1
|
Sun X, Liu X, Wang C, Ren Z, Yang X, Liu Y. Deciphering Mechanisms of Adipocyte Differentiation in Abdominal Fat of Broilers. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:25403-25413. [PMID: 39483088 PMCID: PMC11565640 DOI: 10.1021/acs.jafc.4c06867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/25/2024] [Accepted: 10/25/2024] [Indexed: 11/03/2024]
Abstract
The excessive deposition of abdominal fat tissue (AFT) in broilers has emerged as a major concern in the poultry industry. Despite some progress in recent years, the molecular mechanisms underlying AFT development remain ambiguous. The current study combined RNA-seq with transposase-accessible chromatin sequencing (ATAC-seq) to map the dynamic profiling of chromatin accessibility and transcriptional reprogramming in AFT adipocyte differentiation in broilers at day 3 (D3) and D14. Our results found that the levels of CDK1 and PCNA were down-regulated at D14, D28, and D42 compared to D3, while the levels of C/EBPα and FABP4 were up-regulated at D14 and D42 compared to D3. Meanwhile, PPARγ was significantly up-regulated at D28 and D42. RNA-seq of AFT identified 1705 up-regulated and 1112 down-regulated differential expression genes (DEGs) between D3 and D14. Pathways based on up-regulated DEGs mainly enriched some pathways related to adipocyte differentiation, while down-regulated DEGs pointed to DNA replication, cell cycle, and gap junction. Gene set enrichment analysis (GSEA) revealed that DNA replication and the cell cycle were down-regulated at D14, while the insulin signaling pathway was up-regulated. In the OA-induced immortalized chicken preadipocyte (ICP2) model, protein dynamic changes were consistent with AFT from D3 to D14. Same pathways were enriched in ICP2. In addition, based on overlapped DEGs from AFT and ICP2, enriched pathways related to adipocyte differentiation or proliferation mentioned above were all involved. A total of 1600 gain and 16727 loss differential peaks (DPs) were identified in ICP2 by ATAC-seq. Predicted genes from DPs at the promoter regions were enriched in glycerophospholipid metabolism, TGF-β signaling, FoxO signaling, and ubiquitin-mediated proteolysis. DNA motifs predicted 159 transcription factors (TFs) based on gain and loss peaks from the promoter regions, where 1 and 10 TFs were overlapped with up or down TFs from DEGs. Overall, this study presents a framework for the comprehension of the epigenetic regulatory mechanisms of adipocyte differentiation and identifies candidate genes and potential TFs involved in AFT adipocyte differentiation in broilers.
Collapse
Affiliation(s)
- Xi Sun
- College of Animal Science
and Technology, Northwest A&F University, Yangling 712100, China
| | - Xiaoying Liu
- College of Animal Science
and Technology, Northwest A&F University, Yangling 712100, China
| | - Chaohui Wang
- College of Animal Science
and Technology, Northwest A&F University, Yangling 712100, China
| | - Zhouzheng Ren
- College of Animal Science
and Technology, Northwest A&F University, Yangling 712100, China
| | - Xiaojun Yang
- College of Animal Science
and Technology, Northwest A&F University, Yangling 712100, China
| | - Yanli Liu
- College of Animal Science
and Technology, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
2
|
Liu X, Qin K, Wang C, Sun X, Li Y, Liu Y, Yang X. Butyric acid reduced lipid deposition in immortalized chicken preadipocyte by inhibiting cell proliferation and differentiation. Poult Sci 2024; 103:104171. [PMID: 39151213 PMCID: PMC11375136 DOI: 10.1016/j.psj.2024.104171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/18/2024] Open
Abstract
The hyperplasia and hypertrophy of preadipocytes were closely related to lipid deposition in animals. Butyric acid was reported to be involved in lipid metabolism. The aim of the current study was to investigate the effect of butyric acid on the proliferation and differentiation of the immortalized chicken preadipocyte 2 (ICP2). ICP2 were treated respectively with 12mM butyric acid for 48h in proliferation trial and 4mM butyric acid plus 200 μM oleic acid for 3 d in differentiation trial. For the proliferation trial, RNA-seq analysis revealed that 2039 genes were significantly up-regulated and 780 genes were significantly down-regulated with 12 mM butyric acid after 48 h treatment. Concurrently, Cell cycle, DNA replication and p53 signaling pathways were down-regulated in Butyric acid group. More importantly, 12 mM butyric acid restrained the expression of cell proliferation genes such as PCNA, CDK1 and CDK2 in Butyric acid group (P < 0.05), and the protein expression levels of PCNA and CDK1 were also significantly decreased (P < 0.05). The Oil red staining revealed a fewer presence of red fat droplets in ICP2 following treatment with 4 mM butyric acid, accompanied by decreased levels of total cholesterol (TC) and triglycerides (TG). RNA-seq analysis shown that the number of up and down-regulated genes were 2095 and 1042 respectively in OAB group (oleic acid+butyric acid) when compared with OA group (oleic acid). Meanwhile the AMPK signaling pathway, FOXO signaling pathway and focal adhesion were significantly enriched in OAB group. Additionally, 4 mM butyric acid inhibited the expression of lipid differentiation genes including FABP4, C/EBPα, PPARγ and LPL in OAB group (P < 0.05), as well as lipogenesis proteins such as FABP4, C/EBP-α and PPARγ (P < 0.05). In conclusion, 12 mM butyric acid effectively inhibited the proliferation of ICP2 by slowing down cell cycle progression, while 4 mM butyric acid alleviated lipid deposition by reducing the production of lipid droplets through inhibiting the expression of lipid differentiation marker genes and proteins.
Collapse
Affiliation(s)
- Xiaoying Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Kailong Qin
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Chaohui Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Xi Sun
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Yun Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Yanli Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Xiaojun Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
3
|
Nematbakhsh S, Pei CP, Nordin N, Selamat J, Idris LH, Razis AFA. Identification and validation of novel breed-specific biomarker for the purpose of village chicken authentication using genomics approaches. Poult Sci 2024; 103:104128. [PMID: 39180779 PMCID: PMC11387346 DOI: 10.1016/j.psj.2024.104128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/16/2024] [Accepted: 07/24/2024] [Indexed: 08/26/2024] Open
Abstract
Local village chicken, or "Ayam kampung" as it's known in Malaysia, is considered a premium chicken breed with a higher price than other chicken breeds. As a result of their comparable appearances and sizes, colored broiler chickens are often sold as village chickens, which is a form of food fraud that can result in a 3- to 4-fold rise in profit. Therefore, developing a breed-specific authentication method is crucial for preventing food fraud in the poultry industry. This study aims to investigate the genetic diversity of village chickens from other commercial chicken breed populations available in the market (broiler [Cobb], colored broiler [Hubbard], and layer [DeKalb]) to identify breed-specific DNA fragments as biomarkers for village chicken authentication. The Whole-genome sequencing and mutation calling of 12 chickens (3 chickens/breed) led to the identification of a total of 73,454,654 single nucleotide polymorphisms (SNP) and 8,762,338 insertion and deletions (InDel) variants, with more variants detected in the village chicken population (6,346,704 SNPs; 752,408 InDels) compared to commercial breeds. Therefore, this study revealed that village chickens were more genetically variable compared to other breeds in Malaysia. Furthermore, the breed-specific genomic region located on chromosome 1 (1:84,405,652) harboring SNP (C-T) with high discrimination power was discovered and validated which can be considered as a novel breed-specific biomarker to develop a method for accurate authentication of village chickens in Malaysia. This authentication method offers potentialw applications in the chicken industry and food safety.
Collapse
Affiliation(s)
- Sara Nematbakhsh
- Laboratory of Food Safety and Food Integrity, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia; Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia
| | - Chong Pei Pei
- Faculty of Health and Medical Sciences, School of Biosciences, Taylor's University, Subang Jaya 47500, Selangor, Malaysia
| | - Noordiana Nordin
- Laboratory of Food Safety and Food Integrity, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia
| | - Jinap Selamat
- Laboratory of Food Safety and Food Integrity, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia
| | - Lokman Hakim Idris
- Department of Veterinary Preclinical Sciences, Faculty of Veterinary Medicine, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia
| | - Ahmad Faizal Abdull Razis
- Laboratory of Food Safety and Food Integrity, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia; Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia.
| |
Collapse
|
4
|
Volkova NA, Romanov MN, Vetokh AN, Larionova PV, Volkova LA, Abdelmanova AS, Sermyagin AA, Griffin DK, Zinovieva NA. Genome-Wide Association Study Reveals the Genetic Architecture of Growth and Meat Production Traits in a Chicken F 2 Resource Population. Genes (Basel) 2024; 15:1246. [PMID: 39457370 PMCID: PMC11507135 DOI: 10.3390/genes15101246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/22/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES For genomic selection to enhance the efficiency of broiler production, finding SNPs and candidate genes that define the manifestation of main selected traits is essential. We conducted a genome-wide association study (GWAS) for growth and meat productivity traits of roosters from a chicken F2 resource population (n = 152). METHODS The population was obtained by crossing two breeds with contrasting phenotypes for performance indicators, i.e., Russian White (slow-growing) and Cornish White (fast-growing). The birds were genotyped using the Illumina Chicken 60K SNP iSelect BeadChip. After LD filtering of the data, 54,188 SNPs were employed for the GWAS analysis that allowed us to reveal significant specific associations for phenotypic traits of interest and economic importance. RESULTS At the threshold value of p < 9.2 × 10-7, 83 SNPs associated with body weight at the age of 28, 42, and 63 days were identified, as well as 171 SNPs associated with meat qualities (average daily gain, slaughter yield, and dressed carcass weight and its components). Moreover, 34 SNPs were associated with a group of three or more traits, including 15 SNPs significant for a group of growth traits and 5 SNPs for a group of meat productivity indicators. Relevant to these detected SNPs, nine prioritized candidate genes associated with the studied traits were revealed, including WNT2, DEPTOR, PPA2, UNC80, DDX51, PAPPA, SSC4D, PTPRU, and TLK2. CONCLUSIONS The found SNPs and candidate genes can serve as genetic markers for growth and meat performance characteristics in chicken breeding in order to achieve genetic improvement in broiler production.
