg-1) were found to be closely related. Moreover, the effects of the treatments with higher concentrations of tetracycline, on the soil bacterial community at the phylum level, were different from those with lower concentrations of tetracycline (5 mg·kg-1), and CK treatments. This might have resulted from the induction of increasing selective pressure with increasing antibiotic concentration. Tetracycline continued to affect the soil bacterial community throughout the experiment. Tetracycline was found to have a varying impact on the community structure of soil fungi compared to that of soil bacteria, and the addition of an intermediate concentration of tetracycline (50 mg·kg-1) significantly increased the soil fungal diversity in the non-rhizosphere soil. The biological effects of tetracycline on the soil fungal community and the fungal-bacterial interactions, therefore, require further elucidation, warranting further research.
Collapse
Affiliation(s)
- Jiayu Zheng
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, P.R. China
| | - Jixu Zhang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, P.R. China
- Kunming Tobacco Company, Kunming, 651500, P.R. China
| | - Lin Gao
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, P.R. China
| | - Fanyu Kong
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, P.R. China
| | - Guoming Shen
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, P.R. China
| | - Rui Wang
- Tobacco Company of Hubei Province, Wuhan, 430030, P.R. China
| | - Jiaming Gao
- Tobacco Company of Hubei Province, Wuhan, 430030, P.R. China
| | - Jiguang Zhang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, P.R. China.
| |
Collapse
|