1
|
Peng CS, Zhang Y, Liu Q, Marti GE, Huang YWA, Südhof TC, Cui B, Chu S. Nanometer-resolution tracking of single cargo reveals dynein motor mechanisms. Nat Chem Biol 2024:10.1038/s41589-024-01694-2. [PMID: 39090313 DOI: 10.1038/s41589-024-01694-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 07/09/2024] [Indexed: 08/04/2024]
Abstract
Cytoplasmic dynein is essential for intracellular transport. Despite extensive in vitro characterizations, how the dynein motors transport vesicles by processive steps in live cells remains unclear. To dissect the molecular mechanisms of dynein, we develop optical probes that enable long-term single-particle tracking in live cells with high spatiotemporal resolution. We find that the number of active dynein motors transporting cargo switches stochastically between one and five dynein motors during long-range transport in neuronal axons. Our very bright optical probes allow the observation of individual molecular steps. Strikingly, these measurements reveal that the dwell times between steps are controlled by two temperature-dependent rate constants in which two ATP molecules are hydrolyzed sequentially during each dynein step. Thus, our observations uncover a previously unknown chemomechanical cycle of dynein-mediated cargo transport in living cells.
Collapse
Affiliation(s)
- Chunte Sam Peng
- Department of Physics, Stanford University, Stanford, CA, USA
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Yunxiang Zhang
- Department of Physics, Stanford University, Stanford, CA, USA
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, China
| | - Qian Liu
- Department of Physics, Stanford University, Stanford, CA, USA
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, China
| | - G Edward Marti
- Department of Physics, Stanford University, Stanford, CA, USA
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA
| | - Yu-Wen Alvin Huang
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, USA
| | - Thomas C Südhof
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Bianxiao Cui
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | - Steven Chu
- Department of Physics, Stanford University, Stanford, CA, USA.
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA.
| |
Collapse
|
2
|
Kondo Y, Sasaki K, Higuchi H. Fast backward steps and detachment of single kinesin molecules measured under a wide range of loads. Traffic 2023; 24:463-474. [PMID: 37679870 DOI: 10.1111/tra.12909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 09/09/2023]
Abstract
To understand force generation under a wide range of loads, the stepping of single kinesin molecules was measured at loads from -20 to 42 pN by optical tweezers with high temporal resolution. The optical trap has been improved to halve positional noise and increase bandwidth by using 200-nm beads. The step size of the forward and backward steps was 8.2 nm even over a wide range of loads. Histograms of the dwell times of backward steps and detachment fit well to two independent exponential equations with fast (~0.4 ms) and slow (>3 ms) time constants, indicating the existence of a fast step in addition to the conventional slow step. The dwell times of the fast steps were almost independent of the load and ATP concentration, while those of the slow backward steps and detachment depended on those. We constructed the kinetic model to explain the fast and slow steps under a wide range of loads.
Collapse
Affiliation(s)
- Yuichi Kondo
- Department of Physics, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Kazuo Sasaki
- Department of Applied Physics, Graduate School of Engineering, Tohoku University, Sendai, Japan
| | - Hideo Higuchi
- Department of Physics, Graduate School of Science, The University of Tokyo, Tokyo, Japan
- Universal Biology Institute, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
3
|
Fujiwara T, Shingyoji C, Higuchi H. Versatile properties of dynein molecules underlying regulation in flagellar oscillation. Sci Rep 2023; 13:10514. [PMID: 37386019 PMCID: PMC10310797 DOI: 10.1038/s41598-023-37242-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 06/19/2023] [Indexed: 07/01/2023] Open
Abstract
Dynein is a minus-end-directed motor that generates oscillatory motion in eukaryotic flagella. Cyclic beating, which is the most significant feature of a flagellum, occurs by sliding spatiotemporal regulation by dynein along microtubules. To elucidate oscillation generated by dynein in flagellar beating, we examined its mechanochemical properties under three different axonemal dissection stages. By starting from the intact 9 + 2 structure, we reduced the number of interacting doublets and determined three parameters, namely, the duty ratio, dwell time and step size, of the generated oscillatory forces at each stage. Intact dynein molecules in the axoneme, doublet bundle and single doublet were used to measure the force with optical tweezers. The mean forces per dynein determined under three axonemal conditions were smaller than the previously reported stall forces of axonemal dynein; this phenomenon suggests that the duty ratio is lower than previously thought. This possibility was further confirmed by an in vitro motility assay with purified dynein. The dwell time and step size estimated from the measured force were similar. The similarity in these parameters suggests that the essential properties of dynein oscillation are inherent to the molecule and independent of the axonemal architecture, composing the functional basis of flagellar beating.