Collapse
Affiliation(s)
- Natalia A. Volkova
- L. K. Ernst Federal Research Center for Animal Husbandry, Dubrovitsy, Podolsk 142132, Moscow Oblast, Russia; (N.A.V.); (A.N.V.); (P.V.L.); (L.A.V.); (A.S.A.)
| | - Michael N. Romanov
- L. K. Ernst Federal Research Center for Animal Husbandry, Dubrovitsy, Podolsk 142132, Moscow Oblast, Russia; (N.A.V.); (A.N.V.); (P.V.L.); (L.A.V.); (A.S.A.)
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK;
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Anastasia N. Vetokh
- L. K. Ernst Federal Research Center for Animal Husbandry, Dubrovitsy, Podolsk 142132, Moscow Oblast, Russia; (N.A.V.); (A.N.V.); (P.V.L.); (L.A.V.); (A.S.A.)
| | - Polina V. Larionova
- L. K. Ernst Federal Research Center for Animal Husbandry, Dubrovitsy, Podolsk 142132, Moscow Oblast, Russia; (N.A.V.); (A.N.V.); (P.V.L.); (L.A.V.); (A.S.A.)
| | - Ludmila A. Volkova
- L. K. Ernst Federal Research Center for Animal Husbandry, Dubrovitsy, Podolsk 142132, Moscow Oblast, Russia; (N.A.V.); (A.N.V.); (P.V.L.); (L.A.V.); (A.S.A.)
| | - Alexandra S. Abdelmanova
- L. K. Ernst Federal Research Center for Animal Husbandry, Dubrovitsy, Podolsk 142132, Moscow Oblast, Russia; (N.A.V.); (A.N.V.); (P.V.L.); (L.A.V.); (A.S.A.)
| | - Alexander A. Sermyagin
- Russian Research Institute of Farm Animal Genetics and Breeding—Branch of the L. K. Ernst Federal Research Centre for Animal Husbandry, Pushkin, St. Petersburg 196601, Russia;
| | - Darren K. Griffin
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK;
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Natalia A. Zinovieva
- L. K. Ernst Federal Research Center for Animal Husbandry, Dubrovitsy, Podolsk 142132, Moscow Oblast, Russia; (N.A.V.); (A.N.V.); (P.V.L.); (L.A.V.); (A.S.A.)
| |
Collapse
|
5
|
Xiao L, Qi L, Fu R, Nie Q, Zhang X, Luo W. A large-scale comparison of the meat quality characteristics of different chicken breeds in South China. Poult Sci 2024; 103:103740. [PMID: 38701629 PMCID: PMC11087722 DOI: 10.1016/j.psj.2024.103740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/26/2024] [Accepted: 04/03/2024] [Indexed: 05/05/2024] Open
Abstract
Meat quality traits are essential for producing high-quality broilers, but the genetic improvement has been limited by the complexity of measurement methods and the numerous traits involved. To systematically understand the meat quality characteristics of different broiler breeds, this study collected data on slaughter performance, skin color, fat deposition, and meat quality traits of 434 broilers from 12 different breeds in South China. The results showed that there was no significant difference in the live weight and slaughter weight of various broiler breeds at their respective market ages. Commercial broiler breeds such as Xiaobai and Huangma chickens had higher breast muscle and leg muscle rates. The skin and abdominal fat of Huangma chickens cultivated in the consumer market in South China exhibited significantly higher levels of yellowness compared to other varieties. Concerning fat traits, we observed that Wenchang chickens exhibited a strong ability to fat deposition, while the younger breeds showed lower fat deposition. Additionally, there were significant positive correlations found among different traits, including traits related to weight, traits related to fat, and skin color of different parts. Hierarchical clustering analysis revealed that fast-growing and large broiler Xiaobai chickens formed a distinct cluster based on carcass characteristics, skin color, and meat quality traits. Principal component analysis (PCA) was used to extract multiple principal components as substitutes for complex meat quality indicators, establishing a chicken meat quality evaluation model to differentiate between different breeds of chickens. At the same time, we identified 46, 22, and 20 SNP loci and their adjacent genes that were significantly associated with muscle mass traits, fat deposition, and skin color through genome-wide association studies (GWAS). The above results are helpful for systematically understanding the differences and characteristics of meat quality traits among different breeds.
Collapse
Affiliation(s)
- Liangchao Xiao
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, China
| | - Lin Qi
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, China
| | - Rong Fu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, China
| | - Qinghua Nie
- State Key Laboratory of Livestock and Poultry Breeding, and Lingnan Guangdong Laboratory of Agriculture, South China Agricultural University, Guangzhou 510642, China; Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, China
| | - Xiquan Zhang
- State Key Laboratory of Livestock and Poultry Breeding, and Lingnan Guangdong Laboratory of Agriculture, South China Agricultural University, Guangzhou 510642, China; Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, China
| | - Wen Luo
- State Key Laboratory of Livestock and Poultry Breeding, and Lingnan Guangdong Laboratory of Agriculture, South China Agricultural University, Guangzhou 510642, China; Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
6
|
Lan R, Wei L, Yu H, Jiang P, Zhao Z. Age-Related Changes in Hepatic Lipid Metabolism and Abdominal Adipose Deposition in Yellow-Feathered Broilers Aged from 1 to 56 Days. Animals (Basel) 2023; 13:3860. [PMID: 38136897 PMCID: PMC10740587 DOI: 10.3390/ani13243860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/05/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
The objective of this study was to evaluate the age-related changes in hepatic lipid metabolism, adipocyte hyperplasia, hypertrophy, and lipid metabolism in the abdominal adipose tissue of yellow-feathered broilers. Blood, liver, and abdominal adipose samples were collected on days 1, 7, 14, 21, 28, 35, 42, 49, and 56. Body, liver, and abdominal weight increased (p < 0.05) with age-related changes. The triacylglycerol content peaked on day 14, and total cholesterol content peaked on day 56. The adipocyte diameter and area peaked on day 56, and total DNA content peaked on day 7. The age-related changes in hepatic lipogenesis-related gene (ChREBP, SREBP-1c, ACC, FAS, SCD1) expression mainly occurred during days 1 to 21, hepatic lipolysis-related gene (CPT1, LPL, ApoB) expression mainly occurred during days 1 to 14, and abdominal adipose-deposition-related gene (PPARα, CPT1, LPL, PPARγ, C/EBPβ) expression occurred during days 1 to 14. These results demonstrated a dynamic pattern of hepatic lipid metabolism and abdominal adipose deposition in yellow-feathered broilers, which provides practical strategies to regulate hepatic lipid metabolism and reduce abdominal adipose deposition in yellow-feathered broilers.
Collapse
Affiliation(s)
| | | | | | | | - Zhihui Zhao
- Department of Animal Science and Technology, College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (R.L.); (L.W.); (H.Y.); (P.J.)
| |
Collapse
|
7
|
Cao Y, Xing Y, Guan H, Ma C, Jia Q, Tian W, Li G, Tian Y, Kang X, Liu X, Li H. Genomic Insights into Molecular Regulation Mechanisms of Intramuscular Fat Deposition in Chicken. Genes (Basel) 2023; 14:2197. [PMID: 38137019 PMCID: PMC10742768 DOI: 10.3390/genes14122197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/07/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Intramuscular fat (IMF) plays an important role in the tenderness, water-holding capacity, and flavor of chicken meat, which directly affect meat quality. In recent years, regulatory mechanisms underlying IMF deposition and the development of effective molecular markers have been hot topics in poultry genetic breeding. Therefore, this review focuses on the current understanding of regulatory mechanisms underlying IMF deposition in chickens, which were identified by multiple genomic approaches, including genome-wide association studies, whole transcriptome sequencing, proteome sequencing, single-cell RNA sequencing (scRNA-seq), high-throughput chromosome conformation capture (HiC), DNA methylation sequencing, and m6A methylation sequencing. This review comprehensively and systematically describes genetic and epigenetic factors associated with IMF deposition, which provides a fundamental resource for biomarkers of IMF deposition and provides promising applications for genetic improvement of meat quality in chicken.
Collapse
Affiliation(s)
- Yuzhu Cao
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Y.C.); (Y.X.); (H.G.); (C.M.); (Q.J.); (W.T.); (G.L.); (Y.T.); (X.K.); (X.L.)
| | - Yuxin Xing
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Y.C.); (Y.X.); (H.G.); (C.M.); (Q.J.); (W.T.); (G.L.); (Y.T.); (X.K.); (X.L.)
| | - Hongbo Guan
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Y.C.); (Y.X.); (H.G.); (C.M.); (Q.J.); (W.T.); (G.L.); (Y.T.); (X.K.); (X.L.)
| | - Chenglin Ma
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Y.C.); (Y.X.); (H.G.); (C.M.); (Q.J.); (W.T.); (G.L.); (Y.T.); (X.K.); (X.L.)
| | - Qihui Jia
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Y.C.); (Y.X.); (H.G.); (C.M.); (Q.J.); (W.T.); (G.L.); (Y.T.); (X.K.); (X.L.)
| | - Weihua Tian
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Y.C.); (Y.X.); (H.G.); (C.M.); (Q.J.); (W.T.); (G.L.); (Y.T.); (X.K.); (X.L.)
| | - Guoxi Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Y.C.); (Y.X.); (H.G.); (C.M.); (Q.J.); (W.T.); (G.L.); (Y.T.); (X.K.); (X.L.)
- International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou 450046, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Yadong Tian
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Y.C.); (Y.X.); (H.G.); (C.M.); (Q.J.); (W.T.); (G.L.); (Y.T.); (X.K.); (X.L.)
- International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou 450046, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Xiangtao Kang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Y.C.); (Y.X.); (H.G.); (C.M.); (Q.J.); (W.T.); (G.L.); (Y.T.); (X.K.); (X.L.)
- International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou 450046, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Xiaojun Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Y.C.); (Y.X.); (H.G.); (C.M.); (Q.J.); (W.T.); (G.L.); (Y.T.); (X.K.); (X.L.)
- International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou 450046, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Hong Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Y.C.); (Y.X.); (H.G.); (C.M.); (Q.J.); (W.T.); (G.L.); (Y.T.); (X.K.); (X.L.)
- International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou 450046, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| |
Collapse
|
8
|
Yuan M, Liu X, Wang M, Li Z, Li H, Leng L, Wang S. A Functional Variant Alters the Binding of Bone morphogenetic protein 2 to the Transcription Factor NF-κB to Regulate Bone morphogenetic protein 2 Gene Expression and Chicken Abdominal Fat Deposition. Animals (Basel) 2023; 13:3401. [PMID: 37958155 PMCID: PMC10650395 DOI: 10.3390/ani13213401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/27/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023] Open
Abstract
In this study, we employed a dual-luciferase reporter assay and electrophoretic mobility shift analysis (EMSA) in vitro to explore whether a 12-base pair (bp) insertion/deletion (InDel) variant (namely g.14798187_14798188insTCCCTGCCCCCT) within intron 2 of the chicken BMP2 gene, which was significantly associated with chicken abdominal fat weight and abdominal fat percentage, is a functional marker and its potential regulatory mechanism. The reporter analysis demonstrated that the luciferase activity of the deletion allele was extremely significantly higher than that of the insertion allele (p < 0.01). A bioinformatics analysis revealed that compared to the deletion allele, the insertion allele created a transcription factor binding site of nuclear factor-kappa B (NF-κB), which exhibited an inhibitory effect on fat deposition. A dual-luciferase reporter assay demonstrated that the inhibitory effect of NF-κB on the deletion allele was stronger than that on the insertion allele. EMSA indicated that the binding affinity of NF-κB for the insertion allele was stronger than that for the deletion allele. In conclusion, the 12-bp InDel chicken BMP2 gene variant is a functional variant affecting fat deposition in chickens, which may partially regulate BMP2 gene expression by affecting the binding of transcription factor NF-κB to the BMP2 gene.
Collapse
Affiliation(s)
- Meng Yuan
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, China; (M.Y.); (X.L.); (M.W.); (Z.L.); (H.L.)
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, China
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Xin Liu
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, China; (M.Y.); (X.L.); (M.W.); (Z.L.); (H.L.)
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, China
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Mengdie Wang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, China; (M.Y.); (X.L.); (M.W.); (Z.L.); (H.L.)
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, China
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Ziwei Li
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, China; (M.Y.); (X.L.); (M.W.); (Z.L.); (H.L.)
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, China
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Hui Li
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, China; (M.Y.); (X.L.); (M.W.); (Z.L.); (H.L.)
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, China
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Li Leng
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, China; (M.Y.); (X.L.); (M.W.); (Z.L.); (H.L.)
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, China
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Shouzhi Wang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, China; (M.Y.); (X.L.); (M.W.); (Z.L.); (H.L.)
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, China
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
9
|
Fu Q, Wang P, Zhang Y, Wu T, Huang J, Song Z. Effects of Dietary Inclusion of Asiaticoside on Growth Performance, Lipid Metabolism, and Gut Microbiota in Yellow-Feathered Chickens. Animals (Basel) 2023; 13:2653. [PMID: 37627444 PMCID: PMC10451259 DOI: 10.3390/ani13162653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/31/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Excessive abdominal fat deposition in chickens is a major concern in the poultry industry. Nutritional interventions are a potential solution, but current options are limited. Asiaticoside (Asi), a herbal extract, has shown positive effects in animals, but its impact on poultry lipid metabolism is still unknown. In this study, the effects of dietary Asi on yellow-feathered chicken lipid metabolism and its potential mechanisms were investigated. A total of 120 chickens were randomly divided into three groups, with five replicates per group and 8 chickens per replicate. The chickens were fed a basal diet supplemented with 0, 0.01, or 0.05% Asi for 6 wk. The results showed that Asi down-regulated lipogenic gene expression and up-regulated lipid-breakdown-related genes in both the liver and fat tissues of the chickens, which resulted in a half reduction in abdominal fat while not affecting meat yield. Mechanistically, the hepatic and adipose PI3K/AKT pathway may be involved in Asi-induced fat loss in chickens as revealed by computer-aided reverse drug target prediction and gene expression analysis. Moreover, Asi ingestion also significantly modified the cecal microbiota of the chickens, resulting in a reduced Firmicutes to Bacteroidetes ratio and decreased abundance of bacteria positively correlated with abdominal fat deposition such as Ruminococcus, while increasing the abundance of bacteria inversely correlated with abdominal fat deposition such as Lactobacillus, Bacteroides, and Blautia. Collectively, these data suggest that Asi could ameliorate the abdominal fat deposition in yellow-feathered chickens, probably through modulating the PI3K/AKT pathway and gut microbiota function.
Collapse
Affiliation(s)
| | | | | | | | | | - Ziyi Song
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (Q.F.); (P.W.); (Y.Z.); (T.W.); (J.H.)
| |
Collapse
|
10
|
Chen Y, Akhtar M, Ma Z, Hu T, Liu Q, Pan H, Zhang X, Nafady AA, Ansari AR, Abdel-Kafy ESM, Shi D, Liu H. Chicken cecal microbiota reduces abdominal fat deposition by regulating fat metabolism. NPJ Biofilms Microbiomes 2023; 9:28. [PMID: 37253749 DOI: 10.1038/s41522-023-00390-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 03/23/2023] [Indexed: 06/01/2023] Open
Abstract
Cecal microbiota plays an essential role in chicken health. However, its contribution to fat metabolism, particularly in abdominal fat deposition, which is a severe problem in the poultry industry, is still unclear. Here, chickens at 1, 4, and 12 months of age with significantly (p < 0.05) higher and lower abdominal fat deposition were selected to elucidate fat metabolism. A significantly (p < 0.05) higher mRNA expression of fat anabolism genes (ACSL1, FADS1, CYP2C45, ACC, and FAS), a significantly (p < 0.05) lower mRNA expression of fat catabolism genes (CPT-1 and PPARα) and fat transport gene APOAI in liver/abdominal fat of high abdominal fat deposition chickens indicated that an unbalanced fat metabolism leads to excessive abdominal fat deposition. Parabacteroides, Parasutterella, Oscillibacter, and Anaerofustis were found significantly (p < 0.05) higher in high abdominal fat deposition chickens, while Sphaerochaeta was higher in low abdominal fat deposition chickens. Further, Spearman correlation analysis indicated that the relative abundance of cecal Parabacteroides, Parasutterella, Oscillibacter, and Anaerofustis was positively correlated with abdominal fat deposition, yet cecal Sphaerochaeta was negatively correlated with fat deposition. Interestingly, transferring fecal microbiota from adult chickens with low abdominal fat deposition into one-day-old chicks significantly (p < 0.05) decreased Parabacteroides and fat anabolism genes, while markedly increased Sphaerochaeta (p < 0.05) and fat catabolism genes (p < 0.05). Our findings might help to assess the potential mechanism of cecal microbiota regulating fat deposition in chicken production.