Collapse
Affiliation(s)
- Takashi Fujiwara
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Chikako Shingyoji
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Hideo Higuchi
- Department of Physics, Graduate School of Science, The University of Tokyo, Tokyo, Japan.
- Universal Biology Institute, Graduate School of Science, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
4
|
Abstract
Flagellar-driven motility grants unicellular organisms the ability to gather more food and avoid predators, but the energetic costs of construction and operation of flagella are considerable. Paths of flagellar evolution depend on the deviations between fitness gains and energy costs. Using structural data available for all three major flagellar types (bacterial, archaeal, and eukaryotic), flagellar construction costs were determined for Escherichia coli, Pyrococcus furiosus, and Chlamydomonas reinhardtii. Estimates of cell volumes, flagella numbers, and flagellum lengths from the literature yield flagellar costs for another ~200 species. The benefits of flagellar investment were analysed in terms of swimming speed, nutrient collection, and growth rate; showing, among other things, that the cost-effectiveness of bacterial and eukaryotic flagella follows a common trend. However, a comparison of whole-cell costs and flagellum costs across the Tree of Life reveals that only cells with larger cell volumes than the typical bacterium could evolve the more expensive eukaryotic flagellum. These findings provide insight into the unsolved evolutionary question of why the three domains of life each carry their own type of flagellum.
Collapse
Affiliation(s)
- Paul E Schavemaker
- Biodesign Center for Mechanisms of Evolution, Arizona State UniversityTempeUnited States
| | - Michael Lynch
- Biodesign Center for Mechanisms of Evolution, Arizona State UniversityTempeUnited States
| |
Collapse
|
5
|
Abdellatef SA, Tadakuma H, Yan K, Fujiwara T, Fukumoto K, Kondo Y, Takazaki H, Boudria R, Yasunaga T, Higuchi H, Hirose K. Oscillatory movement of a dynein-microtubule complex crosslinked with DNA origami. eLife 2022; 11:76357. [PMID: 35749159 PMCID: PMC9232216 DOI: 10.7554/elife.76357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
Bending of cilia and flagella occurs when axonemal dynein molecules on one side of the axoneme produce force and move toward the microtubule (MT) minus end. These dyneins are then pulled back when the axoneme bends in the other direction, meaning oscillatory back and forth movement of dynein during repetitive bending of cilia/flagella. There are various factors that may regulate the dynein activity, e.g. the nexin-dynein regulatory complex, radial spokes, and central apparatus. In order to understand the basic mechanism of dynein’s oscillatory movement, we constructed a simple model system composed of MTs, outer-arm dyneins, and crosslinks between the MTs made of DNA origami. Electron microscopy (EM) showed pairs of parallel MTs crossbridged by patches of regularly arranged dynein molecules bound in two different orientations, depending on which of the MTs their tails bind to. The oppositely oriented dyneins are expected to produce opposing forces when the pair of MTs have the same polarity. Optical trapping experiments showed that the dynein-MT-DNA-origami complex actually oscillates back and forth after photolysis of caged ATP. Intriguingly, the complex, when held at one end, showed repetitive bending motions. The results show that a simple system composed of ensembles of oppositely oriented dyneins, MTs, and inter-MT crosslinkers, without any additional regulatory structures, has an intrinsic ability to cause oscillation and repetitive bending motions.
Collapse
Affiliation(s)
- Shimaa A Abdellatef
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan.,Research Center for Functional Materials, National Institute for Materials Science, Tsukuba, Japan
| | - Hisashi Tadakuma
- Institute for Protein Research, Osaka University, Osaka, Japan.,SLST and Gene Editing Center, ShanghaiTech University, Shanghai, China
| | - Kangmin Yan
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Takashi Fujiwara
- Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Kodai Fukumoto
- Institute for Protein Research, Osaka University, Osaka, Japan
| | - Yuichi Kondo
- Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Hiroko Takazaki
- Institute for Protein Research, Osaka University, Osaka, Japan.,Kyushu Institute of Technology, Fukuoka, Japan
| | - Rofia Boudria
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan.,Institut Pasteur, Paris, France
| | | | - Hideo Higuchi
- Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Keiko Hirose
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| |
Collapse
|
6
|
Ibusuki R, Morishita T, Furuta A, Nakayama S, Yoshio M, Kojima H, Oiwa K, Furuta K. Programmable molecular transport achieved by engineering protein motors to move on DNA nanotubes. Science 2022; 375:1159-1164. [PMID: 35271337 DOI: 10.1126/science.abj5170] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Intracellular transport is the basis of microscale logistics within cells and is powered by biomolecular motors. Mimicking transport for in vitro applications has been widely studied; however, the inflexibility in track design and control has hindered practical applications. Here, we developed protein-based motors that move on DNA nanotubes by combining a biomolecular motor dynein and DNA binding proteins. The new motors and DNA-based nanoarchitectures enabled us to arrange the binding sites on the track, locally control the direction of movement, and achieve multiplexed cargo transport by different motors. The integration of these technologies realized microscale cargo sorters and integrators that automatically transport molecules as programmed in DNA sequences on a branched DNA nanotube. Our system should provide a versatile, controllable platform for future applications.