Collapse
Affiliation(s)
- Yan Chen
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Muhammad Akhtar
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Ziyu Ma
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Tingwei Hu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Qiyao Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Hong Pan
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Xiaolong Zhang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Abdallah A Nafady
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Abdur Rahman Ansari
- Section of Anatomy and Histology, Department of Basic Sciences, College of Veterinary and Animal Sciences (CVAS) Jhang, University of Veterinary and Animal Sciences (UVAS), Lahore, Pakistan
| | - El-Sayed M Abdel-Kafy
- Animal Production Research Institute (APRI), Agricultural Research Center (ARC), Ministry of Agriculture, Giza, Egypt
| | - Deshi Shi
- Department of Preventive Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, P.R. China.
| | - Huazhen Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, P.R. China.
| |
Collapse
|
11
|
The study of selection signature and its applications on identification of candidate genes using whole genome sequencing data in chicken - a review. Poult Sci 2023; 102:102657. [PMID: 37054499 PMCID: PMC10123265 DOI: 10.1016/j.psj.2023.102657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023] Open
Abstract
Chicken is a major source of protein for the increasing human population and is useful for research purposes. There are almost 1,600 distinct regional breeds of chicken across the globe, among which a large body of genetic and phenotypic variations has been accumulated due to extensive natural and artificial selection. Moreover, natural selection is a crucial force for animal domestication. Several approaches have been adopted to detect selection signatures in different breeds of chicken using whole genome sequencing (WGS) data including integrated haplotype score (iHS), cross-populated extend haplotype homozygosity test (XP-EHH), fixation index (FST), cross-population composite likelihood ratio (XP-CLR), nucleotide diversity (Pi), and others. In addition, gene enrichment analyses are utilized to determine KEGG pathways and gene ontology (GO) terms related to traits of interest in chicken. Herein, we review different studies that have adopted diverse approaches to detect selection signatures in different breeds of chicken. This review systematically summarizes different findings on selection signatures and related candidate genes in chickens. Future studies could combine different selection signatures approaches to strengthen the quality of the results thereby providing more affirmative inference. This would further aid in deciphering the importance of selection in chicken conservation for the increasing human population.
Collapse
|
12
|
Genome-Wide Association Study Revealed the Effect of rs312715211 in ZNF652 Gene on Abdominal Fat Percentage of Chickens. BIOLOGY 2022; 11:biology11121849. [PMID: 36552358 PMCID: PMC9775298 DOI: 10.3390/biology11121849] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/09/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
Abdominal fat percentage (AFP) is an important economic trait in chickens. Intensive growth selection has led to the over-deposition of abdominal fat in chickens, but the genetic basis of AFP is not yet clear. Using 520 female individuals from selection and control lines of Jingxing yellow chicken, we investigated the genetic basis of AFP using a genome-wide association study (GWAS) and fixation indices (FST). A 0.15 MB region associated with AFP was located on chromosome 27 and included nine significant single nucleotide polymorphisms (SNPs), which could account for 3.34-5.58% of the phenotypic variation. In addition, the π value, genotype frequency, and dual-luciferase results identified SNP rs312715211 in the intron region of ZNF652 as the key variant. The wild genotype was associated with lower AFP and abdominal fat weight (AFW), but higher body weight (BW). Finally, annotated genes based on the top 1% SNPs were used to investigate the physiological function of ZNF652. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis suggested that ZNF652 may reduce AFW and BW in broilers through the TGF-β1/SMad2/3 and MAPK/FoxO pathways via EGFR and TGFB1. Our findings elucidated the genetic basis of chicken AFP, rs312715211 on the ZNF652 gene, which can affect BW and AFW and was the key variant associated with AFP. These data provide new insight into the genetic mechanism underlying AF deposition in chickens and could be beneficial in breeding chickens for AF.
Collapse
|
13
|
Folic Acid: Sources, Chemistry, Absorption, Metabolism, Beneficial Effects on Poultry Performance and Health. Vet Med Int 2022; 2022:2163756. [PMID: 36032042 PMCID: PMC9417761 DOI: 10.1155/2022/2163756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/07/2022] [Accepted: 07/26/2022] [Indexed: 11/17/2022] Open
Abstract
Recently, there has been an increasing interest in the study of the effects of folic acid (FA) on poultry because it was observed that FA could overcome problems in poultry health while improving its performance. FA, or folate, is a water-soluble B vitamin essential in poultry, so FA intake must be available in the feed. Sources of FA in feed come from plants or animals, and animal sources have relatively more stable FA. The ingested FA will be absorbed in the intestinal lumen and transported into the liver through the blood vessels. Therefore, FA has a positive effect on the performance and health status of poultry. The effect of FA on poultry performance is to increase reproductive tract development, FA content in eggs, hatchability, weight gain, average initial body weight, feed intake, relative growth rate, chick body weight, breast fillet percentage, and reduce FCR and white striping score. At the same time, the effect on poultry health influences antioxidant activities, thyroid hormones, blood biochemicals, anti-inflammatory gene expressions, and immune responses. The present review deals with FA sources, chemistry, absorption, metabolism, effects on performance, and poultry health, which are based on valid basic information.
Collapse
|
14
|
Wang S, Wang Y, Li Y, Xiao F, Guo H, Gao H, Wang N, Zhang H, Li H. Genome-Wide Association Study and Selective Sweep Analysis Reveal the Genetic Architecture of Body Weights in a Chicken F2 Resource Population. Front Vet Sci 2022; 9:875454. [PMID: 35958311 PMCID: PMC9361851 DOI: 10.3389/fvets.2022.875454] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 06/20/2022] [Indexed: 11/29/2022] Open
Abstract
Rapid growth is one of the most important economic traits in broiler breeding programs. Identifying markers and genes for growth traits may not only benefit marker-assisted selection (MAS)/genomic selection (GS) but also provide important information for understanding the genetic architecture of growth traits in broilers. In the present study, an F2 resource population derived from a cross between the broiler and Baier yellow chicken (a Chinese local breed) was used and body weights from 1 to 12 weeks of age [body weight (BW) 1–BW12)] were measured. A total of 519 F2 birds were genome re-sequenced, and a combination of genome-wide association study (GWAS) and selective sweep analysis was carried out to characterize the genetic architecture affecting chicken body weight comprehensively. As a result, 1,539 SNPs with significant effects on body weights at different weeks of age were identified using a genome-wide efficient mixed-model association (GEMMA) package. These SNPs were distributed on chromosomes 1 and 4. Besides, windows under selection identified for BW1–BW12 varied from 1,581 to 2,265. A total of 42 genes were also identified with significant effects on BW1–BW12 based on both GWAS and selective sweep analysis. Among these genes, diacylglycerol kinase eta (DGKH), deleted in lymphocytic leukemia (DLEU7), forkhead box O17 (FOXO1), karyopherin subunit alpha 3 (KPNA3), calcium binding protein 39 like (CAB39L), potassium voltage-gated channel interacting protein 4 (KCNIP4), and slit guidance ligand 2 (SLIT2) were considered as important genes for broiler growth based on their basic functions. The results of this study may supply important information for understanding the genetic architecture of growth traits in broilers.
Collapse
Affiliation(s)
- Shouzhi Wang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, China
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Yuxiang Wang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, China
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Yudong Li
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, China
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Fan Xiao
- Fujian Sunnzer Biotechnology Development Co., Ltd., Fujian, China
| | - Huaishun Guo
- Fujian Sunnzer Biotechnology Development Co., Ltd., Fujian, China
| | - Haihe Gao
- Fujian Sunnzer Biotechnology Development Co., Ltd., Fujian, China
| | - Ning Wang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, China
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Hui Zhang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, China
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
- *Correspondence: Hui Zhang
| | - Hui Li
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, China
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
- Hui Li
| |
Collapse
|
15
|
Feng Y, Liu D, Liu Y, Yang X, Zhang M, Wei F, Li D, Hu Y, Guo Y. Host-genotype-dependent cecal microbes are linked to breast muscle metabolites in Chinese chickens. iScience 2022; 25:104469. [PMID: 35707722 PMCID: PMC9189123 DOI: 10.1016/j.isci.2022.104469] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 04/08/2022] [Accepted: 05/20/2022] [Indexed: 11/18/2022] Open
Abstract
In chickens, the effect of host genetics on the gut microbiota is not fully understood, and the extent to which the heritable gut microbes affect chicken metabolism and physiology is still an open question. Here, we explored the interactions among chicken genetics, the cecal microbiota and metabolites in breast muscle from ten chicken breeds in China. We found that different chicken breeds displayed distinct cecal microbial community structures and functions, and 15 amplicon sequence variants (ASVs) were significantly associated with host genetics through different genetic loci, such as those related to the intestinal barrier function. We identified five heritable ASVs significantly associated with 53 chicken muscle metabolites, among which the Megamonas probably affected lipid metabolism through the production of propionate. Our study revealed that the chicken genetically associated cecal microbes may have the potential to affect the bird’s physiology and metabolism. The cecal microbiota are different among ten chicken breeds The chicken genetics influences the cecal microbiota structures and functions The chicken heritable cecal microbes are associated with muscle metabolites Megamonas may affect lipid metabolism by the production of propionate
Collapse
Affiliation(s)
- Yuqing Feng
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China
| | - Dan Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China
| | - Yan Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China
| | - Xinyue Yang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China
| | - Meihong Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China
| | - Fuxiao Wei
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China
| | - Depeng Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China
| | - Yongfei Hu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China
- Corresponding author
| | - Yuming Guo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China
- Corresponding author
| |
Collapse
|
16
|
Kim JE, Bennett DC, Wright K, Cheng KM. Seasonal and sexual variation in mRNA expression of selected adipokine genes affecting fat deposition and metabolism of the emu (Dromaius novaehollandiae). Sci Rep 2022; 12:6325. [PMID: 35428830 PMCID: PMC9012844 DOI: 10.1038/s41598-022-10232-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 03/29/2022] [Indexed: 11/16/2022] Open
Abstract
Emus are farmed for fat production. Oil rendered from their back and abdominal fat pads has good anti-oxidant and anti-inflammatory properties and has ingredients that promote cell growth. Our objective is to examine the mRNA expression of 7 emu adipokine genes (eFABP4, eSCD1, eAdipoQ, eAdipoR1, eAdipoR2, eLEP and eLepR) to identify gene markers that may help improve emu fat production. Back and abdominal fat tissues from 11 adult emus were biopsied at four time points (April, June, August and November). Total RNA was isolated and cDNA was synthesized. Gene specific primers were designed for partial cloning fragments to amplify the open reading frame of the 7 genes. eLEP was not expressed in emu fat tissue. Nucleotides and amino acids sequences of the 6 expressed gene were compared with homologs from other species and phylogenetic relationships established. Seasonal mRNA expression of each gene was assessed by quantitative RT-PCR and differential expression analysed by the 2-ΔΔCT method. The 6 expressed genes showed seasonal variation in expression and showed association of expression level with back fat adiposity. More whole-genome scanning studies are needed to develop novel molecular markers that can be applied to improve fat production in emus.
Collapse
Affiliation(s)
- Ji Eun Kim
- Faculty of Land and Food Systems, Avian Research Centre, University of British Columbia, 2357 Main Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Darin C Bennett
- Faculty of Land and Food Systems, Avian Research Centre, University of British Columbia, 2357 Main Mall, Vancouver, BC, V6T 1Z4, Canada
- Animal Science Department, California Polytechnic State University, San Luis Obispo, CA, 93407, USA
| | - Kristina Wright
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Research Institute, 570 West 7th Avenue, Vancouver, BC, V5Z 4S6, Canada
| | - Kimberly M Cheng
- Faculty of Land and Food Systems, Avian Research Centre, University of British Columbia, 2357 Main Mall, Vancouver, BC, V6T 1Z4, Canada.
| |
Collapse
|
17
|
Zhang X, Cheng B, Ma Y, Liu Y, Wang N, Zhang H, Li Y, Wang Y, Luan P, Cao Z, Li H. Genome-wide survey and functional analysis reveal TCF21 promotes chicken preadipocyte differentiation by directly upregulating HTR2A. Biochem Biophys Res Commun 2022; 587:131-138. [PMID: 34872001 DOI: 10.1016/j.bbrc.2021.11.103] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 11/18/2021] [Accepted: 11/29/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND/AIM Previously, we showed that transcription factor 21 (TCF21) promotes chicken preadipocyte differentiation. However, the genome-wide TCF21 binding sites and its downstream target genes in chicken adipogenesis were unknown. METHODS ChIP-Seq and RNA-Seq were used to screen candidate targets of TCF21. qPCR and luciferase reporter assay were applied to verify the sequencing results. Western blotting, oil red-O staining and pharmacological treatments were performed to investigate the function of 5-hydroxytryptamine receptor 2A (HTR2A), one of the bonafide direct downstream binding targets of TCF21. RESULTS A total of 94 candidate target genes of TCF21 were identified. ChIP-qPCR, RT-qPCR, and luciferase reporter assay demonstrated that HTR2A is one of the bonafide direct downstream binding targets of TCF21. HTR2A expression in adipose tissue was upregulated in fat line broilers. Also, the abundance of HTR2A gradually increased during the adipogenesis process. Interestingly, pharmacological enhancement or inhibition of HTR2A promoted or attenuated the differentiation of preadipocytes, respectively. Furthermore, HTR2A inhibition impaired the TCF21 promoted adipogenesis. CONCLUSIONS We profiled the genome-wide TCF21 binding sites in chicken differentiated preadipocytes revealing HTR2A as the direct downstream target of TCF21 in adipogenesis.
Collapse
Affiliation(s)
- Xinyang Zhang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, 150030, Heilongjiang, China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, 150030, Heilongjiang, China; College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
| | - Bohan Cheng
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, 150030, Heilongjiang, China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, 150030, Heilongjiang, China; College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
| | - Yanyan Ma
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, 150030, Heilongjiang, China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, 150030, Heilongjiang, China; College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
| | - Yumeng Liu
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, 150030, Heilongjiang, China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, 150030, Heilongjiang, China; College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
| | - Ning Wang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, 150030, Heilongjiang, China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, 150030, Heilongjiang, China; College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
| | - Hui Zhang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, 150030, Heilongjiang, China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, 150030, Heilongjiang, China; College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
| | - Yumao Li
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, 150030, Heilongjiang, China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, 150030, Heilongjiang, China; College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
| | - Yuxiang Wang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, 150030, Heilongjiang, China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, 150030, Heilongjiang, China; College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
| | - Peng Luan
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, 150030, Heilongjiang, China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, 150030, Heilongjiang, China; College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
| | - Zhiping Cao
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, 150030, Heilongjiang, China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, 150030, Heilongjiang, China; College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
| | - Hui Li
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, 150030, Heilongjiang, China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, 150030, Heilongjiang, China; College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China.
| |
Collapse
|
18
|
Genome-wide association studies for growth traits in broilers. BMC Genom Data 2022; 23:1. [PMID: 34979907 PMCID: PMC8725492 DOI: 10.1186/s12863-021-01017-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 11/30/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The identification of markers and genes for growth traits may not only benefit for marker assist selection /genomic selection but also provide important information for understanding the genetic foundation of growth traits in broilers. RESULTS In the current study, we estimated the genetic parameters of eight growth traits in broilers and carried out the genome-wide association studies for these growth traits. A total of 113 QTNs discovered by multiple methods together, and some genes, including ACTA1, IGF2BP1, TAPT1, LDB2, PRKCA, TGFBR2, GLI3, SLC16A7, INHBA, BAMBI, APCDD1, GPR39, and GATA4, were identified as important candidate genes for rapid growth in broilers. CONCLUSIONS The results of this study will provide important information for understanding the genetic foundation of growth traits in broilers.
Collapse
|
19
|
Zhang Y, Zhang N, Liu L, Wang Y, Xing J, Li X. Transcriptome Analysis of Effects of Folic Acid Supplement on Gene Expression in Liver of Broiler Chickens. Front Vet Sci 2021; 8:686609. [PMID: 34604366 PMCID: PMC8481781 DOI: 10.3389/fvets.2021.686609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 08/23/2021] [Indexed: 12/30/2022] Open
Abstract
Folic acid is a water-soluble B vitamin, and plays an important role in regulating gene expression and methylation. The liver is the major site of lipid biosynthesis in the chicken. Nevertheless, how gene expression and regulatory networks are affected by folic acid in liver of broilers are poorly understood. This paper conducted the RNA-seq technology on the liver of broilers under folic acid challenge investigation. First, 405 differentially expressed genes (DEGs), including 157 significantly upregulated and 248 downregulated, were detected between the control group (C) and the 5 mg folic acid group (M). Second, 68 upregulated DEGs and 142 downregulated DEGs were determined between C group and 10 mg folic acid group (H). Third, there were 165 upregulated genes and 179 downregulated genes between M and H groups. Of these DEGs, 903 DEGs were successfully annotated in the public databases. The functional classification based on GO and KEEGG showed that “general function prediction only” represented the largest functional classes, “cell cycle” (C vs. M; M vs. H), and “neuroactive ligand-receptor interaction” (C vs. H) were the highest unique sequences among three groups. SNP analysis indicated that numbers of C, M and H groups were 145,450, 146,131, and 123,004, respectively. Total new predicted alternative splicing events in C, M, and H groups were 9,521, 9,328, and 8,929, respectively. A protein-protein interaction (PPI) network was constructed, and the top 10 hub genes were evaluated among three groups. The results of real time PCR indicated that mRNA abundance of PPARγ and FAS in abdominal fat of M and H groups were reduced compared with the C group (P < 0.05). Ultramicroscopy results showed that folic acid could reduce lipid droplets in livers from chickens. Finally, contents of LPL, PPARγ, and FAS in abdominal fat were decreased with the folic acid supplmented diets (P < 0.01). These findings reveal the effects of folic acid supplemention on gene expression in liver of broilers, which can provide information for understanding the molecular mechanisms of folic acid regulating liver lipid metabolism.