Collapse
Affiliation(s)
- Ryota Ibusuki
- Graduate School of Life Science, University of Hyogo, Harima Science Park City, Hyogo 678-1297, Japan
| | - Tatsuya Morishita
- Graduate School of Life Science, University of Hyogo, Harima Science Park City, Hyogo 678-1297, Japan
| | - Akane Furuta
- Japan Society for the Promotion of Science, Chiyoda-ku, Tokyo 102-0083, Japan.,Advanced ICT Research Institute, National Institute of Information and Communications Technology, Kobe, Hyogo 651-2492, Japan
| | - Shintaro Nakayama
- Graduate School of Life Science, University of Hyogo, Harima Science Park City, Hyogo 678-1297, Japan
| | - Maki Yoshio
- Advanced ICT Research Institute, National Institute of Information and Communications Technology, Kobe, Hyogo 651-2492, Japan
| | - Hiroaki Kojima
- Advanced ICT Research Institute, National Institute of Information and Communications Technology, Kobe, Hyogo 651-2492, Japan
| | - Kazuhiro Oiwa
- Graduate School of Life Science, University of Hyogo, Harima Science Park City, Hyogo 678-1297, Japan.,Advanced ICT Research Institute, National Institute of Information and Communications Technology, Kobe, Hyogo 651-2492, Japan
| | - Ken'ya Furuta
- Advanced ICT Research Institute, National Institute of Information and Communications Technology, Kobe, Hyogo 651-2492, Japan
| |
Collapse
|
7
|
Abstract
In contrast to conventional hard actuators, soft actuators offer many vivid advantages, such as improved flexibility, adaptability, and reconfigurability, which are intrinsic to living systems. These properties make them particularly promising for different applications, including soft electronics, surgery, drug delivery, artificial organs, or prosthesis. The additional degree of freedom for soft actuatoric devices can be provided through the use of intelligent materials, which are able to change their structure, macroscopic properties, and shape under the influence of external signals. The use of such intelligent materials allows a substantial reduction of a device's size, which enables a number of applications that cannot be realized by externally powered systems. This review aims to provide an overview of the properties of intelligent synthetic and living/natural materials used for the fabrication of soft robotic devices. We discuss basic physical/chemical properties of the main kinds of materials (elastomers, gels, shape memory polymers and gels, liquid crystalline elastomers, semicrystalline ferroelectric polymers, gels and hydrogels, other swelling polymers, materials with volume change during melting/crystallization, materials with tunable mechanical properties, and living and naturally derived materials), how they are related to actuation and soft robotic application, and effects of micro/macro structures on shape transformation, fabrication methods, and we highlight selected applications.
Collapse
Affiliation(s)
- Indra Apsite
- Faculty of Engineering Science, Department of Biofabrication, University of Bayreuth, Ludwig Thoma Str. 36A, 95447 Bayreuth, Germany
| | - Sahar Salehi
- Department of Biomaterials, Center of Energy Technology und Materials Science, University of Bayreuth, Prof.-Rüdiger-Bormann-Straße 1, 95447 Bayreuth, Germany
| | - Leonid Ionov
- Faculty of Engineering Science, Department of Biofabrication, University of Bayreuth, Ludwig Thoma Str. 36A, 95447 Bayreuth, Germany.,Bavarian Polymer Institute, University of Bayreuth, Universitätsstr. 30, 95440 Bayreuth, Germany
| |
Collapse
|
8
|
Kinoshita Y, Murakami R, Muto N, Kubo S, Iizuka R, Uemura S. Heterogeneous dissociation process of truncated RNAs by oligomerized Vasa helicase. Commun Biol 2021; 4:1386. [PMID: 34893756 PMCID: PMC8664846 DOI: 10.1038/s42003-021-02918-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 11/25/2021] [Indexed: 11/18/2022] Open
Abstract
RNA helicases are enzymes that generally unwind double-stranded RNA using ATP hydrolysis energy, mainly involved in RNA metabolism, transcription, translation, and mRNA splicing. While the helicase core is crucial for RNA unwinding activity, N- and C-terminal extensions of specific helicases may contain an intrinsically disordered region for electrostatic interaction, resulting in the formation of droplets in the cytoplasm. However, how the disordered region of the RNA helicase contributes to RNA unwinding and dissociation remains unclear. Here, we focused on Bombyx mori Vasa, which unwinds truncated target transposon RNAs from the piRNA-induced silencing complex piRISC. In this study, we used single-molecule techniques to visualise how Vasa dynamically interacts with piRISC and investigate how Vasa oligomerization is involved in the process of piRNA amplification, named the ping-pong pathway. We found that Vasa’s oligomerization is required during these processes in vitro and in vivo, and that Vasa triggers the dissociation of truncated RNA in heterogeneous pathways. Our single-molecule results suggest that oligomerized Vasa guides the timing of the process regulating overall dissociation efficiency. Kinoshita et al. use single molecule imaging to show that the N-terminal extension of BmVasa, a germ-specific DEAD box RNA helicase, is necessary for protein oligomerization and the dissociation of target RNA from the Siwi-piRISC complex. The authors conclude that oligomerized Vasa guides the timing of the regulation of overall dissociation efficiency.