Collapse
Affiliation(s)
- Yujie Zhang
- School of Life Sciences, Linyi University, Linyi, China
| | - Ningbo Zhang
- School of Agriculture and Forestry Sciences, Linyi University, Linyi, China
| | - Lin Liu
- School of Pharmacy, Linyi University, Linyi, China
| | - Yan Wang
- School of Life Sciences, Linyi University, Linyi, China
| | - Jinyi Xing
- School of Life Sciences, Linyi University, Linyi, China
| | - Xiuling Li
- School of Life Sciences, Linyi University, Linyi, China
| |
Collapse
|
20
|
Trevisoli PA, Moreira GCM, Boschiero C, Cesar ASM, Petrini J, Margarido GRA, Ledur MC, Mourão GB, Garrick D, Coutinho LL. A Missense Mutation in the MYBPH Gene Is Associated With Abdominal Fat Traits in Meat-Type Chickens. Front Genet 2021; 12:698163. [PMID: 34456973 PMCID: PMC8386115 DOI: 10.3389/fgene.2021.698163] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 07/09/2021] [Indexed: 12/14/2022] Open
Abstract
Chicken is an important source of protein for human nutrition and a model system for growth and developmental biology. Although the genetic architecture of quantitative traits in meat-type chickens has been the subject of ongoing investigation, the identification of mutations associated with carcass traits of economic interest remains challenging. Therefore, our aim was to identify predicted deleterious mutation, which potentially affects protein function, and test if they were associated with carcass traits in chickens. For that, we performed a genome-wide association analysis (GWAS) for breast, thigh and drumstick traits in meat-type chickens and detected 19 unique quantitative trait loci (QTL). We then used: (1) the identified windows; (2) QTL for abdominal fat detected in a previous study with the same population and (3) previously obtained whole genome sequence data, to identify 18 predicted deleterious single nucleotide polymorphisms (SNPs) in those QTL for further association with breast, thigh, drumstick and abdominal fat traits. Using the additive model, a predicted deleterious SNP c.482C > T (SIFT score of 0.4) was associated (p-value < 0.05) with abdominal fat weight and percentage. This SNP is in the second exon of the MYBPH gene, and its allele frequency deviates from Hardy–Weinberg equilibrium. In conclusion, our study provides evidence that the c.482C > T SNP in the MYBPH gene is a putative causal mutation for fat deposition in meat-type chickens.
Collapse
Affiliation(s)
- Priscila Anchieta Trevisoli
- Animal Science Department, University of São Paulo (USP)/Luiz de Queiroz College of Agriculture (ESALQ), Piracicaba, Brazil
| | - Gabriel Costa Monteiro Moreira
- Animal Science Department, University of São Paulo (USP)/Luiz de Queiroz College of Agriculture (ESALQ), Piracicaba, Brazil
| | - Clarissa Boschiero
- Animal Science Department, University of São Paulo (USP)/Luiz de Queiroz College of Agriculture (ESALQ), Piracicaba, Brazil
| | - Aline Silva Mello Cesar
- Agri-Food Industry, Food and Nutrition Department, University of São Paulo (USP)/Luiz de Queiroz College of Agriculture (ESALQ), Piracicaba, Brazil
| | - Juliana Petrini
- Animal Science Department, University of São Paulo (USP)/Luiz de Queiroz College of Agriculture (ESALQ), Piracicaba, Brazil
| | | | | | - Gerson Barreto Mourão
- Animal Science Department, University of São Paulo (USP)/Luiz de Queiroz College of Agriculture (ESALQ), Piracicaba, Brazil
| | - Dorian Garrick
- School of Agriculture, Massey University, Wellington, New Zealand
| | - Luiz Lehmann Coutinho
- Animal Science Department, University of São Paulo (USP)/Luiz de Queiroz College of Agriculture (ESALQ), Piracicaba, Brazil
| |
Collapse
|
21
|
Zhao H, Wu M, Tang X, Li Q, Yi X, Wang S, Jia C, Wei Z, Sun X. Function of Chick Subcutaneous Adipose Tissue During the Embryonic and Posthatch Period. Front Physiol 2021; 12:684426. [PMID: 34239450 PMCID: PMC8258255 DOI: 10.3389/fphys.2021.684426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 05/13/2021] [Indexed: 12/18/2022] Open
Abstract
Since excess abdominal fat is one of the main problems in the broiler industry for the development of modern broiler and layer industry, the importance of subcutaneous adipose tissue has been neglected. However, chick subcutaneous adipose tissue appeared earlier than abdominal adipose tissue and more than abdominal adipose tissue. Despite a wealth of data, detailed information is lacking about the development and function of chick subcutaneous adipose tissue during the embryonic and posthatch period. Therefore, the objective of the current study was to determine the developmental changes of adipocyte differentiation, lipid synthesis, lipolysis, fatty acid β-oxidation, and lipid contents from E12 to D9.5. The results showed that subcutaneous adipose tissue was another important energy supply tissue during the posthatch period. In this stage, the mitochondrial copy number and fatty acid β-oxidation level significantly increased. It revealed that chick subcutaneous adipose tissue not only has the function of energy supply by lipidolysis but also performs the same function as brown adipose tissue to some extent, despite that the brown adipose tissue does not exist in birds. In addition, this finding improved the theory of energy supply in the embryonic and posthatch period and might provide theoretical basis on physiological characteristics of lipid metabolism in chicks.
Collapse
Affiliation(s)
- Haidong Zhao
- College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Mingli Wu
- College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Xiaoqin Tang
- College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Qi Li
- College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Xiaohua Yi
- College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Shuhui Wang
- College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Cunling Jia
- College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Zehui Wei
- College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Xiuzhu Sun
- College of Animal Science and Technology, Northwest A&F University, Xianyang, China.,College of Grassland Agriculture, Northwest A&F University, Xianyang, China
| |
Collapse
|
22
|
Nematbakhsh S, Pei Pei C, Selamat J, Nordin N, Idris LH, Abdull Razis AF. Molecular Regulation of Lipogenesis, Adipogenesis and Fat Deposition in Chicken. Genes (Basel) 2021; 12:genes12030414. [PMID: 33805667 PMCID: PMC8002044 DOI: 10.3390/genes12030414] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 12/13/2022] Open
Abstract
In the poultry industry, excessive fat deposition is considered an undesirable factor, affecting feed efficiency, meat production cost, meat quality, and consumer’s health. Efforts to reduce fat deposition in economically important animals, such as chicken, can be made through different strategies; including genetic selection, feeding strategies, housing, and environmental strategies, as well as hormone supplementation. Recent investigations at the molecular level have revealed the significant role of the transcriptional and post-transcriptional regulatory networks and their interaction on modulating fat metabolism in chickens. At the transcriptional level, different transcription factors are known to regulate the expression of lipogenic and adipogenic genes through various signaling pathways, affecting chicken fat metabolism. Alternatively, at the post-transcriptional level, the regulatory mechanism of microRNAs (miRNAs) on lipid metabolism and deposition has added a promising dimension to understand the structural and functional regulatory mechanism of lipid metabolism in chicken. Therefore, this review focuses on the progress made in unraveling the molecular function of genes, transcription factors, and more notably significant miRNAs responsible for regulating adipogenesis, lipogenesis, and fat deposition in chicken. Moreover, a better understanding of the molecular regulation of lipid metabolism will give researchers novel insights to use functional molecular markers, such as miRNAs, for selection against excessive fat deposition to improve chicken production efficiency and meat quality.
Collapse
Affiliation(s)
- Sara Nematbakhsh
- Laboratory of Food Safety and Food Integrity, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia; (S.N.); (J.S.); (N.N.)
| | - Chong Pei Pei
- Faculty of Health and Medical Sciences, School of Biosciences, Taylor’s University, Subang Jaya 47500, Selangor, Malaysia;
| | - Jinap Selamat
- Laboratory of Food Safety and Food Integrity, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia; (S.N.); (J.S.); (N.N.)
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia
| | - Noordiana Nordin
- Laboratory of Food Safety and Food Integrity, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia; (S.N.); (J.S.); (N.N.)
| | - Lokman Hakim Idris
- Department of Veterinary Preclinical Sciences, Faculty of Veterinary Medicine, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia;
| | - Ahmad Faizal Abdull Razis
- Laboratory of Food Safety and Food Integrity, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia; (S.N.); (J.S.); (N.N.)
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia
- Correspondence:
| |
Collapse
|
23
|
Dietary corn-resistant starch suppresses broiler abdominal fat deposition associated with the reduced cecal Firmicutes. Poult Sci 2020; 99:5827-5837. [PMID: 33142500 PMCID: PMC7647821 DOI: 10.1016/j.psj.2020.07.042] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 07/16/2020] [Accepted: 07/18/2020] [Indexed: 12/27/2022] Open
Abstract
This study investigated the effects of dietary corn-resistant starch on lipid metabolism of broilers and its potential relationship with cecal microbiota modulation. A total of three hundred twenty 1-day-old male broilers were randomly assigned into 5 dietary treatments: 1 normal corn–soybean (NC) diet, 1 corn–soybean–based diet supplementation with 20% corn starch (CS), and 3 corn–soybean–based diets supplementation with 4, 8, and 12% corn resistant starch (RS) (identified as 4%RS, 8%RS, and 12%RS, respectively). Each group had 8 replicates with 8 broilers per replicate. The experiment lasted 21 d. The results showed that the abdominal fat percentage were lower in birds from 8%RS and 12%RS groups (0.75 and 0.58%, respectively) than those from NC and CS groups (1.20 and 1.28%, respectively; P < 0.05). The birds from 8%RS and 12%RS groups exhibited lower concentrations of blood triglyceride and nonestesterified fatty acid than those in the NC and CS groups (P < 0.05). Moreover, birds fed diets supplementation with 12% RS decreased the relative mRNA expressions of peroxisome proliferator-activated receptor gamma, ATP citrate-lyase, fatty acid synthase, and acetyl-CoA carboxylase in liver, and glycerol-3-phosphate acyltransferase in abdominal adipose tissue (P < 0.05). Microbiota analysis revealed that birds fed diets supplementation with 8 and 12% RS decreased the abundance of cecal Firmicutes by 23.08 and 20.47% and increased the proportion of Bacteroidetes by 24.33 and 21.92%, respectively, compared with the NC group (P < 0.05). In addition, correlation analysis revealed that many Firmicutes members had highly positive relationship with blood lipid levels and fat storage capacity, which might contribute to the lower abdominal fat phenotype. Overall, broilers receiving diets containing a higher concentration of RS harbor less Firmicutes, which decreased liver fatty acid synthesis and suppress abdominal fat deposition of birds during the starter phase. These findings provide a profound understanding about the relationship between gut microbial composition and lipid metabolism in broilers.
Collapse
|
24
|
Liu Y, Liu X, Zhou J, Ren Z, Yang X, Cao Y, Yang X. Folic acid perfusion administration reduced abdominal fat deposition in starter Arbor Acres broilers. Poult Sci 2020; 98:6816-6825. [PMID: 31328769 PMCID: PMC8913948 DOI: 10.3382/ps/pez413] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 06/28/2019] [Indexed: 01/26/2023] Open
Abstract
With intensive selection for meat production in broilers, excessive fat accumulation is also accompanied and causes economic concerns. Folic acid was reported to be involved in lipid metabolism. The present study was conducted to investigate the role of folic acid in reducing abdominal fat deposition. A total of 105 one-day-old healthy Arbor Acres broilers were randomly distributed into 3 treatments, including the control (Con), saline-perfusion group (NS), and folic acid perfusion group (FA). The growth performance, biochemical characteristics in serum, and lipid metabolism in the liver and abdominal fat tissues were evaluated. Results have shown that folic acid significantly reduced abdominal fat percentage (P < 0.05) and had no effects on BW, ADFI, ADG, and FCR (P > 0.05). Serum triglycerides (TG), total cholesterol (TC), and alanine aminotransferase (ALT) levels were lower in FA group but albumin concentration was higher (P < 0.05). Hepatic ACC, SCD, ELOVL6, PI3K, LDLR, HMGCR, and ABCA1 mRNA abundance were all down-regulated in FA group (P < 0.05) when compared with the Con and NS groups, while CPT1 and PPARα were not affected. In addition, MTTP mRNA abundance was higher in the liver of birds subjected to folic acid (P < 0.05). There was no difference about TG deposition in the liver among all groups based on hematoxylin−eosin (HE) and Oil Red O staining. On the other hand, ELOVL6, PPARγ, IGF1, and TGFβ2 expression were notably decreased in the abdominal fat in FA group (P < 0.05). In conclusion, our data demonstrated that folic acid has reduced abdominal fat percentage by decreasing hepatic lipogenesis and suppressing adipocytes proliferation and differentiation. And the inhibiting effect of adipocytes might be mediated by IGF1 and TGFβ2 down-regulation.
Collapse
Affiliation(s)
- Y Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - X Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - J Zhou
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Z Ren
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - X Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Y Cao
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - X Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
25
|
Zhang H, Shen LY, Xu ZC, Kramer LM, Yu JQ, Zhang XY, Na W, Yang LL, Cao ZP, Luan P, Reecy JM, Li H. Haplotype-based genome-wide association studies for carcass and growth traits in chicken. Poult Sci 2020; 99:2349-2361. [PMID: 32359570 PMCID: PMC7597553 DOI: 10.1016/j.psj.2020.01.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 01/20/2020] [Accepted: 01/20/2020] [Indexed: 12/15/2022] Open
Abstract
There have been several genome-wide association study (GWAS) reported for carcass, growth, and meat traits in chickens. Most of these studies have been based on single SNPs GWAS. In contrast, haplotype-based GWAS reports have been limited. In the present study, 2 Northeast Agricultural University broiler lines divergently selected for abdominal fat content (NEAUHLF) and genotyped with the chicken 60K SNP chip were used to perform a haplotype-based GWAS. The lean and fat chicken lines were selected for abdominal fat content for 11 yr. Abdominal fat weight was significantly different between the 2 lines; however, there was no difference for body weight between the lean and fat lines. A total of 132 haplotype windows were significantly associated with abdominal fat weight. These significantly associated haplotype windows were primarily located on chromosomes 2, 4, 8, 10, and 26. Seven candidate genes, including SHH, LMBR1, FGF7, IL16, PLIN1, IGF1R, and SLC16A1, were located within these associated regions. These genes may play important roles in the control of abdominal fat content. Two regions on chromosomes 3 and 10 were significantly associated with testis weight. These 2 regions were previously detected by the single SNP GWAS using this same resource population. TCF21 on chromosome 3 was identified as a potentially important candidate gene for testis growth and development based on gene expression analysis and the reported function of this gene. TCF12, which was previously detected in our SNP by SNP interaction analysis, was located in a region on chromosome 10 that was significantly associated with testis weight. Six candidate genes, including TNFRSF1B, PLOD1, NPPC, MTHFR, EPHB2, and SLC35A3, on chromosome 21 may play important roles in bone development based on the known function of these genes. In addition, several regions were significantly associated with other carcass and growth traits, but no candidate genes were identified. The results of the present study may be helpful in understanding the genetic mechanisms of carcass and growth traits in chickens.
Collapse
Affiliation(s)
- Hui Zhang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Lin-Yong Shen
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Zi-Chun Xu
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Luke M Kramer
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Jia-Qiang Yu
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Xin-Yang Zhang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Wei Na
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Li-Li Yang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Zhi-Ping Cao
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Peng Luan
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - James M Reecy
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA.
| | - Hui Li
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
26
|
Developmental changes in hepatic lipid metabolism of chicks during the embryonic periods and the first week of posthatch. Poult Sci 2020; 99:1655-1662. [PMID: 32111330 PMCID: PMC7587903 DOI: 10.1016/j.psj.2019.11.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 10/25/2019] [Accepted: 11/06/2019] [Indexed: 12/24/2022] Open
Abstract
The liver is the main site of de novo lipogenesis in poultry, and hepatic lipid metabolism disorder will lead to excessive abdominal fat deposition or fatty liver disease, finally causing huge economic loss. The present study was conducted to investigate developmental changes in hepatic lipid metabolism of chicks from embryonic periods to the first week after hatching. Liver samples were collected from embryonic day 11 (E11) to the age of day 7 posthatch (D7) for lipid metabolism analysis. Hematoxylin–eosin and Oil Red O staining analysis showed that hepatic lipids increased gradually during embryonic period and declined posthatch; The sum of hepatic triglycerides and cholesterol reached the peak at E19 and D1 by ELISA analysis (P < 0.05). Acetyl-CoA carboxylase, fatty acid synthase, and acyl-CoA desaturase 1 mRNA expression in the liver were higher from E17 to D1 with the peak at E19 when compared with those at E13 and E15 (P < 0.05). Hepatic elongase of very long-chain fatty acids 6 and microsomal triglyceride transfer protein mRNA abundance were lower during embryonic periods but reached relative higher level after hatching (P < 0.05). On the contrary, hepatic carbohydrate response element binding protein (ChREBP), carnitine palmitoyltransferase 1, and peroxisome proliferators–activated receptor α expression were higher during embryonic periods but decreased posthatch (P < 0.05). The mRNA abundance of sterol-regulatory element binding protein 1c was the lowest at E13 and E15, then increased gradually from E17 to D1, while decreased from D3 to D7 little by little (P < 0.05). In summary, hepatic lipogenesis genes have different expression patterns during the embryonic periods and the first week of posthatch, which might be activated by ChREBP during embryonic periods; fatty acid oxidation was enhanced around the hatched day but declined posthatch. These findings will broaden the understanding of physiological characteristics and dynamic pattern about hepatic lipid metabolism in chicks.