Collapse
Affiliation(s)
- Yoshimi Kinoshita
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Ryo Murakami
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Nao Muto
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Shintaroh Kubo
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Ryo Iizuka
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Sotaro Uemura
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
9
|
Dutta M, Jana B. Computational modeling of dynein motor proteins at work. Chem Commun (Camb) 2021; 57:272-283. [PMID: 33332489 DOI: 10.1039/d0cc05857b] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Along with various experimental methods, a combination of theoretical and computational methods is essential to explore different length-scale and time-scale processes in the biological system. The functional mechanism of a dynein, an ATP-fueled motor protein, working in a multiprotein complex, involves a wide range of length/time-scale events. It generates mechanical force from chemical energy and moves on microtubules towards the minus end direction while performing a large number of biological processes including ciliary beating, intracellular material transport, and cell division. Like in the cases of other conventional motor proteins, a combination of experimental techniques including X-crystallography, cryo-electron microscopy, and single molecular assay have provided a wealth of information about the mechanochemical cycle of a dynein. Dyneins have a large and complex structural architecture and therefore, computational modeling of different aspects of a dynein is extremely challenging. As the process of dynein movement involves varying length and timescales, it demands, like in experiments, a combination of computational methods covering such a wide range of processes for the comprehensive investigation of the mechanochemical cycle. In this review article, we will summarize how the use of state-of-the-art computational methods can provide a detailed molecular understanding of the mechanochemical cycle of the dynein. We implemented all-atom molecular dynamics simulations and hybrid quantum-mechanics/molecular-mechanics simulations to explore the ATP hydrolysis mechanisms at the primary ATPase site (AAA1) of dynein. To investigate the large-scale conformational changes we employed coarse-grained structure-based molecular dynamics simulations to capture the domain motions. Here we explored the conformational changes upon binding of ATP at AAA1, nucleotide state-dependent regulation of the mechanochemical cycle, and inter-head coordination by inter-head tension. Additionally, implementing a phenomenological theoretical model we explore the force-dependent detachment rate of a motorhead from the microtubule and the principle of multi-dynein cooperation during cargo transport.
Collapse
Affiliation(s)
- Mandira Dutta
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata - 700032, India.
| | | |
Collapse
|
10
|
Conrad R, Kortzak D, Guzman GA, Miranda-Laferte E, Hidalgo P. Ca V β controls the endocytic turnover of Ca V 1.2 L-type calcium channel. Traffic 2021; 22:180-193. [PMID: 33890356 DOI: 10.1111/tra.12788] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 03/17/2021] [Accepted: 04/17/2021] [Indexed: 01/10/2023]
Abstract
Membrane depolarization activates the multisubunit CaV 1.2 L-type calcium channel initiating various excitation coupling responses. Intracellular trafficking into and out of the plasma membrane regulates the channel's surface expression and stability, and thus, the strength of CaV 1.2-mediated Ca2+ signals. The mechanisms regulating the residency time of the channel at the cell membrane are unclear. Here, we coexpressed the channel core complex CaV 1.2α1 pore-forming and auxiliary CaV β subunits and analyzed their trafficking dynamics from single-particle-tracking trajectories. Speed histograms obtained for each subunit were best fitted to a sum of diffusive and directed motion terms. The same mean speed for the highest-mobility state underlying directed motion was found for all subunits. The frequency of this component increased by covalent linkage of CaV β to CaV 1.2α1 suggesting that high-speed transport occurs in association with CaV β. Selective tracking of CaV 1.2α1 along the postendocytic pathway failed to show the highly mobile state, implying CaV β-independent retrograde transport. Retrograde speeds of CaV 1.2α1 are compatible with myosin VI-mediated backward transport. Moreover, residency time at the cell surface was significantly prolonged when CaV 1.2α1 was covalently linked to CaV β. Thus, CaV β promotes fast transport speed along anterograde trafficking and acts as a molecular switch controlling the endocytic turnover of L-type calcium channels.