Collapse
|
27
|
Moreira GCM, Poleti MD, Pértille F, Boschiero C, Cesar ASM, Godoy TF, Ledur MC, Reecy JM, Garrick DJ, Coutinho LL. Unraveling genomic associations with feed efficiency and body weight traits in chickens through an integrative approach. BMC Genet 2019; 20:83. [PMID: 31694549 PMCID: PMC6836328 DOI: 10.1186/s12863-019-0783-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 10/11/2019] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Feed efficiency and growth rate have been targets for selection to improve chicken production. The incorporation of genomic tools may help to accelerate selection. We genotyped 529 individuals using a high-density SNP chip (600 K, Affymetrix®) to estimate genomic heritability of performance traits and to identify genomic regions and their positional candidate genes associated with performance traits in a Brazilian F2 Chicken Resource population. Regions exhibiting selection signatures and a SNP dataset from resequencing were integrated with the genomic regions identified using the chip to refine the list of positional candidate genes and identify potential causative mutations. RESULTS Feed intake (FI), feed conversion ratio (FC), feed efficiency (FE) and weight gain (WG) exhibited low genomic heritability values (i.e. from 0.0002 to 0.13), while body weight at hatch (BW1), 35 days-of-age (BW35), and 41 days-of-age (BW41) exhibited high genomic heritability values (i.e. from 0.60 to 0.73) in this F2 population. Twenty unique 1-Mb genomic windows were associated with BW1, BW35 or BW41, located on GGA1-4, 6-7, 10, 14, 24, 27 and 28. Thirty-eight positional candidate genes were identified within these windows, and three of them overlapped with selection signature regions. Thirteen predicted deleterious and three high impact sequence SNPs in these QTL regions were annotated in 11 positional candidate genes related to osteogenesis, skeletal muscle development, growth, energy metabolism and lipid metabolism, which may be associated with body weight in chickens. CONCLUSIONS The use of a high-density SNP array to identify QTL which were integrated with whole genome sequence signatures of selection allowed the identification of candidate genes and candidate causal variants. One novel QTL was detected providing additional information to understand the genetic architecture of body weight traits. We identified QTL for body weight traits, which were also associated with fatness in the same population. Our findings form a basis for further functional studies to elucidate the role of specific genes in regulating body weight and fat deposition in chickens, generating useful information for poultry breeding programs.
Collapse
Affiliation(s)
| | - Mirele Daiana Poleti
- University of São Paulo (USP) / College of Animal Science and Food Engineering (FZEA), Pirassununga, São Paulo, Brazil
| | - Fábio Pértille
- Department of Animal Science, University of São Paulo, Piracicaba, SP 13418-900 Brazil
| | - Clarissa Boschiero
- Department of Animal Science, University of São Paulo, Piracicaba, SP 13418-900 Brazil
| | | | - Thaís Fernanda Godoy
- Department of Animal Science, University of São Paulo, Piracicaba, SP 13418-900 Brazil
| | | | - James M. Reecy
- Department of Animal Science, Iowa State University (ISU), Ames, Iowa, USA
| | - Dorian J. Garrick
- School of Agriculture, Massey University, Ruakura, Hamilton, New Zealand
| | - Luiz Lehmann Coutinho
- Department of Animal Science, University of São Paulo, Piracicaba, SP 13418-900 Brazil
| |
Collapse
|
28
|
Moreira GCM, Salvian M, Boschiero C, Cesar ASM, Reecy JM, Godoy TF, Ledur MC, Garrick D, Mourão GB, Coutinho LL. Genome-wide association scan for QTL and their positional candidate genes associated with internal organ traits in chickens. BMC Genomics 2019; 20:669. [PMID: 31438838 PMCID: PMC6704653 DOI: 10.1186/s12864-019-6040-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 08/16/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Poultry breeding programs have been focused on improvement of growth and carcass traits, however, this has resulted in correlated changes in internal organ weights and increased incidence of metabolic disorders. These disorders can affect feed efficiency or even cause death. We used a high density SNP array (600 K, Affymetrix) to estimate genomic heritability, perform genome-wide association analysis, and identify genomic regions and positional candidate genes (PCGs) associated with internal organ traits in an F2 chicken population. We integrated knowledge of haplotype blocks, selection signature regions and sequencing data to refine the list of PCGs. RESULTS Estimated genomic heritability for internal organ traits in chickens ranged from low (LUNGWT, 0.06) to high (GIZZWT, 0.45). A total of 20 unique 1 Mb windows identified on GGA1, 2, 4, 7, 12, 15, 18, 19, 21, 27 and 28 were significantly associated with intestine length, and weights or percentages of liver, gizzard or lungs. Within these windows, 14 PCGs were identified based on their biological functions: TNFSF11, GTF2F2, SPERT, KCTD4, HTR2A, RB1, PCDH7, LCORL, LDB2, NR4A2, GPD2, PTPN11, ITGB4 and SLC6A4. From those genes, two were located within haplotype blocks and three overlapped with selection signature regions. A total of 13,748 annotated sequence SNPs were in the 14 PCGs, including 156 SNPs in coding regions (124 synonymous, 26 non-synonymous, and 6 splice variants). Seven deleterious SNPs were identified in TNFSF11, NR4A2 or ITGB4 genes. CONCLUSIONS The results from this study provide novel insights to understand the genetic architecture of internal organ traits in chickens. The QTL detection performed using a high density SNP array covered the whole genome allowing the discovery of novel QTL associated with organ traits. We identified PCGs within the QTL involved in biological processes that may regulate internal organ growth and development. Potential functional genetic variations were identified generating crucial information that, after validation, might be used in poultry breeding programs to reduce the occurrence of metabolic disorders.
Collapse
Affiliation(s)
| | - Mayara Salvian
- University of São Paulo (USP), Luiz de Queiroz College of Agriculture (ESALQ), Piracicaba, São Paulo, Brazil
| | - Clarissa Boschiero
- University of São Paulo (USP), Luiz de Queiroz College of Agriculture (ESALQ), Piracicaba, São Paulo, Brazil
| | - Aline Silva Mello Cesar
- University of São Paulo (USP), Luiz de Queiroz College of Agriculture (ESALQ), Piracicaba, São Paulo, Brazil
| | - James M. Reecy
- Department of Animal Science, Iowa State University (ISU), Ames, Iowa USA
| | - Thaís Fernanda Godoy
- University of São Paulo (USP), Luiz de Queiroz College of Agriculture (ESALQ), Piracicaba, São Paulo, Brazil
| | | | - Dorian Garrick
- School of Agriculture, Massey University, Ruakura, Hamilton, New Zealand
| | - Gerson Barreto Mourão
- University of São Paulo (USP), Luiz de Queiroz College of Agriculture (ESALQ), Piracicaba, São Paulo, Brazil
| | - Luiz L. Coutinho
- University of São Paulo (USP), Luiz de Queiroz College of Agriculture (ESALQ), Piracicaba, São Paulo, Brazil
| |
Collapse
|
29
|
Zhang H, Shen L, Li Y, Xu Z, Zhang X, Yu J, Cao Z, Luan P. Genome-wide association study for plasma very low-density lipoprotein concentration in chicken. J Anim Breed Genet 2019; 136:351-361. [PMID: 31037768 DOI: 10.1111/jbg.12397] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 03/20/2019] [Accepted: 04/01/2019] [Indexed: 01/17/2023]
Abstract
The plasma very low-density lipoprotein (VLDL) concentration is an effective blood biochemical indicator that could be used to select lean chicken lines. In the current study, we used Genome-wide association study (GWAS) method to detect SNPs with significant effects on plasma VLDL concentration. As a result, 38 SNPs significantly associated with plasma VLDL concentration were identified using at least one of the three mixed linear model (MLM) packages, including GRAMMAR, EMMAX and GEMMA. Nearly, all these SNPs with significant effects on plasma VLDL concentration (except Gga_rs16160897) have significantly different allele frequencies between lean and fat lines. The 1-Mb regions surrounding these 38 SNPs were extracted, and twelve important regions were obtained after combining the overlaps. A total of 122 genes in these twelve important regions were detected. Among these genes, LRRK2, ABCD2, TLR4, E2F1, SUGP1, NCAN, KLF2 and RAB8A were identified as important genes for plasma VLDL concentration based on their basic functions. The results of this study may supply useful information to select lean chicken lines.
Collapse
Affiliation(s)
- Hui Zhang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Linyong Shen
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Yumao Li
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Zichun Xu
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Xinyang Zhang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Jiaqiang Yu
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Zhiping Cao
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Peng Luan
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| |
Collapse
|