Collapse
Affiliation(s)
- Rachel Conrad
- Institute of Biological Information Processing (IBI-1), Molecular and Cellular Physiology, Forschungszentrum Jülich, Jülich, Germany
| | - Daniel Kortzak
- Institute of Biological Information Processing (IBI-1), Molecular and Cellular Physiology, Forschungszentrum Jülich, Jülich, Germany
| | - Gustavo A Guzman
- Institute of Biological Information Processing (IBI-1), Molecular and Cellular Physiology, Forschungszentrum Jülich, Jülich, Germany
| | - Erick Miranda-Laferte
- Institute of Biological Information Processing (IBI-1), Molecular and Cellular Physiology, Forschungszentrum Jülich, Jülich, Germany
| | - Patricia Hidalgo
- Institute of Biological Information Processing (IBI-1), Molecular and Cellular Physiology, Forschungszentrum Jülich, Jülich, Germany.,Institute of Biochemistry, Heinrich-Heine University, Düsseldorf, Germany
| |
Collapse
|
11
|
Self-organized networks: Darwinian evolution of dynein rings, stalks, and stalk heads. Proc Natl Acad Sci U S A 2020; 117:7799-7802. [PMID: 32205434 DOI: 10.1073/pnas.1920840117] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cytoskeletons are self-organized networks based on polymerized proteins: actin, tubulin, and driven by motor proteins, such as myosin, kinesin, and dynein. Their positive Darwinian evolution enables them to approach optimized functionality (self-organized criticality). Dynein has three distinct titled subunits, but how these units connect to function as a molecular motor is mysterious. Dynein binds to tubulin through two coiled coil stalks and a stalk head. The energy used to alter the head binding and propel cargo along tubulin is supplied by ATP at a ring 1,500 amino acids away. Here, we show how many details of this extremely distant interaction are explained by water waves quantified by thermodynamic scaling. Water waves have shaped all proteins throughout positive Darwinian evolution, and many aspects of long-range water-protein interactions are universal (described by self-organized criticality). Dynein water waves resembling tsunami produce nearly optimal energy transport over 1,500 amino acids along dynein's one-dimensional peptide backbone. More specifically, this paper identifies many similarities in the function and evolution of dynein compared to other cytoskeleton proteins such as actin, myosin, and tubulin.
Collapse
|
12
|
Hanson BS, Iida S, Read DJ, Harlen OG, Kurisu G, Nakamura H, Harris SA. Continuum mechanical parameterisation of cytoplasmic dynein from atomistic simulation. Methods 2020; 185:39-48. [PMID: 32007556 DOI: 10.1016/j.ymeth.2020.01.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 01/28/2020] [Accepted: 01/28/2020] [Indexed: 01/08/2023] Open
Abstract
Cytoplasmic dynein is responsible for intra-cellular transport in eukaryotic cells. Using Fluctuating Finite Element Analysis (FFEA), a novel algorithm that represents proteins as continuum viscoelastic solids subject to thermal noise, we are building computational tools to study the mechanics of these molecular machines. Here we present a methodology for obtaining the material parameters required to represent the flexibility of cytoplasmic dynein within FFEA from atomistic molecular dynamics (MD) simulations, and show that this continuum representation is sufficient to capture the principal dynamic properties of the motor.
Collapse
Affiliation(s)
- Benjamin S Hanson
- School of Physics & Astronomy, University of Leeds, Leeds LS2 9JT, UK
| | - Shinji Iida
- Institute for Protein Research, Osaka University, 3-2 Yamadoaka, Suita, Osaka 565-0871, Japan
| | - Daniel J Read
- School of Mathematics, University of Leeds, Leeds LS2 9JT, UK
| | - Oliver G Harlen
- School of Mathematics, University of Leeds, Leeds LS2 9JT, UK
| | - Genji Kurisu
- Institute for Protein Research, Osaka University, 3-2 Yamadoaka, Suita, Osaka 565-0871, Japan
| | - Haruki Nakamura
- Institute for Protein Research, Osaka University, 3-2 Yamadoaka, Suita, Osaka 565-0871, Japan
| | - Sarah A Harris
- School of Physics & Astronomy, University of Leeds, Leeds LS2 9JT, UK; Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|